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TUTORIAL No. 1 
 

FLUID FLOW THEORY 
 
In order to complete this tutorial you should already have completed level 1 or have a 
good basic knowledge of fluid mechanics equivalent to the Engineering Council part 1 
examination 103. 
 
 
 
 
When you have completed this tutorial, you should be able to do the following. 
 

 Explain the meaning of viscosity. 
 

 Define the units of viscosity. 
 

 Describe the basic principles of viscometers. 
 

 Describe non-Newtonian flow 
 

 Explain and solve problems involving laminar flow though pipes and 
between parallel surfaces. 

 
 Explain and solve problems involving drag force on spheres. 

 
 Explain and solve problems involving turbulent flow. 

 
 Explain and solve problems involving friction coefficient. 

 
 

 
 
 
Throughout there are worked examples, assignments and typical exam questions. You 
should complete each assignment in order so that you progress from one level of 
knowledge to another. 
 
Let us start by examining the meaning of viscosity and how it is measured. 
 
 



1.  VISCOSITY
1.1 BASIC THEORY 
 
Molecules of fluids exert forces of attraction on each other. In liquids this is strong enough to keep the 
mass together but not strong enough to keep it rigid. In gases these forces are very weak and cannot hold 
the mass together. 
 
When a fluid flows over a surface, the layer next to the surface may become attached to it (it wets the 
surface). The layers of fluid above the surface are moving so there must be shearing taking place between 
the layers of the fluid. 

Fig.1.1 
 
Let us suppose that the fluid is flowing over a flat surface in laminated layers from left to right as shown 
in figure 1.1. 
 
y is the distance above the solid surface (no slip surface) 
L is an arbitrary distance from a point upstream. 
dy is the thickness of each layer. 
dL is the length of the layer. 
dx is the distance moved by each layer relative to the one below in a corresponding time dt. 
u is the velocity of any layer. 
du is the increase in velocity between two adjacent layers. 
 
Each layer moves a distance dx in time dt relative to the layer below it. The ratio dx/dt must be the 
change in velocity between layers so du = dx/dt. 
 
When any material is deformed sideways by a (shear) force acting in the same direction, a shear stress τ 
is produced between the layers and a corresponding shear strain γ is produced. Shear strain is defined as 
follows. 
 

dy
dx

deformed beinglayer   theofheight 
ndeformatio sideways

==γ  

 
The rate of shear strain is defined as follows. 
 

dy
du

dy dt
dx

dt takentime
strainshear 

==
γ

==γ&  

 
It is found that fluids such as water, oil and air, behave in such a manner that the shear stress between 
layers is directly proportional to the rate of shear strain. 
 

γ=τ & constant x  
Fluids that obey this law are called NEWTONIAN FLUIDS. 
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It is the constant in this formula that we know as the dynamic viscosity of the fluid. 
 

  DYNAMIC VISCOSITY µ = 
du
dy

shear of rate 
stressshear 

τ=
γ
τ

=
&

 

 
 

FORCE BALANCE AND VELOCITY DISTRIBUTION 
 
A shear stress τ exists between each layer and this increases by dτ over each layer. The pressure 
difference between the downstream end and the upstream end is dp. 
 
The pressure change is needed to overcome the shear stress. The total force on a layer must be zero so 
balancing forces on one layer (assumed 1 m wide) we get the following. 
 

dL
dp

dy
d

0dL d dy  dp

−=
τ

=τ+
 

 
It is normally assumed that the pressure declines uniformly with distance downstream so the pressure 

gradient  
dL
dp

is assumed constant. The minus sign indicates that the pressure falls with distance. 

Integrating between the no slip surface (y = 0) and any height y we get 

 

)1.1....(..........2

2

dy
ud

dL
dp

dy
dy
dud

dy
d

dL
dp

µ

µ
τ

=−
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Integrating twice to solve u we get the following. 

BAyu
dL
dp

2
y

A
dy
du

dL
dpy

2

++µ=−

+µ=−
 

 
A and B are constants of integration that should be solved based on the known conditions 
(boundary conditions). For the flat surface considered in figure 1.1 one boundary condition is 
that u = 0 when y = 0 (the no slip surface). Substitution reveals the following. 
 
0 = 0 +0 +B   hence B = 0 
 
At some height δ above the surface, the velocity will reach the mainstream velocity uo. This 
gives us the second boundary condition u = uo when y = δ.  
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Substituting we find the following. 
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δ+µ=
δ

−

o

o
2

o

o

2

u
dL
dp
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hence    
u

dL
dp

2
A

Au
dL
dp
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Plotting u against y gives figure 1.2. 
 
BOUNDARY LAYER. 
 
The velocity grows from zero at the surface to a maximum at height δ. In theory, the value of δ 
is infinity but in practice it is taken as the height needed to obtain 99% of the mainstream 
velocity. This layer is called the boundary layer and δ is the boundary layer thickness. It is a 
very important concept and is discussed more fully in later work. The inverse gradient of the 
boundary layer is du/dy and this is the rate of shear strain γ. 

 
Fig.1.2 
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1.2. UNITS of VISCOSITY 
 
1.2.1  DYNAMIC VISCOSITY µ 
 
The units of dynamic viscosity µ are N s/m2. It is normal in the international system 
(SI) to give a name to a compound unit. The old metric unit was a dyne.s/cm2 and this 
was called a POISE after Poiseuille. The SI unit is related to the Poise as follows. 
 
10 Poise = 1 Ns/m2      which  is  not  an  acceptable  multiple.  Since, however,  1 Centi 
Poise (1cP) is 0.001 N s/m2 then the cP is the accepted SI unit. 
 

1cP = 0.001 N s/m2. 
 

The symbol  η is also commonly used for dynamic viscosity. 
 
