SENSITIVITY OF NEXT-100 TO NEUTRINOLESS DOUBLE BETA DECAY

Justo Martín-Albo, Javier Muñoz IFIC (CSIC & Univ. de Valencia)

NEXT COLLABORATION MEETING — LSC, MAY 2013

Sensitivity of NEXT-100 to neutrinoless double beta decay

The NEXT Collaboration

V. Álvarez,^a F.I.G. Borges,^b S. Cárcel,^a J. Castel,^c S. Eubrin, C. Cervera,^a
C.A.N. Conde^b T. Dafni,^c T.H.V.T. Dias,^b J. Díaz,^a M. Borov,^d R. Esteve,^e
P. Evtoukhovitch,^f L.M.P. Fernandes,^b P. Ferrario,^a A.L. Ferreira^g E.D.C. Freitas^b
V.M. Gehman,^d A. Gil,^a A. Goldschmid,^a H. Gómez,^c J.J. Gómez-Cadenas,^{a,1}
D. González-Díaz,^c R.M. Gutiérrez, A. Hauptman,ⁱ J.A. Hernando Morata,^j
D.C. Herrera,^c F.J. Iguaz,^c I.G. hasto za,^c M.A. Jinete,^h L. Labarga,^k A. Laing,^a
I. Liubarsky,^a J.A.M. Lopes,^b O. Lorca,^a M. Losada,^h G. Luzón,^c A. Marí,^e
J. Martín-Albo,^{a,2} A. Marúnez,^a T. Miller,^d A. Moiseenko,^f F. Monrabal,^a
C.M.B. Monteiro,^b F. Mora,^e L.M. Moutinho,^g J. Muñoz Vidal,^{a,2} H. Natal da Luz,^b
G. Navarro,^h M. Nebot-Guinot,^a D. Nygren,^d C.A.B. Oliveira,^d R. Palma,^l J. Pérez,^m
J.L. Pérez Aparicio,^l J. Renner,^d L. Ripoll,ⁿ A. Rodríguez,^c J. Rodríguez,^a
F.P. Santos,^b J.M.F. dos Santos,^b L. Seguí,^c L. Serra,^a D. Shuman,^d A. Simón,^a
C. Sofka,^o M. Sorel,^a J.F. Toledo,^d A. Tomás,^c J. Torrent,ⁿ Z. Tsamalaidze,^f
J.F.C.A. Veloso,^g J.A. Villar,^c R. Webb,^o J.T. White,^o N. Yahlali^a

 ^a Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia, Spain
 ^b Departamento de Fisica, Universidade de Coimbra Bua Larga 2001 516 Coimbra Portugal

EXPERIMENTAL SENSITIVITY

$$\widehat{S}(m_{\beta\beta}) \propto \sqrt{1/\varepsilon} \left(\frac{b \ \Delta E}{M \ t}\right)^{1/4}$$

We define the sensitivity as the smallest (average) signal greater than or equal to a background fluctuation of a chosen significance level. Compute that upper limit using Feldman-Cousins, as described in arXiv:1010.5112.

ENERGY RESOLUTION

NEXT-DBDM: ~0.5% FWHM

NEXT-DEMO: ~0.8% FWHM

NEXT-100: 0.5–1.0% FWHM @ Q value of Xe-136

EFFICIENCY & BACKGROUND RATE

- 1. Simulate signal events uniformly distributed in the xenon gas.
- 2. Simulate background events from all detector elements. For a given material, probability of generation proportional to the mass of the volume.
- 3. Analyze events to decide whether they are signal or background. Selection criteria chosen taking into account the figure of merit $\varepsilon/\sqrt{b} \Delta E$
- Fraction of signal events passing all cuts = efficiency.
 Fraction of background events passing all cuts = rejection factor.
- 5. Multiply rejection factor by total activity of the element to obtain its contribution to the background rate of NEXT-100.

THE NEXT-100 DETECTOR...

...AND ITS GEANT4 COUNTERPART

Ø

THE BAD GUYS (1)

Decay of Bi-214 followed by emission of high-energy gammas. In particular, one at 2448 keV very close to Q value.

THE BAD GUYS (2)

Decay of Tl-208 followed by the emission of a gamma of 2615 keV.

THE TOPOLOGICAL SIGNATURE

Veto of effectively all charged backgrounds entering the detector (left). High-energy gammas have a long interaction length (>3 m) in HPXe.

THE TOPOLOGICAL SIGNATURE

THE TOPOLOGICAL SIGNATURE

Energy deposition pattern (dE/dx) used to distinguish single electrons from double beta decay events.

