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Abstract

The large de
ections of a clamped, circular plate are investigated over a wide range of transverse
loadings and initial in-plane tension loads. The continuous transition from plate behavior to mem-
brane behavior is described in detail, along with the development of the accompanying edge zone
region where properties change rapidly. We give a simple approximation of this edge zone and its
properties, provide limits for the validity of small de
ection, linear theory, and note the similar
e�ects of large in-plane tension and large transverse loading. The values and trends are presented
in general non-dimensional form, and should prove useful for the design of thin circular disks for
micro-sensing applications.

�Member ASME.
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1 Introduction

Recently, there has been considerable interest in using thin �lms of silicon-based materials
in miniature mechanical devices and components (for example, Sze 1994). Silicon micromachining
processes, prevalent in the microelectronics industry, permit the miniaturization of sensors for the
measurement of pressure, temperature, and other physical, electrical and chemical quantities (Sze,
1994). One such application deals with the development of very small silicon pressure sensors
for measuring both static and dynamic pressure (Clark and Wise, 1979 and Schellin and Hess,
1992). Often these devices involve small, very thin �lms (� 3000�A) under initial membrane tension
(L�ofdahl et al., 1994). The tension present in these �lms can be as large as 1 GPa (Cho et al., 1992).
Unfortunately, scaling arguments indicate that the de
ection-based pressure sensitivity of such �lms
is expected to degrade signi�cantly (Chau and Wise, 1987). These arguments, however, were made
without study of how initial tension a�ects the onset of nonlinearity. Furthermore, little is known
concerning the relationship between initial tension and the character stress and strain �elds, which
determine the performance of piezoresistive-based transducers (i.e., strain-gauge pressure sensors).
Therefore, it is desirable to examine carefully the e�ects of internal stress on the structural behavior
and linearity of these devices.

Several authors, including N�adai (1925) and Way(1934), examined the large de
ection behavior
for the pure plate case [discussed by Timoshenko and Woinowsky-Krieger(1959)]. Zheng and Zhou
(1990) extended the work of Way by providing the general analytical formulas for axisymmetric
plates subjected to compliant boundary conditions. Way (1934) and, also, McPherson et al. (1942)
have conducted some experimental measurements on large metal plates. More recently, Voorthuyzen
and Bergveld (1984) used a �nite-di�erence model to investigate the large-de
ection characteristics
of circular plates subjected to in-plane loading over a limited dimensional domain. Allen (1986)
investigated the e�ects of in-plane loads on the center de
ection characteristics by employing energy
methods. None of these studies, however, investigated the combined e�ects of non-linear loading
and in-plane tension on the stress and strain �elds. The present investigation deals speci�cally with
the non-linear de
ection �eld of a clamped, circular plate with an initial in-plane tension load1,
subjected to a uniform pressure load over its surface. In particular, the e�ects of varying the initial
tensile load from zero (pure plate case) to very large values (pure membrane case) is explored. In
the following section, the governing equations are developed and the appropriate non-dimensional
scaling parameters identi�ed. The small de
ection characteristics and the transitions from pure
plate to pure membrane behavior are detailed in x3. Section 4 contains the large de
ection behavior
and equivalent e�ects of initial tension and large loading, and the conclusions are presented in x5.

2 Basic Equations

Figure 1 shows a circular plate of radius a and thickness h, under an initial in-plane tension
load, Nr = N0 and a uniform transverse load pz = p0. The equilibrium equations for the symmetrical
bending of this plate are

dNr

dr
+
Nr �N�

r
= 0; (1)

d

dr

�
rQr

�
+

d

dr

�
rNr

dw

dr

�
+ rp0 = 0; (2)

and

Qr =
dMr

dr
+
Mr �M�

r
; (3)

where Nr, N� are the lateral loads , Qr is the shear force,Mr,M� are the bending moments per unit
length, and w is the de
ection of the plate in the z-direction. The radial and tangential mid-plane

1For an introduction to the alternate problem of in-plane compression, the \buckling problem", see Timoshenko
and Woinowsky-Krieger (1959).
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strains assuming von K�arm�an plate theory for large plate de
ections are

