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ABSTRACT

The thermal conductivity of a pure gas or a mixture of gases
has been studied with a new experimental technique which con-
sists of m e a s u r i n g the increase in pressure produced when a
temperature gradient is set up in a gas at constant volume during
a steady-state flow of heat from ahot wire alongthe axis of a tube.
The observed increase in pressure is used to calculate the true
mean temperature of the gas as it conducts heat. It has been
observed that the mean temperature increases as the pressure of
the gas is decreased, thereby showing that at a given temperature
the thermal conductivity of the gas must decrease as the pressure
is reduced. Some of the interesting conclusions to be drawn from
these experiments are: (a) the meantemperature is never
(Th.t + Tc .d)/2; (b) the temperature-distribution curves are rec-
tangular hyperbolas with their asymptotes as coordinate axes;
(c) most of the drop in temperature between the hot w i r e and the
cold tube is across a thin layer of gas a few tenths of a millimeter
thick surrounding the hot wire.

PROBLEM STATUS

This is an interim report; work on this problem is continuing.

AUTHORIZATION

NRL Problem C08-18
Project SF 013-08-03, Task 4092

Manuscript submitted December 27, 1962.
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EFFECT OF PRESSURE ON THE THERMAL

CONDUCTIVITY OF A GAS

INTRODUCTION

When a conventional thermal conductivity bridge is to be used for determining the
composition of a binary mixture of gases, it is always necessary to calibrate the apparatus
with mixtures of known composition. Even though the thermal conductivities of the pure
component gases are accurately known, it is found that the simple rule of mixtures cannot
be employed to calculate thermal conductivities of such binary mixtures. The rule of
mixtures states that K,, the thermal conductivity of the mixture at a pressure of one
atmosphere and a given temperature, is

iKm = IK1 p + 1K2(1-p) (1)

in which 1 K, and 1K2 are the thermal conductivities of the pure components at one
atmosphere, and the given temperature, while p is the partial pressure expressed in
atmospheres.

The simple rule of mixtures fails because the thermal conductivities of components
.re not constant but apparently vary with the composition of the mixture. A general
expression for the thermal conductivity of binary mixtures of nonassociated gases could
be written as

1Km = (PpK)p + ((,.p)K 2 ).(I-p) (2)

in which K, and (1 .p)K 2 are the thermal conductivities of the components at their
concentration in the mixture. Now Eq. (2) implies that the thermal conductivity of a gas
must vary with pressure, which conclusion is in conflict with the experimentally confirmed
prediction of kinetic theory that the thermal conductivity of a pure gas is independent of
pressure. Since the thermal conductivity of a pure gas seems to be almost independent
of pressure, it does not appear reasonable to assume that the thermal conductivity of a
gas varies with its partial pressure in a binary mixture with another gas as expressed
in Eq. (2). However, this assumption was made by Minter and Schuldiner (1) to derive an
equation for the thermal conductivity of hydrogen-deuterium mixtures which yields
results in excellent agreement with experimental measurements.

DERIVATION OF EQUATION FOR BINARY MIXTURES

Although experiment shows that the thermal conductivity of a pure gas does not vary
appreciably as the pressure is decreased below atmospheric until rather low pressures
are reached, it is here assumed that when two gases at atmospheric pressure are mixed,
their thermal conductivities in the mixture are lower than for the pure state because the
gases dilute each other to an extent depending on their relative concentrations in the
mixture.

1
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Let 1K, be the thermal conductivity of gas 1 at 1 atm and a given temperature. Let
pK1 be the thermal conductivity of gas 1 at partial pressure p and the same temperature.
It is now assumed that when gas 1 is mixed with gas 2, its thermal conductivity is reduced
and that the percent change in thermal conductivity is directly proportional to the percent
change In partial pressure, which in the limit becomes

d (K 1 ) dp (3)
pK I N P

in which N, is a constant of proportionality. The solution of Eq. (3) is

In ( pKI) = N, In p + C (4)

When p = 1, pKI = K1 and C = ln K1 . Substituting in Eq. (4) and reducinga we find.

pKz = IKIp N (5)

An expression similar to Eq. (5) can be obtained for gas 2, and for the two gases we
have

p K 1 K I ip NJ
N1  (6)

( -p) K2  
' IK2 

( I p ) "
2

Substituting Eq. (6) in Eq. (2) we have for the thermal conductivity of binary mixtures

(1 + NJ ) + K2 N 2 )

1  KsP + s N2)
p  (7)*

An alternate form of Eq. (7) can be obtained by expanding p ( +- NJ) and (l-p) (1 + N2 )

into a logarithmic series and neglecting terms higher than the first power. These expan-
sions yield the equation

IKm = IgK (1 + N1 In p) p + 1 K2 [1 + N2 In (1-p)] (l4p) (8)

Calculations show that there is a negligible difference between the results obtained
with Eqs. (7) and (8), so that either can be used for binary mixtures.

APPLICATION OF THE NEW EQUATION TO SOME BINARY MIXTURES

As already stated, Eq. (7) was derived by Minter and Schuldiner in order to check the
experimentally observed thermal conductivities of hydrogen-deuterium mixtures. Agree-
ment between observed and calculated values is quite good, as can be seen from Fig. 1,
and it is thought that the deviation of about 1% on the lower end of the curve is due to an
error in the composition of the mixtures containing a low percentage of hydrogen. The
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same equation was applied with good results by Minter and Schuldiner to the equilibrated
mixture of H2, liD, and D2 , consisting of the three binary mixtures H2 -D2, H2 -HD, and
HD-D 2 , as can be seen by referring to Ref. 1.
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Fig. 1 - The thermal conductivity of hydrogen-deuterium
mixtures at 1 atmosphere

Equation (7) has also been applied to some experimental data published by Ibbs and
Hirst (2). Values of the constants N1 and N2 for a given pair of gases were calculated
by taking observed conductivity values for two different concentrations. The empirically
derived values of N1 and N2 are then put in Eqs. (7) or (8) and the conductivities of the
other mixtures calculated. When the values so calculated are compared with the experi-
mental values of Ibbs and Hirst it can be seen from Table 1 that the agreement is
excellent.

