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Transmittance measurements in the integrating sphere

Jeffrey Kessel

The finite-difference equation method is used to derive expressions for the directional-hemispherical
transmittance as measured in the integrating sphere; and for the correction factor necessary with a one-port
sphere to account for changes in the enclosure caused by substituting the open port (the standard device) for
thesample. Expressions are also derived for the hemispherical reflectance, since this quantity is necessary to

compute the correction factor.
(comparative) sphere.

. Introduction

Researchers!? are using one- and two-port integrat-
ing spheres to measure the optical transmittance of
samples placed over a port in the sphere wall. The
finite difference equation method has been applied to
lighting problems in rooms®-% and to derive expres-
sions for the directional-hemispherical reflectance of
samples measured in the integrating sphere.8? This
paper extends the method to transmittance measure-
ments made with the integrating sphere. The formal-
ism is used to derive an expression for the sample’s
directional-hemispherical transmittance and for the
correction factor necessary with a one-port sphere to
account for changes in the enclosure caused by substi-
tuting the open port (the standard device) for the
sample. Expressions are also derived from the hemi-
spherical reflectance, since this quantity is necessary
to compute the correction factor. Itis also shown that
no correction factor is necessary with a two-port (com-
parison) sphere.

il. General Equation

Following Hisdal’s derivation,® if A; is part of an
enclosure comprised of N perfectly diffuse reflecting
surfaces {A.}, the luminous exitance (lumens/unit
area) of A; is

Ly=riloFy + rilyFyy . ..+ rLyFy + FES, 6))

where F;, is the form factor from A; to Az, and E5* is the
excitation illuminance on A; arising from an external
monochromatic light source. The quantity r; is the
spectral hemispherical reflectance of A; for diffuse
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It is also shown that no correction factor is necessary with a two-port

incident radiation from the other surfaces of the enclo-
sure, while r} is the spectral directional-hemispherical
reflectance of A; for the excitation flux. The entire
set of exitances can be found by solving the system of N
linear equatons:

rFu-1 nkFpy riFiy L, —r ES
reFy  reFp—1 reFan Ly —ro B
raFg r3Fgs raFan Lj ~rREE . (@)
rNFny rvFve rvFny—11[ Lw, —rnER

. One-Port Sphere

This section will derive an expression for the direc-
tional-hemispherical transmittance of an externally
illuminated sample mounted over a port in the wall of
the sphere. Next, a method for measuring the sam-
ple’s backreflectance is described, since this quantity
is used in one of the factors expressing the transmit-
tance. Finally, it is shown that in a two-port sphere,
which operates in a comparison rather than a substitu-
tion mode, no correction factor appears in the expres-
sion for the transmittance.

A. Measurement of Transmittance

The transmittance of a sample will be determined as
the ratio of two illuminances measured in the integrat-
ing sphere, one produced when the sample is placed
over a port in the sphere and illuminated by an exter-
nal source, the other resulting from external illumina-
tion of the port with sample removed. This ratio will
be modified to account for fluctuations of the source
and for changes in the enclosure’s reflectance resulting
from substitution of the sample for the open port
(which has zero reflectance back into the enclosure).

It is necessary to shield the detector from the sample
port to avoid error when the sample’s transmitted flux
directly excites the detector, but that of the open port



does not (or vice versa). Otherwise, the ratio of the
illuminances with and without the test device in place
will not accurately indicate the true ratio of the (dif-
fuse) illuminances in the sphere. Shielding the sensor
from direct view of the planar port also ensures that
the measured illuminance does not depend on the sen-
sor’s location in the spherical portion of the enclosure,
because, as is well known, the form factor from any
portion of the sphere to a sensor (embedded in the
sphere) depends only on the areas of the sensor and
sphere.

To use the theory for a diffuse enclosure, it is neces-
sary that each surface of the enclosure be uniformly
irradiated.53? Any two portions of the spherical sur-
face uniformly irradiate one another. (This follows
from the property of form factors mentioned above.)
However, a planar sample mounted over the port does
not share this desirable property. Although, as the
area of the port decreases, the planar sample ap-
proaches the spherical surface, and the necessary con-
ditions for enclosure theory are obtained.