There are other ways of expressing viscosity and this is covered next. 
 
1.2.2 KINEMATIC VISCOSITY ν 
 
This is defined as :  ν = dynamic viscosity /density 
 

ν =  µ/ρ 
 

The basic units are m2/s. The old metric unit was the cm2/s and this was called the 
STOKE after the British scientist. The SI unit is related to the Stoke as follows. 
 
1 Stoke (St) = 0.0001 m2/s and is not an acceptable SI multiple. The centi Stoke 
(cSt),however, is 0.000001 m2/s and this is an acceptable multiple. 
 

1cSt = 0.000001 m2/s = 1 mm2/s 
 

1.2.3 OTHER UNITS 
 
Other units of viscosity have come about because of the way viscosity is measured. For 
example REDWOOD SECONDS comes from the name of the Redwood viscometer. 
Other units are Engler Degrees, SAE numbers and so on. Conversion charts and 
formulae are available to convert them into useable engineering or SI units. 
 
1.2.4 VISCOMETERS
 
The measurement of viscosity is a large and complicated subject. The principles rely on 
the resistance to flow or the resistance to motion through a fluid. Many of these are 
covered in British Standards 188. The following is a brief description of some types. 
 
  



U TUBE VISCOMETER
 

The fluid is drawn up into a reservoir and allowed to 
run through a capillary tube to another reservoir in the 
other limb of the U tube.  
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The time taken for the level to fall between the marks is 
converted into cSt by  multiplying the time by the 
viscometer constant.  

ν = ct 
 
The constant c should be accurately obtained by 
calibrating the viscometer against a master viscometer 
from a standards laboratory. 
 

 
 

 Fig.1.3 
 
REDWOOD VISCOMETER 
 

This works on the principle of allowing the 
fluid to run through an orifice of very accurate 
size in an agate block.  
 
50 ml of fluid are allowed to fall from the level 
indicator into a measuring flask. The time 
taken is the viscosity in Redwood seconds. 
There are two sizes giving Redwood No.1 or 
No.2 seconds. These units are converted into 
engineering units with tables.  
 
 
 

 Fig.1.4 
 
 
 
 
 
 



FALLING SPHERE VISCOMETER 
 

 

This viscometer is covered in BS188 and is based on measuring 
the time for a small sphere to fall in a viscous fluid from one 
level to another. The buoyant weight of the sphere is balanced 
by the fluid resistance and the sphere falls with a constant 
velocity. The theory is based on Stokes’ Law and is only valid 
for very slow velocities. The theory is covered later in the 
section on laminar flow where it is shown that the terminal 
velocity (u) of the sphere is related to the dynamic viscosity (µ) 
and the density of the fluid and sphere (ρf and ρs) by the 
formula 
 

µ = F  gd2(ρs -ρf)/18u 
 Fig.1.5 
 
F is a correction factor called the Faxen correction factor, which takes into account a 
reduction in the velocity due to the effect of the fluid being constrained to flow between 
the wall of the tube and the sphere. 
 
ROTATIONAL TYPES
 
There are many types of viscometers, which use the principle that it requires a torque to 
rotate or oscillate a disc or cylinder in a fluid. The torque is related to the viscosity. 
Modern instruments consist of a small electric motor, which spins a disc or cylinder in 
the fluid. The torsion of the connecting shaft is measured and processed into a digital 
readout of the viscosity in engineering units. 
 
You should now find out more details about viscometers by reading BS188, suitable 
textbooks or literature from oil companies. 
 

ASSIGNMENT No. 1 
 
1. Describe the principle of operation of the following types of viscometers. 
 
a.  Redwood Viscometers. 
 
b.  British Standard 188  glass U tube viscometer. 
  
c.  British Standard 188  Falling Sphere Viscometer. 
 
d.  Any form of Rotational Viscometer 
 
Note that this covers the E.C. exam question 6a from the 1987 paper. 
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2.  LAMINAR FLOW THEORY 
 
The following work only applies to Newtonian fluids. 
 
2.1 LAMINAR FLOW 
 
A stream line is an imaginary line with no flow normal to it, only along it. When the flow is 
laminar, the streamlines are parallel and for flow between two parallel surfaces we may consider 
the flow as made up of parallel laminar layers. In a pipe these laminar layers are cylindrical and 
may be called stream tubes. In laminar flow, no mixing occurs between adjacent layers and it 
occurs at low average velocities. 
 
2.2 TURBULENT FLOW 
 
The shearing process causes energy loss and heating of the fluid. This increases with mean 
velocity. When a certain critical velocity is exceeded, the streamlines break up and mixing of 
the fluid occurs. The diagram illustrates Reynolds coloured ribbon experiment. Coloured dye is 
injected into a horizontal flow. When the flow is laminar the dye passes along without mixing 
with the water. When the speed of the flow is increased turbulence sets in and the dye mixes 
with the surrounding water. One explanation of this transition is that it is necessary to change 
the pressure loss into other forms of energy such as angular kinetic energy as indicated by small 
eddies in the flow.  

Fig.2.1 
 
2.3 LAMINAR AND TURBULENT BOUNDARY LAYERS 
 
In chapter 2 it was explained that a boundary layer is the layer in which the velocity grows 
from zero at the wall (no slip surface) to 99% of the maximum and the thickness of the layer is 
denoted δ. When the flow within the boundary layer becomes turbulent, the shape of the 
boundary layers waivers and when diagrams are drawn of turbulent boundary layers, the mean 
shape is usually shown. Comparing a laminar and turbulent boundary layer reveals that the 
turbulent layer is thinner than the laminar layer. 

Fig.2.2 
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2.4 CRITICAL VELOCITY - REYNOLDS NUMBER 
 
When a fluid flows in a pipe at a volumetric flow rate Q m3/s the average velocity is defined 

A
Qu m =   A is the cross sectional area. 