It must be emphasized that Eqs. (7) and (8) are to be used for binary mixtures of
nonassociated gases. The behavior of binary mixtures containing an associated gas such
as water vapor, ammonia, or a hydrocarbon cannot be predicted by the simple formulas
given above.

DISCUSSION

While it is obvious that Eq. (7) for binary mixtures yields calculated values that
agree well with experimental results, there appears to be no theoretical basis for the
assumption made in its derivation. The statement made in the introduction is not (A)
that the decrease in thermal conductivity of a component in the mixture is proportional
to the decrease in its partial pressure, but (B) that the percent decrease in thermal
conductivity is proportional to the percent decrease in partial pressure - or proportional



4 NAVAL RESEARCH LABORATORY

Table 1
Comparison of Observed and Calculated Thermal Conductivities

of Some Binary Mixtures

Thermal Conductivity of Mixture

Mixture Percent of First Gas (K x 10s cal cm-bseC I 0 C-

Calculated* Observedt

H2 -C0 2  35.5 9.88 10.00
50.0 13.22 13.50

H2-A 40.00 12.56 12.60
80.20 26.16 27.00

H 2 -N 2  65.2 19.51 19.40
80.3 25.60 25.70

He-A 45.37 10.74 10.77
94.61 29.21 29.29

H2 -N2 0 20.90 7.33 7.10
38.60 10.60 10.70
59.90 16.61 17.00

1 81.20 27.10 27.20

*From Eq. (7).

tT. L. Ibbs, and A. A. Hirst, Proc. Roy. Soc. A123:134 (1929).

to the percent decrease in density or concentration in the mixture. This distinction
should be emphasized. To express statement (A) we should have to write

(dK)/(dp) = constant (9)

which would mean that the thermal conductivity of a gas in a mixture is directly propor-
tional to its partial pressure, which is obviously untrue. For statement (B) on the other
hand we can write

(dK)/(dp) = N(K/p) (10)

where N is a constant of proportionality.

Equation (10) states that the rate at which the thermal conductivity of a gas in a
mixture changeswith its partial pressure is directly proportional to the thermal conduc-
tivity of the gas at that pressure and inversely proportional to the pressure. Or, expressed
another way, the rate of change of thermal conductivity with pressure is proportional to
the ratio of thermal conductivity to pressure.

Up to this point the principal object of this analysis has been to ascertain whether or
not the thermal conductivity of a gas in a binary mixture changes as the partial pressure
in the mixture is changed. The result of this analysis shows that by making the assumption
that thermal conductivity does vary with partial pressure in the mixture it is possible to
calculate values for the thermal conductivities of mixtures that agree well with experimental
observation. On account of this agreement between calculated and observed values for
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mixtures it seems reasonable to conclude that the rate at which the thermal conductivity
of a gas in a binary mixture changes with its partial pressure is correctly expressed by
Eq. (10). It is therefore only natural to expect that Eq. (10) might also express the vari-
ation of thermal conductivity of a pure gas with pressure. However Eq. (10) has never
been employed for a pure gas for the following two reasons: (a) the kinetic theory of
gases predicts that thermal conductivity should be independent of pressure, and (b) this
prediction has been confirmed experimentally.

Clerk Maxwell predicted on purely theoretical grounds, about a hundred years ago,
that viscosity and thermal conductivity should be independent of density. When this pre-
diction was confirmed experimentally by numerous investigators, the kinetic theory was
accepted by most scientists as having much validity. In the original kinetic theory as
derived by Maxwell the thermal conductivity K at a given temperature was expressed as

K = (1/3)Cvp Lc (11)

in which Cv is the specific heat at constant volume, p is the density, L is the mean free
path of the molecules, and c is their mean velocity of translation. Maxwell pointed out
that since p and L are respectively directly and inversely proportional to pressure, the
product p L should be independent of pressure, thereby giving a constant thermal conduc-
tivity as the pressure is varied.

This theoretical prediction is not completely confirmed experimentally as can be
seen in Fig. 2 which shows the observed heat loss from a hot wire along the axis of a
tube containing air as obtained by Gregory and Archer (3). These investigators assumed
that the heat loss from a current-heated filament can be equated to the thermal conductivity
of the gas in the tube, and it is seen in Fig. 2 that the thermal conductivity remains prac-
tically constant as the pressure is reduced below atmospheric until about 75 mm Hg is
reached, below which there is a rapidly decreasing conductivity as the pressure is still
further lowered. Kinetic theory does not predict at what pressure the product p L in
Eq. (11) ceases to be constant. However it is to be expected that when the pressure is
zero the thermal conductivity will have to be zero.

It can be observed experimentally that the greatest rate of increase of thermal con-
ductivity occurs when the pressure is increased slightly above zero. It can also be
observed that the rate of increase of thermal conductivity diminishes as the pressure is
still further increased until the rate of change finally becomes zero or negligible above
a certain pressure. If Eq. (10) is considered in the light of the experimental curve in
Fig. 2, it can be seen that for pressures where the kinetic theory prediction fails, the
experimental curve has those characteristics which can be predicted by Eq. (10) - that is,
the rate of increasb is directly proportional to conductivity, but inversely proportional to
pressure. Now it is well known that when the reciprocal of a number is greater, the
number is smaller, and consequently it is to be expected that, if the rate of change of
thermal conductivity is inversely proportional to pressure, the effect of reducing the
pressure will increase as the pressure is lowered, and will be greatest at the lowest
pressures. Although Eq. (10) states that the rate of change of conductivity is proportional
to the product of a number (K) and the reciprocal of another number (p), it is obvious that
when K and p are both small the change in (l/p) has a greater influence on the change in
(dk/dp) than does the change in (K).

