PRODEC® Type 304 UNS S30400

A special quality of standard Type 304 with composition and processing for enhanced machinability.

Description

PRODEC[®] 304 is an improved version of standard Type 304. With advanced ladle metallurgy techniques, the steel is processed for improved machinability and outstanding uniformity. PRODEC 304 offers faster machining speeds, longer tool life, improved part quality, and lower total cost of machined parts.

PRODEC 304 is nonmagnetic in the annealed condition but may become slightly magnetic as a result of cold working or welding.

Specifications

PRODEC 304 meets the same AMS, ASTM, ASME, QQS, and MIL-S specifications as standard Type 304.

Product Forms Available

Plate Bar

Corrosion Resistance

PRODEC 304 is a versatile, general purpose stainless steel with good resistance to atmospheric corrosion, to many organic and inorganic chemicals, and to foods and beverages. It has also been used in vacuum processing equipment and specialized instruments where high integrity is essential.

Although improvements in machinability in the past have been associated with reduced corrosion resistance, PRODEC 304 has been shown to have corrosion resistance within the range typically expected of Type 304 stainless steel.

Machinability

PRODEC 304 is melted to a closely controlled chemistry and ladle-treated to achieve control of the composition, amount, size, shape, and distribution of the nonmetallic inclusions (sulfides and oxides) normally occurring within a standard stainless steel. These inclusions provide for chip breaking and for reduced wear of carbide tooling at high machining speeds. PRODEC 304 permits higher machining speeds, longer tool life, and superior part quality with reduced total cost for finished parts.

Tables 1-7 give some speeds and feeds obtained

Turning

		Ci	utting sp	<mark>beed, sf</mark>	m
Feed (in/rev)	Cutting depth (in)	Ceme C7	nted ca C6	rbides C5	High speed steel
< 0.012	0.08	820	650		130
0.012-0.020	0.08-0.20		590	490	115
0.020-0.040	0.20-0.40	—	330	295	65

Threading

Table 2

Table 1

Tool	Speed (sfm)
Cemented Carbide (C6-C5)	295-425
High Speed Steel	50-65

Reaming

Table 3

Ream	Cutting S	_	
diameter (in)	Cemented carbide	High speed steel	Feed (in/rev)
< 0.40	165	33-50	0.004-0.008
0.40-0.80	165	33-50	0.012
> 0.80	165	33-50	0.012-0.016

Coolant/lubricant: emulsion or cutting oil

Cut Off		Table 4
Tool	Speed (sfm)	Feed (in/rev)
Cemented Carbide (C5) High Speed Steel	330-490 80	0.004-0.008 0.002

2 PRODEC® Type 304

KUMPU

Table 5

Milling

		Cemented carbide		High speed steel		
Operation	Speed (sfm)	Feed (in/tooth)	Type of carbide	Speed (sfm)	Feed (in/tooth)	
Face Milling	490-820	0.006-0.012	C7-C6	80-100	0.005-0.008	
Side Milling	590-790	0.010-0.012	C7-C6	80-100	0.005-0.008	
End Milling	490-720	0.004-0.008	C7-C6	80-100	0.001-0.006	
End Milling	165-330	0.002-0.008	C5	_	_	
(Solid cemented carbic	de)					

Table 6

Drilling — High Speed Steel Twist Drills

Drill diameter	Spee	ed	Feed
(in)	rpm	sfm	(in/rev)
0.04	3200-3800	33-38	0.002
0.12	1600-1800	50-57	0.004
0.20	1080-1270	57-66	0.008
0.40	540-640	57-66	0.012
0.60	360-430	57-66	0.014
0.80	270-320	57-66	0.016
1.20	180-220	57-66	0.018

Notes:

1. Cutting Fluid: Ample flow of 10% emulsion coolant.

2. With short NC drills, feed can be increased about 40%.

3. When hole depth exceeds 4x diameter, clear chips from hole.

4. With TiN-Coated HSS drills, speed can be increased 10%.

5. Table 5 applies to rotating workpieces, as in drilling a bar in a lathe. For rotating drill and fixed workpiece, as in drilling a hole in a plate, the maximum speed should not exceed 50 sfm, but higher feeds may be considered depending on drill alignment, rigidity, and machine power.