NUMBER OF TRACKS

	1 track	2 tracks	3 tracks	More	
Signal	0.755	0.168	0.058	0.020	
Tl-208	0.042	0.340	0.315	0.303	
Bi-214	0.150	0.323	0.280	0.248	

ENERGY REGION OF INTEREST

SELECTION CUTS

Selection cut	Fraction of events				
	etaeta 0 u	etaeta 2 u	$^{214}\mathrm{Bi}$	$^{208}\mathrm{Tl}$	
$E \in (2.3, 2.6) \text{ MeV}$	0.776	3.31×10^{-6}	1.52×10^{-4}	8.02×10^{-3}	
Fiducial	0.678	2.95×10^{-6}	1.13×10^{-4}	4.77×10^{-3}	
Single track	0.508	2.27×10^{-6}	1.36×10^{-5}	8.44×10^{-4}	
$\mathrm{d}E/\mathrm{d}x$	0.381	1.70×10^{-6}	1.36×10^{-6}	8.10×10^{-5}	
ROI					
0.5% FWHM	0.311	3.24×10^{-12}	1.23×10^{-7}	3.23×10^{-7}	
1.0% FWHM	0.315	3.57×10^{-11}	3.69×10^{-7}	5.40×10^{-7}	

RADIOACTIVE BUDGET

#	Material	Supplier	Technique	Unit	²³⁸ U	²²⁶ Ra	²³² Th	²²⁸ Th	²³⁵ U	⁴⁰ K	⁶⁰ Co	¹³⁷ Cs
	Shielding				in in		it is the second				1 - 1 - 1	
1	Pb	Cometa	GDMS	mBq/kg	0.37		0.073			<0.31	de l'and	
2	Pb	Mifer	GDMS	mBq/kg	<1.2		<0.41			0.31		
3	Pb	Mifer	GDMS	mBq/kg	0.33		0.10			1.2		
4	Pb	Tecnibusa	GDMS	mBq/kg	0.73		0.14			0.91		
5	Pb	Tecnibusa	Ge	mBq/kg	<94	<2.0	<3.8	<4.4	<30	<2.8	< 0.2	< 0.8
6	Pb	Tecnibusa	Ge	mBq/kg	<57	<1.9	<1.7	<2.8	<22	<1.7	<0.1	<0.5
7	Cu (ETP)	Sanmetal	GDMS	mBq/kg	< 0.062		< 0.020					
8	Cu (C10100)	Luvata (hot rolled)	GDMS	mBq/kg	< 0.012		< 0.0041			0.061		
9	Cu (C10100)	Luvata (cold rolled)	GDMS	mBq/kg	< 0.012		< 0.0041			0.091		
10	Cu (C10100)	Luvata (hot+cold rolled)	Ge	mBq/kg		<7.4	<0.8	<4.3		<18	<0.8	<1.2
	Vessel							Ne zier		· 23		
11	Ti	SMP	Ge	mBq/kg	<233	<5.7	<8.8	<9.5	3.4±1.0	<22	<3.3	<5.2
12	Ti	SMP	Ge	mBq/kg	<361	<6.6	<11	<10	<8.0	<15	<1.0	<1.8
13	Ti	Ti Metal Supply	Ge	mBq/kg	<14	< 0.22	<0.5	3.6±0.2	$0.43{\pm}0.08$	<0.6	< 0.07	< 0.07
14	304L SS	Pfeiffer	Ge	mBq/kg		14.3 ± 2.8	9.7±2.3	16.2 ± 3.9	3.2±1.1	<17	11.3 ± 2.7	<1.6
15	316Ti SS	Nironit, 10-mm-thick	Ge	mBq/kg	<21	< 0.57	<0.59	<0.54	<0.74	< 0.96	2.8 ± 0.2	< 0.12
16	316Ti SS	Nironit, 15-mm-thick	Ge	mBq/kg	<25	<0.46	<0.69	<0.88	<0.75	<1.0	4.4 ± 0.3	< 0.17
17	316Ti SS	Nironit, 50-mm-thick	Ge	mBq/kg	67±22	<1.7	2.1 ± 0.4	2.0 ± 0.7	$2.4{\pm}0.6$	<2.5	4.2±0.3	<0.6
18	Inconel 625	Mecanizados Kanter	Ge	mBq/kg	<120	<1.9	<3.4	<3.2	<4.6	<3.9	<0.4	<0.6
19	Inconel 718	Mecanizados Kanter	Ge	mBq/kg	309±78	<3.4	<5.1	<4.4	15.0±1.9	<13	<1.4	<1.3
	HV, EL components					1. State 1.						
20	PEEK	Sanmetal	Ge	mBq/kg		36.3±4.3	14.9 ± 5.3	11.0 ± 2.4	<7.8	8.3±3.0	<3.3	<2.6
21	Polyethylene	IN2 Plastics	Ge	mBq/kg	<140	<1.9	<3.8	<2.7	<1.0	<8.9	<0.5	<0.5
22	Semitron ES225	Quadrant EPP	Ge	mBq/kg	<101	<2.3	<2.0	<1.8	1.8 ± 0.3	513±52	<0.5	<0.6
23	SMD resistor	Farnell	Ge	mBq/pc	2.3 ± 1.0	0.16±0.03	$0.30 {\pm} 0.06$	$0.30 {\pm} 0.05$	< 0.05	$0.19{\pm}0.08$	< 0.02	< 0.03
24	SM5D resistor	Finechem	Ge	mBq/pc	0.4±0.2	0.022 ± 0.007	7 < 0.023	<0.016	0.012 ± 0.003	50.17±0.07	< 0.005	< 0.005
	Energy, tracking planes											
25	Kapton-Cu PCB	LabCircuits	Ge	mBq/cm ²	< 0.26	< 0.014	< 0.012	< 0.008	< 0.002	< 0.040	< 0.002	< 0.002
26	Cuflon	Polyflon	Ge	mBq/kg	<33	<1.3	<1.1	<1.1	<0.6	4.8±1.1	<0.3	< 0.3
27	Bonding films	Polyflon	Ge	mBq/kg	1140 ± 300	487±23	79.8±6.6	66.0 ± 4.8	60.0 ± 5.5	832 ± 87	<4.4	<3.8
28	FFC/FCP connector	Hirose	Ge	mBq/pc	<50	4.6±0.7	6.5±1.2	6.4±1.0	< 0.75	3.9±1.4	< 0.2	< 0.5
29	P5K connector	Panasonic	Ge	mBq/pc	<42	6.0±0.9	9.5±1.7	9.4±1.4	< 0.95	4.1±1.5	< 0.2	<0.8