The experimental curve showing the effect of pressure on thermal conductivity can
be divided into two parts, namely the low pressure region where the thermal conductivity
varies with pressure and the higher pressures where the thermal conductivity appears to
be.independent of pressure. It can be seen in Fig. 2 that the kinetic theory prediction is
confirmed for the higher pressures but fails at the lower pressures. On the other hand,
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Fig. 2 - The difference between experimental and calculated
thermal conductivities of air at several pressures

Eq. (6) derived for a pure gas appears to agree with experiment for the low pressure
region but fails at the higher pressures. However it has been concluded that Eq. (6)
has been confirmed experimentally over the whole range of pressures when used to
calculate the effect of partial pressure on the thermal conductivities of the components
in a binary mixture. The fact that when used for a pure gas it does not agree with exper-
iment over the whole range of pressures has posed a question to which the author has
been seeking a satisfactory answer for many years.

ANALYSIS OF THE EXPERIMENTAL METHOD

In a final effort to resolve this dilemma, a critical analysis of the experimental
method used to testfthe effect of pressure on thermal condtictivity was undertaken, and
it has been found that in the experimental method employed there is a "hidden parameter"
which obscures the effect of pressure on thermal conductivity. This hidden parameter is
the mean temperature of the gas in the tube when the wall temperature iS T,, with a hot
wire along the axis at a temperature Tf . As the pressure is reduced below atmospheric,
it is assumed here that the mean temperature increases, causing the thermal conductivity
to increase, thereby obscuring the reduction in conductivity caused by lowering the pres-
sure. Variation of the mean temperature of the gas with pressure can be easily observed
by means of a simple experimental setup. However, before taking up the experimental
part of this investigation it is felt that a resume of the apparatus and method used in pre-
vious experiments would make it clear why earlier investigators reached the erroneous
conclusion that thermal conductivity is independent of pressure.
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EVALUATION OF EARLIER WORK

In Fig. 3 a wire of radius x f is mounted along the axis of a cylindrical tube having
an inside radius x.. The tube is placed in a thermostat maintained at a constant temper-
ature (T, - AT,) and filled with a gas at a pressure of 1 atmosphere. An electrical cur-
rent is now passed through the wire which can be maintained at a constant temperature
T (Tf > T,) while heat flows from the wire to the tube at a steady rate.

Tf

Xw

TUBE

THERMOSTAT
FILAMENT Tw- AT,

Fig. 3- Schematic diagram of conventional
thermal conductivity tube

T1

Xf X T

Tf - TEMPERATURE OF FILAMENT
T - TEMPERATURE OF ISOTHERMAL LAYER OF GASXDISTANCE FROM WALLOF TUBE
T,- TEMPERATURE OF TUBE WALL

Xf -RADIUS OF FILAMENTX,- INSIDE RADIUS OF TUBE

X -ANY POINT BETWEEN TUBE WALL AND FILAMENT

When a steady-state condition prevails in the tube and no convection occurs it has
been assumed by previous investigators such as Gregory and Archer (3) that the tem-
perature gradient in the tube is constant, calling for a linear temperature-distribution
curve. These investigators would then take the mean temperature to be (Tf + T)/2
and the power loss I2R from the wire would then be taken as a measure of the thermal
conductivity of the gas at the temperature (Tf + T,)/2.: Now when the pressure was
reduced below atmospheric and it was observed that the I2R loss did not change appre-
ciably the mean temperature of the gas was again assumed to be (Tf + T,)/2 and the
conclusion was reached that the change in pressure had not affected the thermal con-
ductivity of the gas. Even though experimental conditions were very carefully controlled
and the measurements of pressure and power loss accuratqly made, these investigators
reached the erroneous conclusion that they had experimentally confirmed the kinetic
thedry prediction that the thermal conductivity of a gas is independent of pressure. This
conclusion is the result of two erroneous assumptions; (a) that the temperature-distribution
curve is linear and (b) that the mean temperature of the gas is the same at all pressures.
It is true that the experimental results appeared to confirm the kinetic theory prediction,
but because of the erroneous assumptions the correct conclusion regarding the effect of
pressure on thermal conductivity was not reached.

ANALYSIS OF THE CLASSICAL EQUATION

Regarding the assumption that under all conditions of pressure the temperature-
distribution curve is linear and the mean temperature (Tf + T,)/2, it should be pointed
out that from elementary physical considerations alone a linear temperature-distribution
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curve is not expected under any conditions. We can write for the quantity of heat Q

flowing in unit time through unit length of an annular layer of gas having a thickness dx

Q A K(dT/dx) (12)

in which A is the area of the layer, K is the thermal conductivity of the gas in the layer,
and dT/dx is the gradient across the layer. Since A = 2 77x we can write for the heat
flux density

-- 027x = K(dT/dx) (13)

Since Q/27x decreases as x increases it follows that if thermal conductivity K is
assumed constant, as in the classical theory of conductivity, then the temperature gradient
dT/dx must decrease as x increases. This consideration alone leads to the necessary
conclusion that the temperature-distribution curve cannot be linear. Therefore a hyper-
bolic curve is assumed to be the form of the temperature -distribution curve to be expected
under the conditions of the experiment.