The integrating sphere consists of a spherical shell
A, from which a spherical cap A1, is removed. Figurel
shows the sphere consisting of a spherical surface As
and a planar port A;. Denote the area of a surface A;
by the symbol a;. Surface A, will not have uniform
exitance, because it is typically excited by a nonuni-
form spatial distribution of transmitted flux. More-
over, the planar surface A;, unlike the spherical cap
Ay, will not reflect flux uniformly over A,. We will
show that for a port-shielded sensor embedded any-
where in As, the measured illuminance depends only
on the total excitation flux over As, irrespective of its
spatial distribution. This allows us to then derive the
expression for the transmittance by applying the ma-
trix formalism to the simplified enclosure illustrated in
Fig. 1.

Source

QE \\
N Sensor

A, (Port Cap)
A, (Port)

"

Ag (Sphere) = A, U A,

Fig.1. One-port (substitution) sphere with a nondispersive sample

over port.

Use of a shield on the sensor allows use of the enclo-
sure formalism because it ensures that the sensor can
view only the spherical portion of the enclosure. All
flux reflected from the planar device will, after reflec-
tion from the spherical surface, be uniformly distribut-
ed over the spherical surface. The nonuniform illumi-
nation of the device by reflected flux from an arbitrary
excitation of the spherical surface will not matter with
the assumptions of diffusely reflecting surfaces, a port-
shielded sensor, and a reflectance r; that is constant
over the sample.

The previously discussed property of the form factor
between any two portions of a sphere allows us to treat
the spherical portion of the enclosure as a single sur-
face with constant excitation. Suppose that for an
arbitrary nonconstant excitation of As, A; was divided
into subsurfaces Ay;. Each spherical subsurface Ay;
reflects its excitation flux uniformly over the spherical
surface As. Thus the distribution of this initially re-

“flected flux over A; does not depend on the spatial

distribution over A, of the excitation flux transmitted
by thesample. The surface A can, therefore, be treat-
ed as a single uniformly excited surface.

The matrix formalism will now be applied to the
enclosure comprising two surfaces, as shown in Fig. 1.
The transmittance of a planar test device is deter-
mined with respect to that of the open-port standard.
As shown in Fig. 1, assume that monochromatic beam
radiation is incident on a test device mounted over the
sphere port A; (a circle of radius r) from a direction
characterized by altitude angle # and azimuth angle ¢
(relative to a coordinate system on the sphere port).
No background incident radiation is assumed. The
discussion at the end of Sec. III shows that there is no
loss of generality in restricting the discussion to a
monochromatic source. If ®;,. is the flux uniformly
incident on the sample port (at the instant we measure
the illuminance due to the flux transmitted through
the sample), the excitation flux transmitted into the
sphere is T'(8,¢) Pinc, where T'(8,¢) is defined to be the
spectral directional-hemispherical transmittance of
the device. Note that this definition allows T to have
values greater than unity, as it would, for example, if
the sample incorporated reflectors which increase the
effective area of the port. For a given source position,
temporal fluctuations in ®;, may be determined by
monitoring the source with a sensor external to the
sphere. !

Note that to accurately measure transmittance, ei-
ther the incident flux must be uniform over the port or
the test sample must have a relatively constant trans-
mittance over its surface (for a given source position).
This follows from the observation that the open port
standard has a constant transmittance of unity over
the port. A shading device like an overhang, however,
has a transmittance of zero over the shaded portion of
the port and unity over the remainder. This will un-
equally weight a nonuniform incident flux distribution
and thereby lead to inaccurate determination of trans-
mittance. Devices composed of repetitive elements
(e.g., slats) may be accurately tested with nonuniform
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incident flux if their variation in transmittance occurs
on a scale, that is small relative to the size of the port.

The following properties of form factors are used in
the derivation:

Fj, = aj/a, for Aj, Ay in Ag;

F;; = O for planar Aj;

Fj, = (ap/a;) for Ajin A, and Ay, planar;

Fj, = ap/(as — ajc) = (ajc/a))(ar/a,)

for A;j planar and A in A8
Fj, = (ajc/a;)(ar/as)
for A;, Ap, planar. (

These properties can be applied to the areas shown
in Fig. 1. Writing f, for a;./a,, ri for port reflectance,
r2 for the sphere wall (directional) reflectance for the
excitation flux, and ry for sphere wall reflectance, Eqs.
(2) become