Drilling — Indexable Insert Drills Cemented Carbides

Table 7

Drill diameter	Speed	Feed	Type of	f carbide	
(in)	(sfm)	(in/rev)	Center	Periphery	
0.80	655-820	0.004	C6	C7	
1.20	655-820	0.005	C6	C7	
1.60	655-820	0.006	C6	C7	
2.00	655-820	0.008	C6	C7	

Notes:

Cutting Fluid—Pressure: >44 psi; Amount: > 6.5 gal/min Cutting data for indexable insert drills are highly dependent on the make of drill; the manufacturer's recommendations should be considered.

Mechanical Properties

Table 8

	Typical	ASTM
Tensile Strength, ksi	85	75 min
0.2% Yield Strength, ksi	35	30 min
Elongation in 2 inches, pct.	60	40 min
Reduction of Area, pct.	70	
Hardness HB, Rockwell B	160	201 max

in tests for PRODEC 304, providing guidelines for possible adaptation to particular machining programs. The data provided are based on achieving tool lives of 15 minutes for cemented carbides and 60 minutes for high speed steel tools.

Heat Treatment Annealing

PRODEC 304 should be heated to 1900°F minimum and water quenched or rapidly cooled by other means.

Chemical Composition

Table 9

	PRODEC 304
Carbon	0.08 max
Manganese	2.00 max
Phosphorus	0.045 max
Sulfur	0.030 max
Silicon	0.75 max
Chromium	18.0-20.0
Nickel	8.0-10.5
Nitrogen	0.10 max (flat-rolled products only)

Modulus of Elasticity, psi

Heat Capacity, Btu/lb°F Electrical Resistivity, Ω-inch

Linear Expansion, 68-212°F/°F Thermal Conductivity, Btu/h ft°F

Density, Ib/in³

	Table
0.285 29 x 10 ⁶ 9.4 x 10 ⁻⁶ 8.7	
0.12	
27.6 x 10 ⁻⁶	

10

Hardening

PRODEC 304 cannot be hardened by heat treatment. However, PRODEC 304 can be strengthened by cold working.

Workability Cold Working

PRODEC 304 is readily formed and fabricated through a full range of cold working operations. It

can be used in heading, drawing, bending, and upsetting. Any cold working operations will increase the strength and hardness of the material, and may leave it slightly magnetic.

Hot Working

PRODEC 304 can be forged in the 1700-2200°F range. For maximum corrosion resistance, forgings should be annealed at 1900°F minimum and water quenched or rapidly cooled by other means after hot working operations.

Welding

PRODEC 304 is readily welded by a full range of conventional welding procedures (except oxyacetylene). AWS E308/ER308 or E308L/ER308L filler metals should be used with PRODEC 304