Although Eq. (13) was originally intended to apply to the flow of heat through a cylin-
drical solid conductor electrically heated by a wire stretched along its axis, it has been
assumed in the past that it could be applied to conduction through a gas if there is no
transfer of mass, as in convection. The temperature distribution curve for conduction
through a solid can be obtained by assuming K is constant in Eq. (13), which can be
integrated after separating the variables. Thus

f dT := Q. dx (14)

T X f

yields

x = Tf - A -- (15)

in which T, in the temperature of an isothermal layer in the gas a distance x from the
axis of the tube, Tf is the temperature of the hot wire, and xf is its radius. Equation (15)
cannot properly be applied to conduction in gases for two reasonsi (a) the thermal con-
ductivity of a gas increases as the temperature increases and (b) there is necessarily a
density gradient in the gas because of the temperature gradient. However, if K is
assumed uniform all through the body of gas in order to integrate Eq. (13), it will mean
that the increase in thermal conductivity caused by increasing the temperature in any
concentric, isothermal layer in the gas is exactly balanced by the decrease in thermal
conductivity in that layer caused by the reduction in density accompanying the increase in
temperature. Since T 2U at a given pressure, it follows that K K
or (pKOXpP) = (pKTV PT which leads finally to 2

273P0 = pKT. 273 + pT. (15a)

giving the thermal conductivity at 0*C, the pressure p as a function of the thermal conduc-
tivity at the mean temperature T, observed at that pressure.

f
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In regard to the erroneous assumption that the mean temperature of the gas in the
tube is the same at all pressures, it can also be shown from elementary physical con-
siderations that a constant mean temperature for all pressures is not to be expected.
Having shown that a hyperbolic temperature-distribution curve is to be expected instead
of the linear distribution curve, it follows that, if the shape of the temperature-distribution
curve changes as the pressure is varied, then the mean temperature of the gas in the tube
will have to vary with pressure.

DERIVATION OF THE NEW TEMPERATURE-DISTRIBUTION EQUATION

The new temperature-distribution equation is derived solely from elementary physi-
cal considerations in combination with the perfect gas laws. The system to which these
considerations are applied consists of a gas sealed in a cylindrical tube having a filament
wire stretched along its axis. The operations performed on this simple system consist
solely in (a) maintaining the tube at a constant temperature T., (b) maintaining the fila-
ment at a constant temperature Tf (Tf > T,), (c) measuring the power required to maintain
a steady flow of heat from the wire through the gas to the wall of the tube, and (d) measuring
the increase in pressure of the gas in the sealed tube caused by the temperature gradient.

Let the gas be originally at the uniform temperature of the bath 00 C and at a pressure
P. When the wire is heated to a temperature Tf, a sort of astructure" is formed in which
gradients of temperature and density are set up in the gas and the pressure increases to
Ph = P + AP.

The significance of the measurement of the pressure increase AP, when the gas in
the sealed tube is conducting heat, is that now for the first time it is possible to obtain
an indication of the true mean temperature of a gas conducting heat under steady-state
conditions. If the filament temperature is Tf and the bath temperature is T,, the
assumed mean temperature according to classical theory is (Tf + T,)/2,. In the new
method however no assumption is made about the mean temperature - it is measured
very simply by means of the simple gas laws. For if Ph is the pressure in the sealed
tube when the filament is hot and P is the pressure when it is cold and we know that
is the cold temperature of the gas and TM is the mean temperature, then

T1/To = Ph/P,. or T, = 273 (Ph/P)

when To = 273. We can also write

TM= 273 (1 + !)

which gives the mean temperature in degrees Kelvin. Since T - 273 A 273
we have finally ATm = 273 AP/P = Tm°C. The expression for 7AP can be derived from
the gas laws in another manner.

Since P = P, (1 + aT°C) for heating at constant volume

P - PO
Po T

or AP
T (16)

where a is the temperature coefficient of pressure increase at constant volume.
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After obtaining the mean temperature the next step in the derivation of the
temperature-distribution equation Is to find out how far the mean temperature layer
is from the axis of the tube. That is, if the point (T,,x,) is on the curve T = T(x)
what is the value of x when T, is known? Now the area between the curve and the
x axis from the ordinate xf to the ordinate x% is

A T(x)dx = T,(x. - xf)

xf

and is obtained by taking the product of the observed mean temperature Tm and the known
dimensions (x. - xf). In a similar manner the same area can be expressed as

A (x, - xf, Tf J x(T)dT

T,

Therefore:

(x m - xf)(Tf - T.) = T. (x. - xf)

or neglecting T,

T (x w - Xf) + xfTf (17)
M" Tf

gives the distance of the mean temperature layer from the axis of the tube.

It has been shown above that by means of the simple expedient of measuring the
increase in pressure which occurs when a temperature gradient is set up in a gas at
constant volume, it is possible to determine not- only the mean temperature T. of the
gas but also the distance x, of the mean temperature layer from the axis. Obviously
the point (Tmx.) lies on a (T vs x) graph, and it will now be shown how the equation
of such a graph can be derived. To derive such a temperature-distribution equation
when the gas is conducting heat, it is necessary to make the following assumptions:

1. The pressure is the same at all points in the gas and follows the simple gas law
pT = constant, where p is density and T is absolute temperature,

2. The increase in pressure AP in each isothermal layer of gas when heat is
flowing is the same as would be obtained by increasing the temperature of the entire
body of gas at constant volume by TOC,

3. The temperature-distribution equation T = T(x)is a continuous, monotonic function
of x, and so is its first derivative dT/dx = T'(x).

When the temperature of a gas is increased at constant volume from 0C to TC, it
is known by the simple gas law that the increase in pressure A P is proportional to the
increase in temperature, or AP ( NT where N is the number of moles in the given volume.
Since N = (mass/mol wt), we have

!(mss) = (volume) x(density) (18)
M Ty

I
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When the above equation is applied to an elementary isothermal layer in a gas con-
ducting heat we can write

MBAP : 277x /23 + AP ) T (19)

in which x is the distance of the layer from the axis of the tube, T is increase in tem-
perature of the layer in degrees C, and B is a constant of proportionality. In this equa-
tion 27rx is the "relative" volume and( 273 1 +--P is the "relative" density. If
Eq. (19) is solved for T, we have \273 + TM \

T 273 BAP (20)

27 3(1 +F-) x BA

which is the relative temperature increase of a layer at x as required by the simple gas
law, which takes into account the effect of density on temperature distribution. The cor-
rection in the denominator B 6P is small but it has a large effect on temperature distribu-
tion when x is small, which is to be expected.