�r =
du
dr +

1
2

�
dw
dr

�2
and �� =

u
r ; (4)

where u is the radial displacement, while the radial and tangential curvatures are

Kr = �d2w
dr2 and K� = � 1

r
dw
dr : (5)

The lateral loads and moments per unit length for large plate de
ections are

Nr = A(�r + ���); N� = A(�� + ��r); (6)

and
Mr = D(Kr + �K�); M� = D(K� + �Kr); (7)

where A = Eh=(1� �2) and D = Eh3=12(1� �2) are the plate extensional and bending sti�nesses
respectively, � is Poisson's ratio, and E is the modulus of elasticity. Shearing deformations are
neglected for the thin plates considered here (h=a < 1=25, Timoshenko and Woinowsky-Krieger
(1959)).

These equations are reduced by �rst integrating (2),

Qr +Nr
dw

dr
+
p0r

2
= 0; (8)

and rewriting (4) in compatibility form,

r
d��
dr

+ �� � �r +
1

2

�
dw

dr

�2

= 0: (9)

Substituting (5) into (7) and then into the moment equilibrium relation (3) gives

Mr = �D
�
d2w

dr2
+
�

r

dw

dr

�
; (10)

M� = �D
�
1

r

dw

dr
+ �

d2w

dr2

�
; (11)

and

Qr = �D
�
d3w

dr3
+
1

r

d2w

dr2
� 1

r2
dw

dr

�
: (12)

Placing (10 - 12) into (8) produces

d3w

dr3
+
1

r

d2w

dr2
� 1

r2
dw

dr
� Nr

D

dw

dr
=
p0r

2D
: (13)

The inversion of (6) yields,

�r =
1
Eh(Nr � �N�) and �� =

1
Eh(N� � �Nr): (14)

Substituting (14) into the compatibility relation (9) yields

dN�

dr
+
dNr

dr
+
Eh

2r

�
dw

dr

�2

= 0: (15)

Further manipulation of (15) by introducing (1) produces,

dN�

dr
� Nr �N�

r
+
Eh

2r

�
dw

dr

�2

= 0: (16)
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Equations (1), (13), and (16) represent three nonlinear equations in the three unknowns dw=dr, Nr,
and N�. The nonlinearity appears in the Nrdw=dr term in (13) and the (dw=dr)2 term in (16).

For the problem in Fig. 1, the circular plate is �rst stretched by an in-plane tension load
Nr = N� around its circumference and then subjected to a uniform load, p0. The solution of the
initial in-plane tension problem is obtained from the general equations (1 - 7) by setting w = 0 and
p0 = 0. This yields the following results,

Nr = N� = N0 and u = N0

Eh (1� �)r; (17)

which also satisfy the boundary condition, Nr = N0 at r = a. Since Nr = �rh, where �r is the radial
stress, the quantity N0=Eh = �r=E = �0 can be interpreted as the uniaxial strain in the material.

After being initially stretched by the load N0, the plate is then subjected to the vertical load,
p0. For this case, the lateral loads are decomposed as follows:

Nr = N0 + ~Nr and N� = N0 + ~N�; (18)

where ~Nr and ~N� are incremental changes from N0 and are functions of r. The placement of these
expressions into (13), (1), (16) yields,

d3w

dr3
+
1

r

d2w

dr2
� 1

r2
dw

dr
� N0

D

dw

dr
�

~Nr

D

dw

dr
=
p0r

2D
; (19)

d ~Nr

dr
+

~Nr � ~N�

r
= 0; (20)

and
d ~N�

dr
�

~Nr � ~N�

r
+
Eh

2r

�
dw

dr

�2

= 0: (21)

It is convenient to non-dimensionalize these equations as follows:

� = r
a ; ( )0 = d

d� ; W = w
h ; U = u

h

� = dW
d� = a

h
dw
dr ; 	 = d�

d� =
a2

h
d2w
dr2 ; Sr =

~Nra
2

Eh3 ; S� =
~N�a

2

Eh3 :
(22)