The Reynolds number is defined as 
ν

=
µ

ρ
=

DuDuR mm
e  

If you check the units of Re you will see that there are none and that it is a dimensionless 
number. You will learn more about such numbers in a later section. 
 
Reynolds discovered that it was possible to predict the velocity or flow rate at which the 
transition from laminar to turbulent flow occurred for any Newtonian fluid in any pipe. He also 
discovered that the critical velocity at which it changed back again was different. He found that 
when the flow was gradually increased, the change from laminar to turbulent always occurred at 
a Reynolds number of 2500 and when the flow was gradually reduced it changed back again at a 
Reynolds number of 2000. Normally, 2000 is taken as the critical value. 
 
 
WORKED EXAMPLE 2.1 
 
Oil of density 860 kg/m3 has a kinematic viscosity of 40 cSt. Calculate the critical velocity 
when it flows in a pipe 50 mm bore diameter. 
 
SOLUTION 
 

m/s 1.6
0.05

2000x40x10
D
νR

u

ν
DuR

6
e

m

m
e

===

=

−
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2.5 DERIVATION OF POISEUILLE'S EQUATION for LAMINAR FLOW 
 
Poiseuille did the original derivation shown below which relates pressure loss in a pipe to the 
velocity and viscosity for LAMINAR FLOW. His equation is the basis for measurement of 
viscosity hence his name has been used for the unit of viscosity. Consider a pipe with laminar 
flow in it. Consider a stream tube of length ∆L at radius r and thickness dr. 
 
 

Fig.2.3 
 

y is the distance from the pipe wall.   
dr
du

−=−=−=
dy
dudr     dyr       Ry  

The shear stress on the outside of the stream tube is τ. The force (Fs) acting from right 
to left is due to the shear stress and is found by multiplying τ by the surface area. 
 
Fs = τ x 2πr ∆L 

For a Newtonian fluid ,
dr
du

dy
du

µ−=µ=τ . Substituting for τ we get the following. 

dr
duLr2- Fs µ∆π=  

The pressure difference between the left end and the right end of the section is ∆p. The 
force due to this (Fp) is ∆p x circular area of radius r. 
 
Fp = ∆p x πr2

rdr
L2

pdu

rp
dr
duL2-  have  weforces Equating 2

∆
∆

−=

∆=∆

µ

πµπr
 

In order to obtain the velocity of the streamline at any radius r we must integrate between the 
limits u = 0  when r = R and u = u when r = r. 

( )

( )22

22

0

L4
p
4

L2
p-du

rRu

Rr
L

pu

rdr
r

R

u

−
∆

=

−
∆
∆

−=

∆
∆

= ∫∫

µ

µ

µ

 

©  D.J.DUNN      
 10  



This is the equation of a Parabola so if the equation is plotted to show the boundary layer, it is 
seen to extend from zero at the edge to a maximum at the middle. 

  
Fig.2.4 

For maximum velocity put r = 0 and we get  
L

pR
∆

∆
=

µ4
u

2

1  

The average height of a parabola is half the maximum value so the average velocity is  

 
L

pR
∆

∆
=

µ8
u

2

m  

Often we wish to calculate the pressure drop in terms of diameter D. Substitute R=D/2 and 
rearrange. 

    2

32
D

Lu
p m∆
=∆

µ
 

The volume flow rate is average velocity x cross sectional area. 
 

    
L
pD

L
pR

L
pRRQ

∆
∆

=
∆
∆

=
∆
∆

=
µ

π
µ

π
µ

π
12888

4422

  

This is often changed to give the pressure drop as a friction head. 
 
The friction head for a length L is found from hf =∆p/ρg  

 2

32
gD

Lu
h m

f ρ
µ

=  

 
This is Poiseuille's equation that applies only to laminar flow. 
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 WORKED EXAMPLE 2.2 
 
 A capillary tube is 30 mm long and 1 mm bore. The head required to produce a 

flow rate of 8 mm3/s is 30 mm. The fluid density is 800 kg/m3. 
 Calculate the dynamic and kinematic viscosity of the oil. 
 
 SOLUTION 
 
 Rearranging Poiseuille's equation we get  

 

cSt 30.11or   s/m10 x 11.30
800
0241.0

cP 24.1or  s/m N 0241.0
0.01018 x 0.03 x 32

0.001 x 9.81 x 800 x 0.03

mm/s 18.10
785.0
8

A
Qu

mm 785.0
4
1 x 

4
dA

Lu32
gDh

26-

2

m

2
22

m

2
f

==
ρ
µ

=ν

==µ

===

=
π

=
π

=

ρ
=µ

 

  
 
 
 WORKED EXAMPLE No.2.3 
 
 Oil flows in a pipe 100 mm bore with a Reynolds number of 250. The dynamic 

viscosity is 0.018 Ns/m2. The density is 900 kg/m3. 
 
 Determine the pressure drop per metre length, the average velocity and the radius at 

which it occurs. 
 
 SOLUTION 
 Re=ρum D/µ. 
 Hence um  = Re µ/ ρD 
  um = (250 x 0.018)/(900 x 0.1) = 0.05 m/s 
 
  ∆p =  32µL um /D2 
  ∆p = 32 x 0.018 x 1 x 0.05/0.12 
  ∆p= 2.88 Pascals. 
 
  u = {∆p/4Lµ}(R2 - r2)   which is made equal to the average velocity 0.05 m/s 
 
  0.05 = (2.88/4 x 1 x 0.018)(0.052 - r2) 
  r = 0.035 m or 35.3 mm. 
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2.6. FLOW BETWEEN FLAT PLATES 
 
Consider a small element of fluid moving at velocity u with a length dx and height dy at 

distance y above a flat surface. The shear stress 
acting on the element increases by dτ in the y 
direction and the pressure decreases by dp in the x 

direction. It was shown earlier that 2

2

dy
ud

dx
dp µ=−  

It is assumed that dp/dx does not vary with y so it 
may be regarded as a fixed value in the following 
work. 