In order for the relative temperatures at two different values of x to fall on the
same temperature-distribution curve, we can express the difference between the temper-
ature T at x and the mean temperature T, at xm as

(T. T.) C 273BP 273 BAP 1 (21)

27'3 (i+4f)x X B AP 27 3 (i+ Lf)m x. B 6P]

in which C is a constant.

Equation (21) can be reduced and solved for T, which is found to be

I
TT SCAP 1 X 1 (22)+AP X (22a

in which

BAP

273 (1 + E)

Since the location of the point (T,, x.) on the temperature-distribution curve is
obtained from experimental observations, and the point (T, X f) is known, it is necessary
to know the temperature at the N,.all so that a third point on the curve (T,,, x,) can be
located. To obtain a value for the temperature T, at the wall of the tube, it is necessary
to use the classical integrated equation which has always been used to calculate temper-
ature differences across an annular space where the'thermal conductivity is known.
Thus, we can rewrite Eq. (15) as

W In (OD/ID)
Tw " To - 2-rJLK

in which OD and ID are outside and inside diameters of the glass tube. For a tube of
given dimensions and a known thermal conductivity we can write, since
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T = 0:, T = constant xW, where W is the observed heat loss in watts. The Pyrex tubes
used had a thermal conductivity given in the literature to be 0.0027, which value is
incorporated in the constant.

To obtain the values of the constants B C and a in Eq. (22), it is necessary to solve
two expressions of Eq. (22) simultaneously - one containing the points (Tm , %) and
(Tf, xf) , and the other containing points (Tm, x,) and (T, x,). For a given bath
temperature the values assumed by B C and a will vary with filament temperature
and the radius of the tube xw, and these constants must be known if the entire
temperature-distribution curve is to be calculated, or if the value of the temperature
gradient dT/dx across any layer is needed.

EXPERIMENTAL PART

The apparatus used for measuring the thermal conductivity of air by both methods is
shown schematically in Fig. 4. By means of a helical spring, a 0.0038-cm-diameter
nickel filament L cm long is stretched along the axis of a cylindrical glass tube. The
filament is welded to leads sealed into the ends of the tube so that it can be connected
into a Wheatstone bridge circuit whereby it is heated electrically and its temperature
determined by measuring its electrical resistance. A capillary tube of 1-mm bore
sealed to the bulb is used for evacuating and filling the system with gas at a known
pressure. The system is shown connected to a 1-mm-bore U-tube containing a light
manometric liquid which is a vacuum pump fluid known as Octoil-S having a specific
gravity of 0.9103. By means of stopcock A, the bulb can be sealed off from the rest of
the system so that the increase in pressure, which occurs when the filament is heated
electrically, can be observed by reading the manometer. The bulb is mounted in a large
Dewar flask (not shown) containing a mixture of crushed ice and water, which can be
vigorously stirred to maintain a constant temperature at 0°C. The only difference
between the conventional experimental apparatus and the author's apparatus is that in
the earlier method no attempt is made to measure the increase in pressure which occurs
when heat is flowing through the gas in a sealed bulb.

The electrical circuit is also shown in Fig. 4. By means of parallel sets of decade
resistances it was possible to measure the filament resistance to the second decimal so
that its average temperature could be accurately determined. An adjustable power supply
provides a constant dc voltage for the bridge current, which was measured by a Weston
Model 622 milliammeter. Different wire temperatures could be obtained by setting the
decade resistances to obtain the desired filament resistance and then adjusting the cur-
rent through the bridge until the sensitive null indicator showed that the bridge was in
balance.

Measurement of power dissipated by the filament is the same in both the old and the
new methods and it is obvious that a single set of IR measurements at different filament
temperatures can be used to calculate K, according to the two methods. To calculate K,
by the classical method, it is necessary to know the filament temperature, the tube
temperature, and the I2 R loss, as well as the diameters of the wire and the tube. In
calculating K, by the new method the same data must be known, and in addition the mean
temperature AT, as determined from the observed increase in pressure AP which occurs
when heat flows through the gas at constant volume must also be known.

One of the preliminary experimental steps consisted in determining the resistance
of the 12.7-cm-long filament of 0.0038 nickel wire between 00 and 100 0 C. The bulb
containing the filament was placed in the water bath, which could be thermostatted at
any desired temperature up to 950 C. With a low current of only 200 1a through the
bridge to insure no self-heating of the filament, the parallel sets of decade resistances
shown in Fig. 4 were adjusted until the sensitive null indicator showed the bridge was in
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balance. Since tubes of three different diameters were used in the measurements, it was
necessary to use three different wires and every care was taken to insure that the three
wires were as nearly alike as possible.

Before making measurements of heat loss through the gas it was also necessary to
measure the power loss from the hot wire due to radiation and end-loss when the pres-
sure is very low. The measurements are plotted in Fig. 5 for several filament temper-
atures. When the graphs so obtained are extrapolated to zero pressure, the power
dissipated at zero pressure is a correction factor which must be subtracted from the
measured 1 2 R to obtain the power actually dissipated through the gas.
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EXPERIMENTAL RESULTS

The experimental procedure (Fig. 4) consists in (a) bringing the bulb to the tempera-
ture in the ice-water bath, (b) with stopcocks A and B open, evacuating and filling the bulb
at a known pressure with the gas to be tested, after which the stopcocks are closed, (c)
setting on the parallel sets of decade resistances the resistance of the filament at the
desired temperature of operation, (d) adjusting the power supply to vary the current
through the bridge until the null indicator shows the bridge is balanced, and (e) measuring
the increase in pressure in the bulb by reading the manometer.