-1 r L _ 0
rofe rylagfa) —1||Ly| " —r;(mim)/az]’ @)

We made use of the facts that F;5 = unity, since all
radiation reflected from A; strikes A», and that (as/a;)
= (a; ~ a1.)/(as) 1 — f.. Note that L; does not include
the flux T®;,., which can be considered to leave an
imaginary source inside the sphere and to excite only
the surface Ay, where it is transformed into part of Lo,
the diffuse luminous exitance from A;. The equations
can be solved by Cramer’s method, where we first
calculate the determinant

A=1—-ry1—Ff)—riryf.. (4)

Next we solve for the unknowns L,Lo:

I = 1 0 r
e (Z> _rlET(Pinc/a2 rZ(l - fc) -1

= (%) (', T, ) (L/ay); ®)
Ly = (1/AW=ryT®,, ) (1/a,). (6)

Following Hisdal,® we can write the illuminance
measured by a detector shielded from the port as E; =
Lng_g = Lz(az/as) =FE. Thus

= (1/A)(—r,T®;,) (1/as)(as/a,)

r:,T(Pmc/a

1 —ry{l — rlr?fc M
A similar expression for the standard illuminance

(detected by a port-shielded sensor when the open port

is used as reference transmitter) can be found by sub-

stituting zero for r; and unity for T yielding

Ey = (1/4y) (r’zq’inc,o/as)1 (8)

where Ag is the value of the determinant (4) obtained
by substituting zero for r1, and ®iy. is the flux incident
on the sample port at the instant of the standard
measurement (sample dismounted). The ratio ®iyc o/
®;,c accounts for temporal variation of the source.
Dividing these latter two equations one by the other
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Fig.2. C' = (1/r))(1 — C), where C is the sphere correction factor.

and rearranging yields the directional-hemispherical
transmittance

= (E/Eg)(Pine,o/ Binc) (A Ag) 9)

nr ch
1—ry(l— fc)]

The right-hand term (in brackets) is the correction
factor C, which compensates (with respect to the non-
reflecting open-port standard) for the sample’s non-
zero backreflectance ry. If uncorrected, this differ-
ence yields spuriously high values for transmittance,
since the illuminance measured with the test device in
place is increased relative to that measured when the
open port is in place.

The correction factor C can be written as C = (1 —
r1C’), where C’ is a function of the sphere radius R, the
port radius r, and the sphere wall reflectance ro. Fig-
ure 2 plots C’ vs rq for various ratios r/R. Since the
correction factor depends on the sample hemispherical
reflectance ry, the next section derives an expression
for this quantity by means of measurements using a
light source within the sphere. Alternatively, the di-
rectional-hemispherical reflectance (as measured by
the methods of Ref. 6) could be utilized as a proxy for
the hemispherical reflectance.

or

(E/EO(@mc O/th:) [ (10)

B. Measurement of Reflectance

Figure 3 illustrates the procedure for determining r;.
A light source, emitting a flux &, is placed within the
sphere. A shield prevents du‘ect illumination of the
port or the sensor (located in surface A and shielded
from the port). Expressions for r; will be derived by
comparing the measured illuminance E when a planar
sample is in place (surface A;) to the illuminance Eg;
measured when a standard device (reflectance ry ) is
substituted for the sample. Three standards will be
considered: planar with ry g = 0; planar with ry g = ro,
and a spherical cap having ry s = ro, where rs is the
reflectance of the sphere coating.




Shield

Source

Ag (Sphere) = A U Ay

Fig. 3. Substitution method for determining sample backreflec-
tance into the sphere.

For a planar device, Eqs. (2) become

-1 ry L, _ 0
[ir?fc ro(l=f)— 1] I:LZ:I - [—rrgcp/az] ’ (11)

where again f, = a1./a; = a./a;. Solving in the previous
manner yields

A=1-r,(1—1)—rirofe (12)
-1

Lz = (1/4) rzf _rlz‘p/az = (1/A)(7'/2@/l12)1 (13)

E = LyFy, = Ly(agla,) = (1/A) () (®/a,). (14)

Letting the subscript st denote quantities pertaining
-to a planar standard substituted for the sample, Eq.
(14) is used twice to express the ratio of measured
illuminances:

&:AE&: l_rZ(l_fc)——rlr?fc q)st
1- rZ(l _fc) - rl,stch ¢

, (15)

which may be solved for the sample reflectance

E,®
G ){1—r2(1—fc)— Ei;t[l—rzu-fc)—rl,sm]}- 1)

If the open port is used as the reference standard, set
ris = 0 to obtain

= 1_r2(1~fc) _Est [ .
() o

If a planar standard with the same coating as the

sphere is used, set 1 5, = ry to obtain

— 1_r2(1_fc) Est <} _ rgfc
’1_[ rof, HI"E?“[l 1-r2(1—fc):|}' (18)

Finally, consider a standard consisting of the spheri-
cal cap (surface A;.) coated with the same material as
thesphere. Thenryg=ry, F11=f, Fio=1—f,and ®
= &, Equations (2) become

r?fc_l rZ(l_fc) . Ll,st _ 0 (19)
r?fz r2(1 - fc) -1 LZ,st - <_r/2¢st/a2>

Solve this to obtain Ay = 1 — r9, and

Loy = (1/8) :j: -1 —r’zgn o
= (1/8)(A — rof Y /ay), (20)
Ey = Ly Foy = Ly y(ay/a,)
= 1/8g(1 = rof ) (r'aBy/a,). (21)

Divide this expression by Eq. (14) and rearrange to
obtain the sample reflectance

1 _E2 (-r)
"= (r—> (1 =)~ o —ry;)) . @

This method of determining r; relies on discriminat-
ing small differences between large numbers, since the
ratio Ey/E approaches unity as the port area decreases
with respect to the area of the sphere. Other methods
are described in the literature.1?

It is now possible to calculate the correction factor
using the appropriate expression for r; and the previ-
ous expression for . To experimentally confirm Eq.
(10) devices for testing on a 2-m diam sphere were
constructed from perforated hardboard coated with
either white sphere paint or a flat black enamel.
Transmittance at normal incidence was determined as
theratio of open area to total area. The sample reflec-
tance was determined by luminance scanning compari-
sons with a known standard (both illuminated beneath
a hemisphere having uniform luminance), or was mea-
sured by the preceding methed using alternately the
open port and a planar port coated with sphere paint as
standards. Using a 2.0-m diam sphere (adaptable to
either 0.89- or 0.51-m diam ports) with the port illumi-
nated at normal incidence, a measured value for C was
determined from Eq. (10) as T(Eo/E)(®inco/ Pine)-
This value was compared with the theoretical value
derived from Eq. (10). Using both the small and large
ports and devices with (T.,r;) = (0.4,0.5), (0.4,0.04),
(0.3,0.7), and (0.3,0.05), the error ranged from 1.5 to
4.3%.

The assumption of a monochromatic source does not
restrict the generality of the results. The transmit-
tance derived in the preceding may be viewed as a
spectral directional-hemispherical transmittance T'.
The integrated directional-hemispherical transmit-
tance may then be calculated from the expression

T= r T(dE,/dN)dM, 23)
A=0

where the T, are measured as described above, and
separate measurements characterize the source’s rela-
tive spectral irradiance.

The following section discusses modifications to the
sphere and experimental procedure which eliminate
the correction factor.

IV. Two-Port Sphere

By placing a dedicated open port in the sphere, the
test device may be left over the sample port while the
open port is illuminated. This comparative mode of
operation eliminates the correction factor arising in
the above substitutive mode. Figure 4 defines the
two-port sphere. With no loss of generality assume
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A, (Sample Port)

A,c (Sample
Port Cap)

Agc (Standard Port Cap)
A, (Open Port Standard)

Ay (Port image)

Ag (Sphere) = Ajg U Agg U Az U A,
Fig. 4. Two-port (comparison) sphere.
the dedicated open port has the same area as the sam-

pleport. Then Ay, A, and Asare congruent and have
area a.. The system of Eqgs. (2) becomes

V. Applications

Researchers at the Applied Science Division of Law-
rence Berkeley Laboratory have constructed a 2-m
diam integrating sphere, with a single port or variable
diameter (0.25-1.0 m). The sphere is used to measure
the directional-hemispherical transmittance of both
scale and full-size glazing materials and fenestration
components.!’?2 These measured values characterize
performance at a realistic range of source/device rela-
tive positions, and are necessary to optimize the effects
of glazing on building energy management.
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