The non-dimensional forms of (19 - 21) are

�00 +
�0

�
�
�
k2 +

1

�2

�
� � 12(1� �2)Sr� = 6(1� �2)P�; (23)

S0r +
Sr � S�

�
= 0; (24)

and

S0� �
Sr � S�

�
= � 1

2�
�2; (25)

where a non-dimensional tension parameter k, and a loading parameter P , have been introduced as,

k =
q

N0a2

D = a
h

q
12(1��2)N0

Eh and P = p0a
4

Eh4 : (26)

The corresponding non-dimensional in-plane displacement U as obtained from (4) and (14) and the
vertical displacement W as obtained by integration, are then,

U =
u

h
=
h

a
(S� � �Sr)� (27)
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and

W =
w

h
=

Z
�d�: (28)

Equations (23) - (25) are subject to following boundary conditions:

@ � = 0 : � = 0; Sr = S�: (29)

and
@ � = 1 : � = 0; U = h

a (S� � �Sr) = 0:
(30)

which represent symmetry conditions at the center and clamped conditions at the edge of the plate.

The corresponding radial stress �eld in the plate is found from the de�nitions of the stress
resultants,

�r =
Nr

h
+
12Mrz

h3
; (31)

where the extrema occur at the top and bottom surfaces, z = �h=2. The non-dimensional form is
obtained by making use of (10) and (18),

�r =
N0

h
+
Eh2

a2

�
Sr � z

h(1� �2)

�
	+

��

�

��
: (32)

The �rst term represents the initial stress, the second the membrane stress, and the third the bending
stress. The corresponding strains �r in the plate is obtained from (14) and (18),

�r =
1

Eh
(Nr + �N�) + zKr: (33)

The non-dimensional form is obtained by making use of (5),

�r = (1� �)
N0

Eh
+

�
h

a

�2�
Sr � �S� � z

h
	

�
: (34)

The corresponding tangential stress (��) and strain (��) �elds can be obtained through similar
manipulations.

3 Linear Theory

Before investigating the nonlinear behavior (23 - 25), it is informative to look at the small
de
ection, linear behavior of these equations as the tension parameter k varies from 0 to 1. For
small de
ections, the mid-plane load Sr is assumed small, so that the nonlinear Sr� term in (23)
can be neglected. Multiplying (23) by �2 then leads to the linear equation2,

�2�00 + ��0 � (1 + k2�2)� = 5:56P�3; (35)

which is a modi�ed Bessel equation possessing the general solution,

�(�) = C1I1(k�) + C2K1(k�)� 5:56P�

k2
; (36)

where I1(k�) andK1(k�) are modi�ed Bessel functions of the �rst kind and second kind, respectively
(Abramowitz and Stegun, 1972). The requirement of a bounded solution at � = 0 and implementa-
tion the boundary conditions (29 - 30) yields,

�(�) = 5:56P

�
I1(k�)

k2I1(k)
� �

k2

�
: (37)

2In this and all subsequent equations, the Poisson ratio is taken as � = 0:27, which is typical of silicon nitride.
Small modi�cations can be made for other values of �.
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The corresponding de
ection is obtained by integrating (37),

W (�) = 2:78P

�
2
�
I0(k�)� I0(k)

�
k3I1(k)

+
1� �2

k2

�
: (38)

Two limiting cases are of interest here. For the case of a pure plate (k = 0), (35) becomes an
equidimensional ordinary di�erential equation possessing the following solutions:

�(�) = �0:695P�(1� �2) (39)

and
W (�) = 0:174P (1� �2)2: (40)

For the other case of a pure membrane, k !1, only the k2�2� term remains on the left hand side
of Equation 35. The resulting equation is integrated to yield,

�(�) = �5:56P�

k2
(41)

and

W (�) =
2:78P

k2
(1� �2): (42)

Equations (39 - 42) can also be obtained by taking the small and large argument limit of the modi�ed
Bessel solutions (37 - 38).