Corrections must be applied to the two experimental observations made in this inves-
tigation. The resistance used in calculating the I.2R loss through the gas must contain
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only the resistance of the filament. While resistance of the heavy flexible copper leads
used to connect the filament into the bridge circuit was negligible, the resistance of the
0.003-inch tungsten spring at 0°C amounted to 0.36 ohm and has to be subtracted from
the total resistance in order to get the true resistance of the filament. The power loss
from the filament is therefore calculated according to the relation W = (1/2)2 (R - 0.30).
The measured I 2R must be reduced by an amount depending on the filament temperature,
the correction being taken from Fig. 5.

There are two corrections to be applied to the manometric difference H. In the first
place heat does not flow through all the gas in the closed system. There is approximately
50 cm of 1-mm-bore capillary tubing in the closed system which will add about 0.5 ml
of "dead space" thereby causing the observed increase in pressure xP' to be too low.
The true value of 6P can be obtained by multiplying AP ' by (1 + 0.4/V) where V is the

volume of "hot" gas in the tube. Another small correction to the observed AP' is neces-
sary because of the increase in volume which occurs when the filament is hot. The AV
in this case is (n/4) r 2(H'/2). which for a capillary of 1-mm bore is equal to 0.0003927 H'.
If H' is expressed in millimeters, iv will be given in milliliters. Combining the two
corrections we have finally for the true pressure increase

1 +[ 0 V OP00327 I H = H (23)

It can be seen from Eq. (23) that when the volume V is small, the correction can be
appreciable. Since the volume of the system on the other side of the U-tube is about three
liters, the change in external pressure due to. the movement of the manometric fluid is
negligible.

RESULTS AT ATMOSPHERIC PRESSURE

Before taking up the effect of pressure on mean temperature, measurements were
made on dry air at atmospheric pressure for several filament temperatures and three
tube sizes (Table 2). As would be expected, the mean temperature Tm increased as the
filament temperature increased, the bath remaining constant at 0?C. At a given filament
temperature the mean temperature increased as the radius of the tube was increased even
though the quantity of heat flowing through the gas was diminished. Table 3 shows that
Tm varied little with the nature of the gas, appearing to be inversely proportional to a,
the temperature coefficient of pressure increase.

It can be seen in Tables 2 and 3 that the observed mean temperature is quite different
from the mean temperature (Tf + T,)/2 assumed in the classical treatment of thermal
conductivity. When the classical temperature-distribution curve is compared in the same
graph with the new temperature-distribution curve, the difference in the characteristics
of the two is striking. Figure 6 shows the two curves when the filament temperature is
60 0 C in a tube of 0.50 cm radius. The classical temperature-distribution curve was
calculated according to Eq. (15) assuming a value for the mean thermal conductivity Km
at the assumed mean temperature (Tf + Tw)/2. The new temperature-distribution curve

was calculated by means of Eq. (22). The two graphs'are entirely dissimilar for the

simple reason that Eqs. (15) and (22) represent two entirely different functions. In Eq. (15)
an assumed value of the thermal conductivity has to be employed in order to calculate the

graph, while in Eq. (22) the thermal conductivity Km does not enter in any manner. The

'relative* temperature distribution as expressed in Eq. (20) is solely a function of the

simple gas laws, and for that reason it is expected that the temperature-distribution
curves would be practically the same for all gases regardless of the nature of
the gas. In fact the results in Table 3 show that the mean temperature for a

given filament temperature is practically the same for carbon dioxide as for
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Table 2
Effect of Filament Temperature Tf and Tube Radius x,,

on Mean Temperature T*

Radius of Tube x,, (cm)

Filament 0. 25 0.50 1.27

Temp. (*C) T x Total T t cm Total T[ t Total
(C m Power I M Pwet (°C) Im Power

I() (cm) (watts) (cm Pwer C m) (watts)

20 0.420 0.007 0.0942 0.800 0.0219 0,0744 1.119 0.0729 0.0718

40 0.756 0.0066 0.1709 1.470 0.0203 0.1445 1.917 0.0629 0.1388

60 1.121 0.0066 0.2567 2.250 0.0206 0.2207 2.660 0.0584 0.12118

80 1.517 0.0066 0.3508 3.015 0.0207 0.3043 3.405 0.0582 0.2956

100 1.912 0.0067 0.4606 3.920 0.0215 0.4021 4.252 0.0559 0.4002

*Filament radius = 0.0019 cm; filament length = 12.7 cm + 5%; bath
temperature = 0 C; pressure = 1.00 atm.

tFrom Eq. (16).
$From Eq. (17).

Table 3
Effect of the Nature of the Gas on Mean Temperature T.

at Three Filament Temperatures*

Dry Air Carbon Dioxide HeliumFilamentT f
Temp. (C) Tmxt ,mt Total T i X$m Total Tt xmt Total

(0ts (°C Power TPower Power

_ - -(watts) j) -c) (watts) (C) (cm) (watts)

20 0.932 0.0251 0.0857 0.896 0.0242 0.0535 0.930 0.0250 0.4985

30 1.265 0.0229 0.1177 1.222 0.0221 0.0731 1.279 0.0231 0.6825

40 1.623 0.0221 0.1524 1.572 0.0215 0.0959 1.597 0.0218 0.8787
*Pressure = 1.00 atm; bath temperature = 00C; tube radius = 0.50 cm.

tFrom Eq. (16).
tFrom Eq. (17).

helium, which has about 10 times the thermal conductivity of carbon dioxide. From these
results it can be concluded that for radial flow of heat in a gas, the characteristics of the
temperature-distribution curve are. essentially independent of the nature of the gas.

