NEXT: A new Neutrino-less Double Beta Decay Experiment

Markus Ball IFIC, Valencia

on Behalf of the NEXT Collaboration

IEEE Nuclear Science Symposium, Dresden, Germany

IEEE Nuclear Science Symposium

What is NEXT ?

NEXT stands for Neutrino Experiment with Xenon TPC

Due to a positive decision of the Spanish Ministry of Science the newly founded NEXT collaboration has approved to establish a 100 kg ¹³⁶Xenon high pressure TPC in the new Underground Laboratory in Canfranc.

Scientific Program has to clarify:

- How to build a detector for $\beta\beta^{0\nu}$ (and WIMP) searches in five years from now ?
- How could such a 100 kg high pressure TPC look like ?

IEEE Nuclear Science Symposium

What makes $\beta\beta^{0\nu}$ so exciting today ?

IEEE Nuclear Science Symposium

One way to prove Klapdors claim: Reject or verify it with experiments

- higher mass of ββ-isotope
- better background rejection
- verify for more than one isotope

Future experiments for $\beta\beta^{_0\nu}$

Isotope	$Q_{\beta\beta}$ (keV)	i.a. (%)	$T_{1/2}^{2\nu}$ (y)	FN (10 ⁻²⁴ meV ⁻¹ ·y ⁻¹)
⁴⁸ Ca	4271 ± 4	0.187	$(4.2 \pm 1.2) \times 10^{19}$	
76 Ge	2039.6 ± 0.9	7.8	$(1.3 \pm 0.1) \times 10^{21}$	0.4
⁸² Se	2995 ± 6	9.2	$(9.2 \pm 1.0) \times 10^{19}$	1.3
$^{100}\mathrm{Mo}$	3034 ± 6	9.6	$(8.0 \pm 0.6) \times 10^{18}$	1.4
$^{116}\mathrm{Cd}$	2802 ± 4	7.5	$(3.2 \pm 0.3) \times 10^{19}$	1.1
$^{130}\mathrm{Te}$	2528.8 ± 4	33.8	$(2.7 \pm 0.1) \times 10^{21}$	1.4
$^{136}\mathrm{Xe}$	2479 ± 8	8.9	$> 8.1 \times 10^{20}~(90\%~{\rm CL})$	0.8
$^{150}\mathrm{Nd}$	3367.1 ± 2.2	5.6	$(7.0^{+11.8}_{-0.3}) \times 10^{18}$	13.8

Experiment	Isotope	i.a. (%)	Mass (kg)	Technique
GERDA	$^{76}\mathrm{Ge}$	86	40	Ge diodes in liq. scint.
Majorana	⁷⁶ Ge	86	120	Ge diodes
COBRA	¹¹⁶ Cd	nat.	418	CZT semiconductor
Cuore	$^{130}\mathrm{Te}$	nat.	741	TeO_2 bolometers
CANDLES	^{48}Ca	nat.	tons	CaF_2 scint.
CAMEO	^{116}Cd	83	tons	$CdWO_4$ scint.
SNO+	$^{150}\mathrm{Nd}$	nat.	500	Nd salt in liquid scint.
SuperNEMO	$^{82}{\rm Se}\;(^{150}{\rm Nd})$	90 (?)	100	Foils in tracko-calo
EXO-200	$^{136}\mathrm{Xe}$	80	200	LXe TPC

IEEE Nuclear Science Symposium

- ¹³⁶Xe is 10 % in natural Xe, could be "easily" enriched.
- ¹³⁶Xe has no other isotopes with long life time.
- It is scalable to high masses (100 kg 1 ton)
- Liquid TPC key advantage is the compactness of the detector
- Gaseous TPC provides additional handle for BG (pattern recognition)
- Has also a potential for WIMP searches (see D. Nygrens talk).

IEEE Nuclear Science Symposium

The Event Topology of a HP-Xenon TPC

IEEE Nuclear Science Symposium

Who is NEXT and what is our roadmap ?

- IFAE Barcelona,
- U. de Gerona,
- CIEMAT Madrid
- U. de Santiago de Compostela,
- IFIC Valencia,
- U. Politécnica de Valencia,
- U. de Zaragoza

International Advisors: Dr. D. Nygren (LBL), Dr. A. Bernstein (Livermore), Drs. I. Giomataris & E. Ferrer-Ribas (Saclay) Dr. E. Radicchio (U. Bari) Prof. A. Bettini (LSC)

MM operation in HP-Xenon

- First Measurement in pure Xenon for 2, 3 and 4 bar.
- Attachment effects were observed due to imperfection of the closed gas system.
- E_{res} given for attachm.
 and no attachm.

	liminary		
Pr	Pressure [atm]	E _{res} (FWHM) [%]	E _{res} (FWHM) [%]
	2	3.8	2.8
	3	7.5	4.9
	4	10.3	4.5

IEEE Nuclear Science Symposium

HP-TPC prototype for EL

IEEE Nuclear Science Symposium

Background Considerations

Passive shielding will reduce external gamma and also neutron capture Active shielding will eliminate most of the muon contribution

Geometrical rejection: Rejection factor 10^{-2} (E_g > 2 MeV)

IEEE Nuclear Science Symposium

Background Considerations

Event Topology with additional blob. Rejection factor 10⁻¹

With energy window of 25 keV Rejection factor 10⁻³ ⇒ Total rejection

factor of 10⁻⁶

Used Parameters:

- Chamber dimensions $I \times I \times 2 \text{ m}^3$
- Energy resolution: I % FWHM
- Data taking of 5 years

Background from PMTs

- Size: |"x |"
- Total number of PMTs: $40 \times 40 = 1600$
- Activity: I.0 mBq/PMT

Conclusion

- Gaseous Xenon TPC seems to be a great opportunity for ββ⁰ searches (and WIMPs ?)
- Funding is approved for five years by the spanish ministry of science.
- First official collaboration meeting was a fruitful kick of to the project (Bad News is: Now we really have to work !)
- Main sources of potential backgrounds are identified, simulation has to quantify the power of the Pattern Recognition - tool
- First Measurements of the MM are promising to fit the boundary conditions with a more sophisticated gas system and small contribution of quencher.
- First HP-TPC for EL measurements is commissioned right now in Barcelona.