The e�ect of initial in-plane tension is shown by plotting the center de
ection,W0, as a function
of tension parameter (see Fig. 2). In this �gure, (40) and (42) form two asymptotes to the de
ections
obtained from (38). There appears to be a transition from plate behavior to membrane behavior in
the region from k � 1 to k � 20. The corresponding change in de
ection shape is shown in Fig. 3.
As the tension parameter increases, one notes the sharp change in curvature near the edge, � � 1,
in order to accommodate the zero slope boundary condition there.

A better understanding of the transition to membrane behavior is gained by introducing the
large value approximation for the modi�ed Bessel functions, namely (Abramowitz and Stegun, 1972),

lim
z!1

I�(z) � ezp
2�z

; 8 �: (43)

The placement of this approximation into (37) and (38) produces for large k,

�(�) � �5:56P
k2

�
� � e�k(1��)p

�

�
(44)

and

W (�) � 2:78P

k2

�
1� �2 � 2

k

�
1� e�k(1��)p

�

��
: (45)

These equations indicate small exponential edge-zone corrections to the pure membrane case (41)
and (42), to accommodate the zero slope condition at � = 1. Figure 4 shows the slope � plotted
versus non-dimensional radius � for increasing values of k. The extent of this edge zone3, ��,
gets smaller as k increases and is estimated by assuming that the exponential decays to 5% of its
maximum value,

�� � 3

k
: (46)

Furthermore, the change in center de
ection, W0, from the pure membrane case is approximated
from (45) as

W0 �
�
1� 2

k

�
(W0)mem: (47)

3Friedrichs (1949) �rst noted the development of an edge zone region with rapidly changing properties in his study
of plate de
ections.
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The corresponding stresses �r and strains �r in the plate are found from (32) and (34). For
linear theory, the main contributions to the stress and strain �elds come from the initial stress and
the bending forces, the later of which are dominated by the curvature term 	, namely,

	 = 5:56P

�
I0(k�)

kI1(k)
� 1

k2�

I1(k�)

I1(k)
� 1

k2

�
: (48)

The large k approximation of (48) is

	 � 5:56P

k2

�
�1 + k� � 1

�3=2
e�k(1��)

�
; (49)

which represents the membrane solution plus a small exponential edge zone correction. Figure 5
shows the curvature term plotted versus radius for di�erent values of the tension parameter. For
large k, the maximum curvature term at the edge is,

	 � 5:56P

k
(50)

which is considerably greater than the membrane curvature, 	 = �5:56P=k2 occurring at the center
and over most of the remaining portion of the plate. Physically, this indicates the presence of a
stress concentration near the clamped plate boundary (for example, (32)).

4 Nonlinear Theory

For large de
ections (W >> 1), nonlinear behavior arises when the incremental mid-plane
forces, ~Nr, ~N�, are no longer negligible. This behavior is manifested by the �

2 term in (25) changing
the mid-plane force Sr, which in turn a�ects the de
ection equations through the nonlinear Sr�
term in (23).

A convenient way of numerically solving this nonlinear system is to combine (24 - 25) and
recast (23 - 25) as two coupled, second-order equations in the variables � and Sr (Voorthuyzen and
Bergveld, 1984),

�2�00 + ��0 � �
1 + �2(k2 + 11:12Sr)

�
� = 5:56P�3; (51)

�2S00r + 3�S0r = �
�2

2
: (52)

The corresponding boundary conditions from (29) and (30) now become

@ � = 0 : � = 0; S0r = 0; (53)

@ � = 1 : � = 0; S0r + 0:73Sr = 0:
(54)

Prior to discretizing (51-54), the following coordinate transform pair was used to re�ne the
mesh in the edge zone region (46),

� = 1� (�+1)�(��1)
�
�+1

��1

��
�
�+1

��1

��
+1

and � = � ln ���

�+�

ln �+1

��1

; (55)

where � is the physical plane with grid points clustered near � = 1, � is the uniformly spaced
computational plane, and � is the stretching parameter (Roberts, 1971). This stretching transform
clusters more points near � = 1 as � approaches 1. In the present study, a value of � = 1:05 was
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used to capture the physics of the edge-zone by clustering 30% of the grid points in the region
0:9 < � < 1:0. The transformed versions of (51 - 54) are