 Fig.2.5   

)6.2..(..........
2

y- again      gIntegratin

dx
dp -  once gIntegratin

2

ABAyu
dx
dp

A
dy
duy

++=

+=

µ

µ
 

A and B are constants of integration. The solution of the equation now depends upon 
the boundary conditions that will yield A and B.  
 

WORKED EXAMPLE No.2.4 
 
Derive the equation linking velocity u and height y at a given point in the x direction 
when the flow is laminar between two stationary flat parallel plates distance h apart. Go 
on to derive the volume flow rate and mean velocity. 
 
SOLUTION 
When a fluid touches a surface, it sticks to it and moves with it. The velocity at the flat 
plates is the same as the plates and in this case is zero. The boundary conditions are 
hence 
 u = 0 when y = 0 
Substituting into equation 2.6A yields that B = 0 
 u=0 when y=h 
Substituting into equation 2.6A yields that A = (dp/dx)h/2     
Putting this into equation 2.6A yields 
 
 u = (dp/dx)(1/2µ){y2 - hy} 
 
(The student should do the algebra for this). The result is a parabolic distribution similar 
that given by Poiseuille's equation earlier only this time it is between two flat parallel 
surfaces. 
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FLOW RATE 
To find the flow rate we consider flow through a small rectangular slit of width B and 
height dy at height y.  

 
Fig.2.6 

 
The flow through the slit is dQ = u Bdy =(dp/dx)(1/2µ){y2 - hy} Bdy 
 
Integrating between y = 0 and y = h to find Q yields 
 
   Q = -B(dp/dx)(h3/12µ) 
The mean velocity is   um = Q/Area = Q/Bh 

 
hence    um = -(dp/dx)(h2/12µ) 
 
(The student should do the algebra) 
 

 
2.7 CONCENTRIC CYLINDERS 
This could be a shaft rotating in a bush filled with oil or a rotational viscometer. 
Consider a shaft rotating in a cylinder with the gap between filled with a Newtonian 
liquid. There is no overall flow rate so equation 2.A does not apply. 

Due to the stickiness of the fluid, the liquid sticks to 
both surfaces and has a velocity  u = ωRi at the inner 
layer and zero at the outer layer. 

 Fig 2.7 
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If the gap is small, it may be assumed that the change in the velocity across the gap 
changes from u to zero linearly with radius r. 
 
  τ = µ du/dy 
 
But since the change is linear du/dy = u/(Ro-Ri) = ω Ri /(Ro-Ri) 
 
τ = µ ω Ri /(Ro-Ri) 
 

io

i

io

i
i

RR
hR

FrT

RR
hR

hRF

−
==

=
−

==

=

µωπ

µωπ
τπ

3
i

2

2

R x F  Torque

2
2

areasurfacex stressshear  Fcylinder on  forceShear 

 

In the case of a rotational viscometer we rearrange so that 
( )

ωπ
µ

hR
RRT

i

o
32
−

=

In reality, it is unlikely that the velocity varies linearly with radius and the bottom of the 
cylinder would have an affect on the torque. 
 
2.8 FALLING SPHERES 
 
This theory may be applied to particle separation in tanks and to a falling sphere 
viscometer. When a sphere falls, it initially accelerates under the action of gravity. The 
resistance to motion is due to the shearing of the liquid passing around it. At some 
point, the resistance balances the force of gravity and the sphere falls at a constant 
velocity. This is the terminal velocity. For a body immersed in a liquid, the buoyant 
weight is W and this is equal to the viscous resistance R when the terminal velocity is 
reached. 
 
R = W = volume x density difference x gravity 

( )
6

3
fsgd

WR
ρρπ −

==  

ρs = density of the sphere material 
ρf = density of fluid 
d =  sphere diameter 
 
The viscous resistance is much harder to derive from first principles and this will not be 
attempted here. In general, we use the concept of DRAG and define the DRAG 
COEFFICIENT as 
 

Area projected x pressure Dynamic
force Resistance

=DC  
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π

ρ

u
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u
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Research shows the following relationship between CD and Re for a sphere. 

 
Fig. 2.8 

For Re<0.2 the flow is called Stokes flow and Stokes showed that R = 3πdµu hence 
CD=24µ/ρfud = 24/Re
 
For 0.2 < Re < 500 the flow is called Allen flow and CD=18.5Re

-0.6

 
For 500 < Re < 105 CD is constant   CD = 0.44 
 
An empirical formula that covers the range  0.2 < Re < 105 is as follows. 
 

4.0
1

624
+

+
+=

ee
D RR

C  

 
For a falling sphere viscometer, Stokes flow applies. Equating the drag force and the 
buoyant weight we get 
 
 3πdµu = (πd3/6)(ρs - ρf) g 
 
 µ = gd2(ρs - ρf)/18u   for a falling sphere vicometer 
 
The terminal velocity for Stokes flow is u = d2g(ρs - ρf)18µ    
 
This formula assumes a fluid of infinite width but in a falling sphere viscometer, the 
liquid is squeezed between the sphere and the tube walls and additional viscous 
resistance is produced. The Faxen correction factor F is used to correct the result. 
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2.9 THRUST BEARINGS 
 
Consider a round flat disc of radius R rotating at angular velocity ω rad/s on top of a flat 
surface and separated from it by an oil film of thickness t. 

Fig.2.9 
 
Assume the velocity gradient is linear in which case  du/dy = u/t = ωr/t at any radius r. 