Lowest Temperature (°F) at Which the Corrosion Rate Exceeds 5 mpy

Table 4

Corrosion Environment	654 SMO®	254 SM0®	904L	Type 316L (2.7 Mo)	. Туре 304	2507	2205 Code Plus Two	
0.2% Hydrochloric Acid	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling
1% Hydrochloric Acid	203	158	122	86	86 p	>Boiling	185	131
10% Sulfuric Acid	158	140	140	122	—	167	140	149
60% Sulfuric Acid	104	104	185	<54	_	<57	<59	<<55
96% Sulfuric Acid	86	68	95	113	_	86	77	59
85% Phosphoric Acid	194	230	248	203	176	203	194	203
10% Nitric Acid	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling
65% Nitric Acid	221	212	212	212	212	230	221	203
80% Acetic Acid	>Boiling	>Boiling	>Boiling	>Boiling	212 p	>Boiling	>Boiling	>Boiling
50% Formic Acid	158	212	212p	104	≤50	194	194	59
50% Sodium Hydroxide	275	239	Boiling	194	185	230	194	203
83% Phosphoric Acid + 2% Hydrofluoric Acid	185	194	248	149	113	140	122	95
60% Nitric Acid + 2% Hydrochloric Acid	>140	140	>140	>140	>140	>140	>140	>140
50% Acetic Acid + 50% Acetic Anhydride	>Boiling	>Boiling	>Boiling	248	>Boiling	230	212	194
1% Hydrochloric Acid + 0.3% Ferric Chloride	>Boiling, p	203ps	140ps	77p	68p	203ps	113ps	68p
10% Sulfuric Acid + 2000ppm Cl- + N2	149	104	131	77	_	122	95	<55
10% Sulfuric Acid + 2000ppm Cl- + SO2	167	140	122	<<59p	_	104	<59	<<50
WPA1, High Cl- Content	203	176	122	≤50	<<50	203	113	86
WPA2, High F- Content	176	140	95	≤50	<<50	167	140	95
ps = pitting can occur ps = pitting/crevice corrosion can occur								

WPA	P ₂ 0 ₅	CI ⁻	F	H ₂ SO ₄	Fe ₂ 0 ₃	Al₂0 ₃	SiO ₂	CaO	MgO
1	54	0.20	0.50	4.0	0.30	0.20	0.10	0.20	0.70
2	54	0.02	2.0	4.0	0.30	0.20	0.10	0.20	0.70

PRODEC[®] Type 304 3

4 PRODEC[®] Type 304

steel, but the molybdenum-containing austenitic stainless steel filler metals may also be considered. After welding PRODEC 304 it may be necessary to fully anneal to restore the corrosion resistance lost by sensitization to intergranular corrosion when chromium carbides were precipitated in the grain boundaries in the weld heat-affected zone.

Corrosion Performance of Stainless Steel

Table 11 compares the performance of Type 304 with other stainless steels in a variety of common corrosive environments. The table shows the lowest temperature at which the corrosion rate exceeds 5 mpy. All testing was done in accordance with the requirements of the Materials Technology Institute of the Chemical Process Industries (MTI)

Technical Support

Outokumpu Stainless, Inc. assists users and fabricators in the selection, qualification, installation, operation, and maintenance of PRODEC 304 stainless steel. Technical personnel, supported by the research laboratory of Outokumpu Stainless, can draw on years of field experience with PRODEC 304 to help you make the technically and economically correct materials decision.

Outokumpu Stainless is prepared to discuss individual applications and to provide data and experience as a basis for your selection and application of PRODEC 304.

Outokumpu Stainless works closely with its distributors to ensure timely availability of PRODEC 304 in the forms, sizes, and quantities required by the user. For assistance with technical questions and to obtain top quality PRODEC 304, call Outokumpu Stainless, Inc. at 1-800-833-8703.

PRODEC, 254 SMO, and 654 SMO are trademarks of Outokumpu Stainless. 2205 Code Plus Tivo is a trademark of Outokumpu Stainless, Inc.

Information given in this brochure may be subject to alteration without notice. Care has been taken to ensure that the contents of this publication are accunate, but Outokumpu Stainless and its subsidiary companies do not accept responsibility for errors or for information which is found to be misleading. Suggestions for or descriptions of the end use or application of products or methods of working are for information only and the company and its subsidiaries accept no liability in respect thereof. Before using products supplied or manufactured by the company, customer should satisfy themselves of their suitability. If further assistance is required, the company, which has extensive research facilities, will often be able to help.

Outokumpu Stainless is a core business within Outokumpu, a dynamic metals and technology group operating worldwide and marketing its metals, metal products, technology and services to customers in a wide range of industries.

Outokumpu Stainless, Inc., 425 North Martingale Road, Suite 1600, Schaumburg, IL 60173-2218 USA Tel. 1-800-833-8703 Fax 1-800-545-8617 stainless.info@outokumpu.com

Outokumpu Stainless

www.outokumpu.com/stainless/NA