Another interesting conclusion which emerges from Eq. (22) and the new temperature-
distribution curve in Fig. 6 is that the graph appears to be a rectangular hyperbola with
its asymptotes as coordinate axes. It can be seen that the curve wcorners" at the mean
temperature point (T,, x,) which is calculated by means of Eqs. (16) and (17). It would
seem therefore that the gas between the filament and the wall of the tube is really divided
into two distinct parts: (a) that between (Tf, IXf) and (T, x,) and (b) that between
( T, x) and (T., x,). It can t:, calculated that the ratio x,/xm is practically constant
regardless of the radius of the tube, having an approximate value of 24. This means that
more than 99.80% of the gas in a tube of any radius is contained between points (T,, %)



NAVAL RESEARCH LABORATORY 17

60

FILAMENT TEMPERATURE 600C
BATH TEMPERATURE OC

50

0 NEW EQUATION
O CLASSICAL EQUATION

40

0

- 30 -ASSUMED MEAN TEMPERATURE

a.

20

10

OBSERVED MEAN TEMPERATUREI0

0 0.1 0.2 0.3 04 0.5
X (CMS)

Fig. 6 - Classical temperature-distribution curve compared with
new hyperbolic temperature-distribution curve

and (T, x,) and its temperature is below the mean temperature Tm. It is obvious that
most of the drop in temperature between the filament and the wall of the tube occurs in a
thin film, (x. - xf) cms thick, surrounding the filament.

In 1912 Langmuir (4) stated 'the viscosity of the gas causes the heat to flow from a
hot wire as though there were around the wire a stationary cylindrical film of gas (of
diameter b) through which heat is carried only by conduction." The experimental evidence
given in this report certainly supports the assumption that such a film surrounds a hot
wire, but the data show that the actual thickness of the film, (xm - x f) cm, is only a small
fraction of the thickness of the Langmuir film.

EFFECT OF PRESSURE ON MEAN TEMPERATURE

Pressures below atmospheric can be maintained in the system shown in Fig. 4. With
stopcocks A and B open the system is pumped down to the desired pressure indicated on
the aneroid pressure gage, and stopcock B is then closed. With no current flowing through
the filament, stopcock A is closed, and the filament is brought to the desired operating
temperature whereby an increase in pressure in the tube is shown on the manometer.
Following the above procedure it was apparent that as the pressure P was reduced, nP
did not decrease as fast as P; consequently the ratio 6P/P increased as P was diminished.

Some of the experimental observations with dry air in the tube are given in Tables 4
and 5, and in Fig. 7. An idea of the magnitude of the change involved is shown in Fig. 7
in which the point (T., x.), calculated by means of Eqs. (16) and (17), is plotted for three
pressures when the filament temperature Tf is 40'C in a tube of 0.50 cm radius. The
graphs show that as the pressure is reduced the temperature increases in every concentric
layer of the gas, and it is this increase in temperature which tends to counteract the small
decrease in thermal conductivity caused by lowering the pressure. The fact that the
temperature of all parts of the gas increases as the pressure is reduced requires that, if
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Table 4
The Effect of Pressure on the Thermal Conductivity of Dry Air at 0°C Bath

Temperature and 40"C Filament Temperature *

Calculated Thermal Conductivity
(cal sec 1 cm-C -1 

x 10)

Pressure Tnt x t Total I Classical Method
(mm Hg) ('C) (cm) Power w 273

(watts) K20 o KO - K20  KO K20 2732+
2'27iJL(Tf-T ) 1.05 273+

763.0 1.619 0.0221 0.1524 6.364 6.060 6.326
635.0 1.808 0.0244 0.1523 6.360 6.057 6.318
508.0 1.975 0.0265 0.1522 6.355 6.052 6.309
381.0 2.227 0.0296 0.1520 6.347 6.044 6.295

254.0 2.505 0.0331 0.1516 6.330 6.028 6.272

127.0 2.806 0.0368 0.1512 6.314 6.013 6.249
102.0 2.937 0.0385 0.1504 6.280 5.980 6.212

76.3 3.03310.0397 0.1496 6.247 5.950 6.178
*Tube radius = 0.50 cm; filament radius = 0.0019 cm; filament temperature = 40 °C;

bath temperature = 00 C; filament length 12.7 cm; J = 4.185.

tFrom Eq. (16).
tFrom Eq. (17).
§From Eq. (24).
IFrom Eq. (15a).

Table 5
The Effect of Pressure on the Thermal Conductivity of Dry Air at 0°C Bath

Temperature and 1000 C Filament Temperature *

Calculated Thermal Conductivity
(cal sec' cm-°C -1 - 10s)

Pressure T,,1 x1 + Total x l(mm H)( C (c+ Power W In " Classical Method27

(m Hg) (W-C) (cm) Xb K I 273
(watts) KSO 2 T K =K° o K2-JT j .:125 so 273 + Tm

763.0 3.824 .0210 .4029 6.730 5.982 6.637
635.0 4.302 .0233 .4024 6.721 5.974 6.616

508.0 4.731 .0255 .4019 6.713 5.967 6.599

381.0 5.361 .0286 .4009 6.696 5.952 6.567
308.0 5.746 .0305 .3998 6.678 5.936 6.540

254.0 6.270 .0331 .3990 6.665 5.924 6.515

190.0 6.720 .0355 .3977 6.643 5.904 6.483

127.0 7.290 .0382 .3967 6.626 5.889 6.453
102.0 7.619 .0399 .3952 6.601 5.867 6.421

76.3 7.900 .0413 .3926 6.558 5.829 6.373
50.8 8.274 .0431 .3888 6.494 5.772 6.303

38.0 8.550 .0445 3836 6.467 5.695 6.212

25.4 9.025 .0469! 13749 6.262 5.566 6.062
19.0 9.620 .04991 .3675 6.138 5.456 5.930
12.74 10.109 .0524 .3552 5.933 5.273 5.721

*Tube radius = 0.50 cm; filament radius 0.0019 cm; filament temperature = 100°C; bath
temperature = 0°C; filament length % 12.7 cm; J = 4.185.

tFrom Eq. (16).
tFrom, Eq. (17).