32t
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2
2
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µπω
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=

==

==

=

==

∫

 

 
There are many variations on this theme that you should be prepared to handle. 
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2.10   MORE ON FLOW THROUGH PIPES 
 
Consider an elementary thin cylindrical layer that makes an element of flow within a 
pipe. The length is δx , the inside radius is r and the radial thickness is dr. The pressure 
difference between the ends is δp and the shear stress on the surface increases by dτ 
from the inner to the outer surface. The velocity at any point is u and the dynamic 
viscosity is µ. 

 
Fig.2.10 

The pressure force acting in the direction of flow is {π(r+dr)2-πr2}δp 
The shear force opposing is   {(τ+δτ)(2π)(r+dr) - τ2πr}δx 
Equating, simplifying and ignoring the product of two small quantities we have the 
following result. 
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n.integratio ofconstant another  is B where

)......(..........ln
4

get again we gIntegratin
2

BBrA
x
pru ++−=
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δ

µ
 

Equations (A) and (B) may be used to derive Poiseuille's equation or it may be used to 
solve flow through an annular passage. 
 
2.10.1   PIPE 
 
At the middle r=0 so from equation (A) it follows that  A=0 
At the wall, u=0 and r=R. Putting this into equation B yields 

{ } again.equation  s'Poiseuilleis  thisand  
4
1

44

4

0A      whereln
4

0

22
22

2

2

rR
x
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2.10.2 ANNULUS 

Fig.2.11 
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For given values the velocity distribution is similar to this. 

Fig. 2.12 
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ASSIGNMENT 2 
 
1. Oil flows in a pipe 80 mm bore diameter with a mean velocity of 0.4 m/s. The 

density is 890 kg/m3 and the viscosity is 0.075 Ns/m2. Show that the flow is 
laminar and hence deduce the pressure loss per metre length. 

 (150 Pa per metre). 
 
2.  Oil flows in a pipe 100 mm bore diameter with a Reynolds’ Number of 500. The 

density is 800 kg/m3. Calculate the velocity of a streamline at a radius of 40 mm. 
The viscosity µ = 0.08 Ns/m2.   (0.36 m/s) 

 
3. A liquid  of dynamic viscosity 5 x 10-3 Ns/m2 flows through a capillary of 

diameter 3.0 mm under a pressure gradient  of 1800 N/m3. Evaluate the 
volumetric flow rate, the mean velocity, the centre line velocity and the radial 
position at which the velocity is equal to the mean velocity.  

 (uav = 0.101 m/s, umax = 0.202 m/s   r = 1.06 mm) 
 
4.  Similar to Q6 1998 
 
a. Explain the term Stokes flow and terminal velocity. 
 
b. Show that a spherical particle with Stokes flow has a terminal velocity given by

 u = d2g(ρs - ρf)/18µ 
Go on to show that CD=24/Re

 
c. For spherical particles, a useful empirical formula relating the drag coefficient 

and the Reynold’s number is 

4.0
1

624
+

+
+=

ee
D RR

C  

 Given ρf = 1000 kg/m3, µ= 1 cP and ρs= 2630 kg/m3 determine the maximum 
size of spherical particles that will be lifted upwards by a vertical stream of 
water moving at 1 m/s.  

 
d. If the water velocity is reduced to 0.5 m/s, show that particles with a diameter of 

less than 5.95 mm will fall downwards. 
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5. Similar to Q5 1998 
 A simple fluid coupling consists of two parallel round discs of radius R separated 

by a a gap h. One disc is connected to the input shaft and rotates at ω1 rad/s. The 
other disc is connected to the output shaft and rotates at ω2 rad/s. The discs are 
separated by oil of dynamic viscosity µ and it may be assumed that the velocity 
gradient is linear at all radii. 

 

 Show that the Torque at the input shaft is given by 
( )

h
DT

32
21

4 ωωµπ −
=  

 The input shaft rotates at 900 rev/min and transmits 500W of power. Calculate the 
output speed, torque and power. (747 rev/min, 5.3 Nm and 414 W) 

 Show by application of max/min theory that the output speed is half the input 
speed when maximum output power is obtained. 

 
6. Show that for fully developed laminar flow of a fluid of viscosity µ between 

horizontal parallel plates a distance h apart, the mean velocity um is related to the 
pressure gradient dp/dx by um = - (h2/12µ)(dp/dx) 

 
 Fig.2.11  shows a flanged pipe joint of internal diameter di containing viscous 

fluid of viscosity µ at gauge pressure p. The flange has an outer diameter do and is 
imperfectly tightened so that there is a narrow gap of thickness h. Obtain an 
expression for the leakage rate of the fluid through the flange. 

 
Fig.2.13 

 
 Note that this is a radial flow problem and B in the notes becomes 2πr and dp/dx 

becomes -dp/dr.  An integration between inner and outer radii will be required to 
give flow rate Q in terms of pressure drop p. 

 
 The answer is  Q = (2πh3p/12µ)/{ln(do/di)} 
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3. TURBULENT FLOW 

 
3.1 FRICTION COEFFICIENT 
 
The friction coefficient is a convenient idea that can be used to calculate the pressure drop in a 
pipe. It is defined as follows. 

  
Pressure Dynamic

StressShear  WallCf =  

 
3.1.1 DYNAMIC PRESSURE 
 
Consider a fluid flowing with mean velocity um. If the kinetic energy of the fluid is converted 
into flow or fluid energy, the pressure would increase. The pressure rise due to this conversion 
is called the dynamic pressure. 
 