�(�)2
�
d�

d�

�2
d2�

d�
2 +

�
�(�)

d�

d�
+�(�)2

�
d2�

d�2

��
d�

d�
��1+�(�)2(k2+11:12Sr(�))

�
�(�) = 5:56P�(�)3; (56)

�(�)2
�
d�

d�

�2
d2Sr

d�
2 +

�
3�(�)

d�

d�
+
d2�

d�2

�
dSr

d�
= ��(�)

2

2
; (57)

and
@ � = 0 : � = 0; d�

d�
dSr
d�

= 0; (58)

@ � = 1 : � = 0; d�
d�

dSr
d�

+ 0:73Sr = 0:
(59)

Equations (56) and (57) were then discretized using 2nd-order accurate central-di�erence schemes,
while the derivative and mixed boundary conditions were implemented by using 2nd-order accu-
rate forward- and backward-di�erencing schemes, respectively (for example, Anderson et al., 1984).
The computational domain consisted of a radial mesh containing 101 points to provide adequate
resolution in the edge zone. In matrix form, (56) and (57) are represented as

�A(Sr)�� = C; (60)

�B�Sr = 1

2
�2; (61)

where
�A(Sr)� and �B� are square matrices in tridiagonal form. This nonlinear system was then

solved using an implicit iteration technique similar to that used by Voorthuyzen & Bergveld (1984).
For a given k, (61) can be readily solved by direct inversion provided � is known, since [B] is in
modi�ed tridiagonal form. In the present study, the linear solution was used as an initial guess (see
(37)). Once determined, Sr was then substituted into (60) and was again inverted to produce an
updated �. The updated � was �rst corrected by employing an under-relaxation technique (see, for
example, Anderson et al., 1984) and then substituted into (61) producing a new Sr. In this study,
an under-relaxation parameter of 0.2 was used to accelerate convergence. This iterative process was
repeated until the the solution converged to within a tolerance of 0.5%. Finally, the variables W ,
	, S�, and U were then determined by employing 2nd-order accurate di�erencing schemes for the
di�erentiation and integration operators.

Results of the nonlinear calculations for the de
ection, de
ection curvature, and in-plane load
at the center of the plate are given in Figs. 6 to 9. Figure 6 shows the variation of the center
de
ection with loading. For the zero initial tension case, k = 0, the de
ection scaling changes from
the linear W0 � P at low loading levels to W0 � P 1=3 at high loading. The numerical results for
center-de
ection characteristics agree very well with those given by N�adai (1925) for k = 0 and with
Voorthuyzen & Bergveld (1984) and Allen (1986) for k > 0. For the cases with k > 0, the curves
start from their respective linear values and become asymptotic to the k = 0 case. In addition, the
onset of nonlinearity is delayed with increasing k. This e�ect is better illustrated by plotting the
maximum loading, Pmax, that will produce a 5% departure from linearity in the center de
ection,
as a function of k (see Fig. 7). The delay of the onset of nonlinear behavior with increasing k scales
according to Pmax � k3. Figure 8 shows the variation of the curvature at the plate center, 	0, with
loading. Again, for the k = 0 case, the curvature scaling changes from 	0 � P at low loads to
	0 � P 1=3 at high loads, but there appears a small bump in the transition. The k > 0 cases again
merge asymptotically into the k = 0 case. Figure 9 shows the variation of the in-plane load at the
plate center with loading. For the k = 0 case, the in-plane load developed in the plate is always
nonlinear and changes from Sr � P 2 at low loadings to Sr � P 2=3 at higher loadings. This behavior
is attributed to the �2 term present in (57) which determines Sr. The cases with initial tension also
merge asymptotically into the k = 0 case.
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The distribution of the de
ection, slope, and curvature in the plate for the k = 0 case are
given in Figs. 10 to 12. Figure 10 shows the de
ection distributions in the plate at di�erent values
of loading. The P = 1 case represents the linear bending behavior (see Fig. 7), while for higher
loadings, large in-plane loads develop and the de
ections tend to exhibit membrane behavior shown
earlier in Fig. 3. Similar trends with loading are apparent for the nonlinear slope and curvature
distributions given in Figs. 11 and 12. These trends in Figs. 11 and 12 are similar to those found
in Figs. 4 and 5. The corresponding distribution of in-plane loads and in-plane de
ection for the
k = 0 case are shown in Figs. 13 to 15. The in-plane loads plotted in Figs. 13 and 14 become more
uniform at the higher loads, although never quite constant. Interestingly, Fig. 15 demonstrates that
the in-plane de
ection becomes negative near the edge of the plate.