System	Activity [mBq]		Rejectio	n factor	Backg. rate $[10^{-3} \text{ ckky}]$		
	²¹⁴ Bi	$^{208}\mathrm{Tl}$	²¹⁴ Bi	²⁰⁸ Tl	²¹⁴ Bi	$^{208}\mathrm{Tl}$	
Pressure vessel							
Total	560.5	282.5	4.00×10^{-10}	4.80×10^{-9}	0.0032	0.0194	
Energy plane				and states from			
R11410-10 PMTs	96.6	121.8	$4.12\!\times\!10^{-8}$	$1.56\!\times\!10^{-7}$	0.0142	0.0145	
Enclosures	25.4	2.5	$2.15\!\times\!10^{-8}$	1.03×10^{-7}	0.0008	0.0004	
Shapphire windows	18.6	2.6	1.09×10^{-7}	$2.77\!\times\!10^{-7}$	0.0103	0.0290	
Support plate	4.1	0.4	$2.11\!\times\!10^{-8}$	$1.32\!\times\!10^{-7}$	0.0008	0.0012	
Total	—			—			
Tracking plane							
Dice boards	30.0	26.8	1.23×10^{-7}	$3.23\!\times\!10^{-7}$	0.0527	0.1237	
Total	_	—		—			
Field cage							
Barrel	29.6	6.5	$1.14\!\times\!10^{-7}$	$2.72\!\times\!10^{-7}$	0.0481	0.0252	
Total	_	—		—			
Shielding							
Outer (Pb)							
Inner (Cu)	92.1	9.2	1.26×10^{-8}	$7.87\!\times\!10^{-8}$	0.0166	0.0139	
Total							

BACKGROUND RATE

System	Bi-214 (10 ⁻³ ckky)	Tl-208 (10 ⁻³ ckky)	Total (10 ⁻³ ckky)
Vessel	<0.01-0.01	0.02-0.03	0.02-0.04
Energy plane	0.05-0.17	0.03-0.28	0.08-0.45
Tracking plane	0.05-0.10	0.12-0.13	0.17-0.23
Inner shielding	0.02-0.03	0.01-0.01	0.03-0.04
Field cage	0.05-0.09	0.03-0.03	0.08-0.12
Total	0.18-0.40	0.21-0.48	0.38-0.88

THE COMPETITION

Experiment	M (kg)	enrichment (%)	efficiency (%)	resolution (% FWHM)	b (10 ⁻³ ckky)
EX0-200	110	81	52	3.9	1.5
KamLAND-Zen	330	91	62	9.9	1.0
NEXT-100	100	91	31	0.5-1.0	0.4-0.9

THE PHYSICS LANDSCAPE

SUMMARY

- Detailed background model developed with detector simulation.
- Predicted a signal efficiency of about 31% and a background rate between 0.4–0.9 \times 10⁻³ cts/keV/kg/yr with standard set of selection cuts.
- Several contributions to the background still to be determined (tracking plane, PMT bases, field cage).