KE = ½ mum

2

 
Flow Energy = p Q  Q is the volume flow rate and ρ = m/Q 
 
Equating   ½ mum

2 = p Q p = mu2/2Q   =  ½ ρ um
2

 
3.1.2 WALL SHEAR STRESS     τo 
 
The wall shear stress is the shear stress in the layer of fluid next to the wall of the pipe. 

Fig.3.1 

The shear stress in the layer next to the wall is 
wall

o dy
du

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= µτ  

The shear force resisting flow is LDF os πτ=  

The resulting pressure drop produces a force of 
4

2DpFp
π∆

=   

Equating forces gives 
L
pD

o 4
∆

=τ   
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3.1.3 FRICTION COEFFICIENT for LAMINAR FLOW 

  

2
m

f uL4
pD2

Pressure Dynamic
StressShear  WallC

ρ
∆

==  

From Poiseuille’s equation 2
m

D
Lu32p µ

=∆  Hence 
e

2
m

22
m

f R
16

Du
16

D
Lu32

uL4
D2C =

ρ
µ

=⎟
⎠
⎞

⎜
⎝
⎛ µ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ

=  

3.1.4 DARCY FORMULA  
 
This formula is mainly used for calculating the pressure loss in a pipe due to turbulent flow but 
it can be used for laminar flow also. 
 
Turbulent flow in pipes occurs when the Reynolds Number exceeds 2500 but this is not a clear 
point so 3000 is used to be sure. In order to calculate the frictional losses we use the concept of 
friction coefficient symbol Cf. This was defined as follows.  
 

2
m

f uL4
pD2

Pressure Dynamic
StressShear  WallC

ρ
∆

==  

Rearranging equation to make ∆p the subject  

  
D2

uLC4p
2
mf ρ

=∆  

This is often expressed as a friction head  hf 

  
gD2
LuC4

g
ph

2
mf

f =
ρ
∆

=  

This is the Darcy formula. In the case of laminar flow, Darcy's and Poiseuille's equations must 
give the same result so equating them gives 

  

em
f

2
m

2
mf

R
16

Du
16C

gD
Lu32

gD2
LuC4

=
ρ

µ
=

ρ
µ

=
   

This is the same result as before for laminar flow. 
 
Turbulent flow may be safely assumed in pipes when the Reynolds’ Number exceeds  
3000. In order to calculate the frictional losses we use the concept of friction coefficient 
symbol  Cf. Note that in older textbooks Cf was written as f but now the symbol f 
represents 4Cf. 

 
3.1.5 FLUID RESISTANCE 
 
Fluid resistance is an alternative approach to solving problems involving losses. The above 
equations may be expressed in terms of flow rate Q by substituting u = Q/A 
 

2

2
f

2
mf

f gDA2
LQC4

gD2
LuC4h ==  Substituting A =πD2/4 we get the following. 

 

2
52

2
f

f RQ
Dg
LQC32h =

π
=   R is the fluid resistance or restriction. 52

32
Dg

LC
R f

π
=  
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If we want pressure loss instead of head loss the equations are as follows. 
 

2
52

2
f

ff RQ
D
LQC32ghp =

π
ρ

=ρ=   R is the fluid resistance or restriction. 52

32
D

LC
R f

π
ρ

=  

 
It should be noted that R contains the friction coefficient and this is a variable with velocity and 
surface roughness so R should be used with care. 
 
 
3.2 MOODY DIAGRAM AND RELATIVE SURFACE ROUGHNESS 
 
In general the friction head is some function of um such that hf = φumn. Clearly for laminar flow, 
n =1 but for turbulent flow n is between 1 and 2 and its precise value depends upon the 
roughness of the pipe surface. Surface roughness promotes turbulence and the effect is shown in 
the following work. 
 
Relative surface roughness is defined as ε = k/D where k is the mean surface roughness and D 
the bore diameter.  
 
An American Engineer called Moody conducted exhaustive experiments and came up with the 
Moody Chart. The chart is a plot of Cf vertically against Re horizontally for various values of ε. 
In order to use this chart you must know two of the three co-ordinates in order to pick out the 
point on the chart and hence pick out the unknown third co-ordinate. For smooth pipes, (the 
bottom curve on the diagram), various formulae have been derived such as those by Blasius and 
Lee. 
 
 BLASIUS Cf = 0.0791 Re

0.25

 
 LEE Cf = 0.0018 + 0.152 Re

0.35. 
 
The Moody diagram shows that the friction coefficient reduces with Reynolds number but at a 
certain point, it becomes constant. When this point is reached, the flow is said to be fully 
developed turbulent flow. This point occurs at lower Reynolds numbers for rough pipes. 
  
A formula that gives an approximate answer for any surface roughness is that given by Haaland. 
 

  
⎪⎭
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⎬
⎫
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Fig. 3.2  CHART



 
 
 WORKED EXAMPLE 3.1 
 
 Determine the friction coefficient for a pipe 100 mm bore with a mean surface roughness of 

0.06 mm when a fluid flows through it with a Reynolds number of 20 000. 
 
 SOLUTION 
 
 The mean surface roughness ε = k/d = 0.06/100 = 0.0006 
 Locate the line for ε = k/d = 0.0006. 
 Trace the line until it meets  the  vertical line at  Re = 20 000. Read of the value of Cf  

horizontally on the left.  Answer Cf = 0.0067.Check using the formula from Haaland. 
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 WORKED EXAMPLE 3.2 
 
 Oil flows in a pipe 80 mm bore with a mean velocity of 4 m/s. The mean surface roughness 

is 0.02 mm and the length is 60 m. The dynamic viscosity is 0.005 N s/m2 and the density 
is 900 kg/m3.  Determine the pressure loss. 