The similar in
uences of large P and large k discussed above can be traced to the (k2+11:12Sr)
term in (56). Therefore, an equivalent linear tension parameter, kE , is de�ned as,

kE =
p
k2 + 11:12Sr; (62)

where Sr is taken as Sr � Sr(0) and kE is now only a function of P and k (see Fig. 9). The
equivalent tension parameter kE is plotted as a function of loading in Fig. 16. For any given P and
k combination, Fig. 16 determines the equivalent tension parameter, kE , which in turn identi�es the
appropriate de
ection, slope, and curvature distribution characteristics from the basic linear theory,
(37, 38, and 48) or Figs. 3 - 5. Also, kE can be used in the convenient approximations of (46), (47),
and (50). Alternatively, by moving the given (P , k) point on Fig. 16 horizontally to the right to the
k = 0 case, one obtains the loading P which identi�es the appropriate distribution characteristics
from the previous k = 0 nonlinear theory, Figs. 10 - 15. The basic values of W0, 	0, and Sr(0) for
a given (P , k) are obtained from Figs. 6, 8 and 9.

Figure 16 shows that the nonlinear P= 1, 10, 100, 1000, 10,000, 100,000 cases for k = 0
calculated here (Figs. 10 - 15) correspond approximately to the linear k = 1, 5, 10, 20, 50, 100 cases4

(Figs. 3 - 5). They have similar distribution behavior, particularly with regards to the extent of the
edge zone. The slight variation in �=W0 arises from Sr varying slightly across the plate instead of
remaining constant at S0. Figure 16 also displays a dotted line which indicates the extent of the
linear region, mentioned previously (see Fig. 7). For a given value of k, points to the right of the
dotted line indicate a departure from linearity greater than 5% for the center de
ections. All points
to the left of the dotted line indicate linear theory is valid.

5 Conclusions

The large de
ections of a clamped circular plate have been investigated over a wide range
of transverse loadings and initial in-plane tension loads. The transition from plate behavior to
membrane behavior for small de
ections is a function of the initial tension parameter, k. This
transition occurs over the range 1 < k < 20, with plate behavior dominating for k < 1. For k > 20,
membrane behavior dominates the majority of the clamped plate, however, a narrow edge-zone
region develops near � = 1 to meet the zero-slope boundary condition. Simple estimates of this
edge zone and its properties are given. In addition, the loading limits for the validity of small
de
ection, linear theory are presented as a function of the initial tension parameter. The similar
e�ects of large initial in-plane tension k and large loadings P are combined into a single equivalent
tension parameter, kE , which conveniently characterizes the plate behavior. The equivalent tension
parameter permits the use of the closed-form, linear solutions to characterize the nonlinear behavior
of the plate.

The values and trends presented in this study are useful aids for the design of thin, circular
disks often found in microelectromechanical systems. For example, the results in x3 imply that

4The k = 1 case is essentially identical to the k = 0 case (see Fig. 2).
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the non-dimensional sensitivity of de
ection-based pressure sensors (W0=P � 1=k2) and the sen-
sitivity piezoresistive-based pressure sensors (	�=1=P � 1=k) scale di�erently with initial tension.
In addition, for piezoresistive transducers the edge-zone scaling indicates the extent of the stress
concentration region and thus dictates the placement and size of the piezoresistors. Finally, the
scaling law regarding limits of linear theory with increasing initial tension indicate that the loss of
sensitivity with increasing dimensional tension can be o�set by a subsequent increase in thickness
ratio.
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Figure 1: Schematic of clamped circular disk with initial in-plane tension.
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