SFrom Eq. (24).
$From Eq. (15a).
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the temperature coefficient of thermal conductivity is independent of pressure, the thermal
conductivity of air must diminish in a regular, though nonlinear, manner as its density is
reduced, even though the heat lost by the hot wire remains nearly constant as the pres-
sure is reduced from 1.0 atm to 0.10 atm.

Without the knowledge that the mean temperature in a gas conducting heat radially
from a hot wire increases as the pressure is reduced, it would be natural to conclude that
a constant power loss from such a wire would indicate that the thermal conductivity of the
gas is independent of pressure, as predicted from kinetic theory by Maxwell.

DISCUSSION OF RESULTS

It can be seen inTables 4 and 5 and in Fig. 7 that the mean temperature in a gas
conducting heat increases as the pressure is reduced. Interpretation of this behavior in
terms of the effect of pressure on the thermal conductivity of air will be undertaken
according to two procedures: the classical approach and the new approach described in
this report.

Taking up first the classical approach there is shown in column 5 of Tables 4 and 5
the values for the mean thermal conductivity Km calculated for the classical mean tem-
perature (Tf + T,)/2 by means of the equation

W ln(xw/xf)
Km- 27TJL(Tf-Tw) (24)

Since we are interested in obtaining the thermal conductivity K, at 00 C from the
observation of Km at [(Tf + Tw)/2] 0C, the figures in column 5 have to be inserted in
the relation

K
0 1 + 0.0025 (Tf + T,)/2

in which 0.0025 is the accepted value for the temperature coefficient of thermal conduc-
tivity of air. The values of K, so calculated are given in column 6 of Tables 4 and 5. It

can be seen that the values for K, when the filament temperature is 40 0 C are between
1% and 2% higher than when the filament temperature is 100 0 C. This agreement is satis-
factory considering that different tubes were used for the two filament temperatures.

While the classical values of K. calculated from observations at two filament tem-
peratures are in good agreement with one another, the calculated values for 1 atm are
about 5% to 6% higher than the accepted value for air, which is 5.66 x 10- cal sec-'cm-1

C-1. These discrepancies indicate that 'convectidn" effects were operating in the
0.50-cm-radius tube to increase the power dissipated by the hot wire, thereby causing
the apparent thermal conductivity to be greater. Convection can be described as a steady-
state mass movement caused by differences in the action of gravity on adjacent parts of
a body of fluid in which temperature and density gradients exist. The effect of convection
is to increase the value of w In Eq. (24), whereby the calculated value of Km will be
greater. It has been shown by several investigators such as Gregory and Archer (5)
that in radial flow of heat from a hot wire in a tube the convection effect varies in the
following manner: (a) for a given filament temperature, convection increases as the
diameter of the tube increases, (b) for a given set of conditions, convection decreases as
the specific gravity of the gas is reduced, and (c) for a given gas in a given tube, convec-
tion diminishes with pressure in a manner characteristic of the gas.
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To determine the actual relation between pressure and the thermal conductivity of
air, it will be necessary to carry out the investigation in such a manner that convection
is entirely suppressed at atmospheric pressure. The figures for K, at one atmosphere
in Tables 4 and 5 show that some convection operated to increase the apparent thermal
conductivity. The effect of convection would diminish as the pressure is reduced in such
a tube and for this reason the value of Km calculated according to Eq. (24) would also
appear to diminish appreciably as the pressure is reduced. If there were no convection
at one atmosphere, the power loss W would remain more nearly constant as the pres-
sure is reduced.

The values of K, in Tables 4 and 5 calculated according to the new Eq. (15a) also
depend on the values of Km calculated according to Eq. (24). The first difference
between the classical K, and the new K. is that in calculating the former the mean
temperature for Km is taken as (Tf + T,)/2, while in calculating the latter, K is taken
at the observed mean temperature T,. Another difference lies in the value taen for the
temperature coefficient of thermal conductivity, which for the classical K, is 0.0025,
while 0.0036 is taken as the coefficient in calculating the new Ko.

It is principally the difference in the mean temperature used in calculating K0

according to the two procedures that causes K, at one atmosphere to be higher when
calculated according to the new method. This means, therefore, that if we are to accept
the experimental mean temperature described in this report as the true mean tempera-
ture in a gas conducting heat, then all calculated values for K. will be greater than the
currently accepted values because the observed mean temperatures are lower than the
assumed mean temperature (Tf + T.)/2 of classical theory.

Regarding the effect of pressure on thermal conductivity, the only definite conclusion
which can be drawn from the experimental results given in this report is that the thermal
conductivity of air diminishes in a regular manner as the pressure is lowered. Although
the values of K, in column 6 (Tables 4 and 5) also diminish as the pressure is reduced,
it has been pointed out above that this effect is obviously caused by the increase in the
value of w at the higher pressures. In any case the rate at which K, in cWurnn 6
decreases with pressure is lower than the rate of decrease of K. in column 7. In addition
it is thought that if the effect of pressure is investigated in a tube in which convection is
absent at all pressures the rate of decrease of K. as the pressure is reduced will be
greater than that shown in column 7.

The results obtained with the 0.50-cm tube indicate that although the thermal con-
ductivity diminishes regularly as the pressure is reduced, the experimental pressure-
conductivity relation does not follow that predicted by Eq. (6) and shown in Fig. 2.
However, a final conclusion concerning the validity of Eq. (6) for a pure gas will not be
possible until the tube is reduced in diameter so that no convection can occur at atmos-
pheric pressure, and steps are taken to align the hot wire exactly on the axis of the tube.
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