 
 SOLUTION 
 
 Re = ρud/µ = (900 x 4 x 0.08)/0.005 = 57600 
 
 ε= k/d = 0.02/80 = 0.00025 
 
 From the chart Cf = 0.0052 
 
 hf = 4CfLu2/2dg =  (4 x 0.0052 x 60 x 42)/(2 x 9.81 x 0.08) = 12.72 m 
 
 ∆p = ρghf = 900 x 9.81 x 12.72 = 112.32 kPa. 
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ASSIGNMENT 3 
 
1. A pipe is 25 km long and 80 mm bore diameter. The mean surface roughness is 

0.03 mm.  It carries oil of density 825 kg/m3 at a rate of 10 kg/s.  The dynamic 
viscosity is 0.025 N s/m2. 

 
 Determine the friction coefficient using the Moody Chart and calculate the 

friction head. (Ans. 3075 m.) 
 
2.  Water flows in a pipe at 0.015 m3/s. The pipe is 50 mm bore diameter. The 

pressure drop is 13 420 Pa per metre length. The density is 1000 kg/m3 and the 
dynamic viscosity is 0.001 N s/m2. 

 
 
 Determine 
 i.   the wall shear stress (167.75 Pa) 
 ii.  the dynamic pressure (29180 Pa). 
 iii. the friction coefficient (0.00575) 
 iv.  the mean surface roughness (0.0875 mm) 
 
 
3.  Explain briefly what is meant by fully developed laminar flow. The velocity u at any 

radius r in fully developed laminar flow through a straight horizontal pipe of internal 
radius ro is given by 

 
u = (1/4µ)(ro2 - r2)dp/dx 

 
 dp/dx is the pressure gradient in the direction of flow and  µ is the dynamic   viscosity. 
  
 Show that the pressure drop over a length L is given by the following formula. 
 

∆p = 32µLum/D2

 
  The wall skin friction coefficient is defined as Cf = 2τo/( ρum2). 
 
 Show that Cf = 16/Re where Re = ρumD/µ and ρ is the density, um is the mean velocity 

and τo is the wall shear stress. 
 
4. Oil with viscosity 2 x 10-2 Ns/m2 and density 850 kg/m3 is pumped along a straight 

horizontal pipe with a flow rate of 5 dm3/s. The static pressure difference between two 
tapping points 10 m apart is 80 N/m2. Assuming laminar flow determine the following. 

 
  i. The pipe diameter. 
  ii. The Reynolds number. 
 
 Comment on the validity of the assumption that the flow is laminar 
 

 
4. NON-NEWTONIAN FLUIDS 



A Newtonian fluid as discussed so far in this tutorial is a fluid that obeys the law γµµτ &==
dy
du

 

A Non – Newtonian fluid is generally described by the non-linear law  n
y kγττ &+=

τy is known as the yield shear stress and γ& is the rate of shear strain. Figure 4.1 shows the principle forms 
of this equation. 
 
Graph A shows an ideal fluid that has no viscosity and hence has no shear stress at any point. This is 
often used in theoretical models of fluid flow. 
 
Graph B shows a Newtonian Fluid. This is the type of fluid with which this book is mostly concerned, 
fluids such as water and oil. The graph is hence a straight line and the gradient is the viscosity µ. 
 
There is a range of other liquid or semi-liquid materials that do not obey this law and produce strange 
flow characteristics. Such materials include various foodstuffs, paints, cements and so on. Many of these 
are in fact solid particles suspended in a liquid with various concentrations.  
 
Graph C shows the relationship for a Dilatent fluid. The gradient and hence viscosity increases 
with γ&  and such fluids are also called shear-thickening. This phenomenon occurs with some 
solutions of sugar and starches. 
 
Graph D shows the relationship for a Pseudo-plastic. The gradient and hence viscosity reduces 
with γ&  and they are called shear-thinning. Most foodstuffs are like this as well as clay and 
liquid cement..  
 
Other fluids behave like a plastic and require a minimum stress before it shears τy. This is 
plastic behaviour but unlike plastics, there may be no elasticity prior to shearing. 
 
Graph E shows the relationship for a Bingham plastic. This is the special case where the 
behaviour is the same as a Newtonian fluid except for the existence of the yield stress. 
Foodstuffs containing high level of fats approximate to this model (butter, margarine, chocolate 
and Mayonnaise). 
 
Graph F shows the relationship for a plastic fluid that exhibits shear thickening characteristics. 
 
Graph G shows the relationship for a Casson fluid. This is a plastic fluid that exhibits shear-
thinning characteristics. This model was developed for fluids containing rod like solids and is 
often applied to molten chocolate and blood. 

 
Fig.4.1 
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MATHEMATICAL MODELS 
 
The graphs that relate shear stress τ and rate of shear strain γ are based on models or equations. 
Most are mathematical equations created to represent empirical data. 
 
Hirschel and Bulkeley developed the power law for non-Newtonian equations. This is as 
follows. 

n
y Kγ+τ=τ &   K is called the consistency coefficient and n is a power.  

 
In the case of a Newtonian fluid n = 1 and τy = 0 and K = µ  (the dynamic viscosity)  γµ=τ &  
 
For a Bingham plastic, n = 1 and K is also called the plastic viscosity µp. The relationship reduces to  
  γµ+τ=τ &py  

 
For a dilatent fluid, τy = 0 and n>1  
 
For a pseudo-plastic,  τy = 0 and n<1 
 
The model for both is  nKγ=τ &

 
The Herchel-Bulkeley model is as follows.  n

y Kγ+τ=τ &

 
This may be developed as follows. 

1
y

1

app
1

1

pp

   so   0 eshear valu yield no with Fluid aFor 

    so  1 n  plastic Bingham aFor 

iscosity apparent v  thecalled is ratio The    

by  dividing

. viscosityplastic   thecalled is    where as written sometimes    

−

−

−

−

==

+==

+==

+=

==−

=−=−

+=

n
app

y
app

ny
app

ny

n
n

y

n
y

n
y

n
y

K

K

K

K

KK

K

K

γµτ
γ
τ

µ

γ
γ
τ

γ
τµ

µγ
γ
τ

γ
τ

γ
γ
γ

γ
τ

γ
τ

γ

µγµττγττ

γττ

&

&

&
&&

&
&&

&
&

&

&&

&

&&

&

  
The Casson fluid model is quite different in form from the others and is as follows. 

  2
1

2
1

y
2
1

Kγ+τ=τ &  
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THE FLOW OF A PLASTIC FLUID
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Note that fluids with a shear yield 
stress will flow in a pipe as a plug. 
Within a certain radius, the shear stress 
will be insufficient to produce shearing 
so inside that radius the fluid flows as a 
solid plug. Fig. 4.2 shows a typical 
situation for a Bingham Plastic. 

 
 
 

 
Fig.4.2 

 
MINIMUM PRESSURE 
 
The shear stress acting on the surface of the plug is the yield value. Let the plug be diameter d. 
The pressure force acting on the plug is ∆p x πd2/4 
The shear force acting on the surface of the plug is τy x π d L 
Equating we find  ∆p x πd2/4 = τy x π d L 

d = τy x  4 L/∆p   or  ∆p =  τy  x  4 L/d 
 
The minimum pressure required to produce flow must occur when d is largest and equal to the 
bore of the pipe.   ∆p (minimum) =  τy  x  4 L/D 
 
The diameter of the plug at any greater pressure must be given by d = τy x  4 L/∆p    
 
For a Bingham Plastic, the boundary layer between the plug and the wall must be laminar and 
the velocity must be related to radius by the formula derived earlier. 

( ) ( )2222

L16
p

L4
p dDrRu −

∆
=−

∆
=

µµ
 

FLOW RATE 
 
The flow rate should be calculated in two stages. The plug moves at a constant velocity so the 
flow rate for the plug is simply   Qp = u x cross sectional area = u x πd2/4 
 
The flow within the boundary layer is found in the usual way as follows. Consider an 
elementary ring radius r and width dr. 
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The mean velocity as always is defined as um = Q/Cross sectional area. 
 
 



 
 WORKED EXAMPLE  4.1 
 
 The Herchel-Bulkeley model for a non-Newtonian fluid is as follows. .  n

y Kγ+τ=τ &

 
 Derive an equation for the minimum pressure required drop per metre length in a straight 

horizontal pipe that will produce flow. 
 
 Given that the pressure drop per metre length in the pipe is 60 Pa/m and the yield shear 

stress is 0.2 Pa, calculate the radius of the slug sliding through the middle. 
 
       SOLUTION 
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Fig. 3.3 

 
 The pressure difference p acting on the cross sectional area must produce sufficient force to 

overcome the shear stress τ acting on the surface area of the cylindrical slug. For the slug to 
move, the shear stress must be at least equal to the yield value τy. Balancing the forces 
gives the following. 

 
 p x πr2 = τy x 2πrL 
  
 p/L = 2τy /r 
 
 60 = 2 x 0.2/r 
 
 r = 0.4/60 = 0.0066 m or 6.6 mm 

 



 
 WORKED EXAMPLE  4.2 
 
 A Bingham plastic flows in a pipe and it is observed that the central plug is 30 mm 

diameter when the pressure drop is 100 Pa/m. 
 
 Calculate the yield shear stress. 
 
 Given that at a larger radius the rate of shear strain is 20 s-1 and the consistency coefficient 

is  0.6  Pa s, calculate the shear stress. 
 
 SOLUTION 
  
 For a Bingham plastic, the same theory as in the last example applies. 
 
 p/L = 2τy /r 
 100 = 2 τy/0.015 
 τy = 100 x 0.015/2 = 0.75 Pa 
 
 A mathematical model for a Bingham plastic is  
 
 γ+τ=τ &Ky  = 0.75 + 0.6 x 20 = 12.75 Pa 
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 ASSIGNMENT 4 
 
1. Research has shown that tomato ketchup has the following viscous properties at 25oC. 
 
 Consistency coefficient  K = 18.7 Pa sn

 Power n = 0.27 
 Shear yield stress = 32 Pa 
 
 Calculate the apparent viscosity when the rate of shear is 1, 10, 100 and 1000 s-1 and conclude on 

the effect of the shear rate on the apparent viscosity. 
 
 Answers 
  
 γ = 1      µapp = 50.7 
 γ = 10    µapp = 6.682 
 γ = 100   µapp = 0.968 
 γ = 1000 µapp = 0.153 
 
 
2. A Bingham plastic fluid has a viscosity of 0.05 N s/m2 and yield stress of 0.6 N/m2. It flows in a 

tube 15 mm bore diameter and 3 m long. 
 
 (i)   Evaluate the minimum pressure drop required to produce flow. (480 N/m2 ) 
 
 The actual pressure drop is twice the minimum value. Sketch the velocity profile and calculate the 

following. 
 
 (ii)  The radius of the solid core. (3.75 mm) 
 (iii) The velocity of the core.    (67.5 mm/s) 
 (iv) The volumetric flow rate.   (7.46 cm3/s) 
 

3. A non-Newtonian fluid is modelled by the equation 
n

dr
duK ⎟

⎠
⎞

⎜
⎝
⎛=τ where n = 0.8 and 

  K = 0.05 N s0.8/m2. It flows through a tube 6 mm bore diameter under the influence of a pressure 
drop of 6400 N/m2 per metre length. Obtain an expression for the velocity profile and evaluate the 
following. 

 
 (i)   The centre line velocity. (0.953 m/s) 
 (ii)  The mean velocity. (0.5 m/s) 
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