

Plastic Optical Fibres

for Gigabit Networking

POF overview and GI-POF

Networking applications for GI-POF

GI-POF product development status

GI-POF demonstration projects, 2004

POF performance

- Compared with MMF, copper and wireless, POF offers the following advantages:
 - Ruggedness, flexibility, easy handling, simplified architecture
 - Availability of inexpensive all-plastic connectors
 - Reduction in installation cost
 - Free from EMI problems
 - The preference for consumer electronics
 - Stability (non-flammability and excellent chemical resistance)
 - Availability of low cost light source (LED, RCLED, VCSEL) from visible to near IR (650, 780, 850, 1300 nm) and high-speed detectors

Advantages of Plastic Optical Fibers (POF)

Ease of Installation

- No expensive termination tooling required
- Simple end preparation (5-10 second dry polish)

Razor blade cut
3 second dry polish

- Smaller installed bend radius allowed than silica fiber (non-brittle)
- Large core diameters are NOT important for POF in Gb/s applications

Performance

- High bandwidth over broad wavelength range (lower material dispersion than silica)
- Simple methods for increasing BW using restricted launch (10 Gb/s x 100m)
- Lower modal noise than multimode silica fibers
- Radiation hardness better than silica multimode fiber

Materials: PMMA or CYTOP

Two main materials for POF today:

PMMA (~ PLEXIGLAS)

- CH based material
- Attenuation about 130 dB/km
- Operating mostly limited to 650
- Short link (up to 50 m)

PERFLUORINATED (~ TEFLON AF, CYTOP)

- CF based materials
- Low attenuation (now down to 20 dB/km)
- Operating at 650, 850 & 1300 nm
- Long link (up to 1 km)

Two main fibre types: SI-POF or GI-POF

Step Index SI- POF

Graded Index GI-POF

Materials intrinsic attenuation simulation

Simulation vs. experiment

2004-09-16 page 8

POF vs GOF on attenuation

POF Applications

Automotive

PMMA

Focus on mechanical properties

Industrial applications

Aerospace

10/100MBps

Focus on combination of bandwitdh and mechanical properties

Interconnection

GI CYTOP

GI CYTOP

Fibre to the Home Home Networking

> 1 GBps

Local Area Network

2004-09-16 page 10

Performance Comparison

POF combines benefits of both copper and glass

Wavelength Support

- 3 windows
- Broad range of wavelength supported:
 650nm 850nm 1300nm
- Flat curve allows deviation from center wavelength

Fibre Products

✓ High bandwidth POF types

- ✓ Bandwidth above 1 Gbps
- ✓ CYTOP Polymer only
- ✓ GI-POF only

✓ Advantages

- ✓ Support for all applications (High Speed and Low Speed)
- ✓ Support for all wavelength (510,650,850,1300nm)
- ✓ Support for existing light sources (used for Silica fibre)
- ✓ Known cable construction from GOF cable

√exans

Fibre Products

- Type 1:
 - ▶ **120µm core**, 500µm outer diameter

Core
Cladding
Reinforcement

- Diameter supports "Ease of Installation" and enables on-site termination
- ▶ High Speed, 1Gbps
- Applications: LAN, Industrial, Telecom, (near-term)

√exans

Fibre Products

- Type 2:
 - **62,5 µm core**, 250µm outer diameter

- Diameter allows higher bandwidth and ribbon cable structure
- Ultra High Speed, 10Gbps
- Applications: Interconnect, LAN, (long-term)

Fibre standards

→ Draft specifies 4 new types of perfluorinated GI-POF

	A4e	A4f	A4g	A4h
Principal applications	consumer electronics	industrial, mobile	SOHO LAN	high speed, multi-Gb/s
Outer diameter (µm)	750 ± 20	490 ± 10	490 ± 10	250 ± 5
Core diameter (µm)	500 ± 20	200 ± 10	120 ± 10	62.5 ± 5
Attenuation at 650 nm (dB/km)	≤100 dB/km	≤100 dB/km	≤100 dB/km	n/a
Attenuation at 850/1300 nm (dB/km)	≤40 dB/km	≤40 dB/km	≤40 dB/km	≤40 dB/km
Minimum modal bandwidth at 650 nm (MHz-km)	80	80	80	n/a
Minimum modal bandwidth at 850/1300 nm (MHz-km)	150-300	150-400	150-500	150-500

IEC 60793-2-40 IEC SC86A/WG1

Industrial Cabling Sandard

- Standards
 - ▶ POF included in Draft for ISO/IEC 24702 Industrial Cabling
 - New Fibre Classes OF100 and OF200

Table 3 - Channel attenuation of optical fibre cabling channels

Class		Maximum channel attenuation dB			
	510 nm	660 nm	850 nm	1300 nm	1550
OF-25	ffs	5,5	4,0	4,0	
OF-50	ffs	8,0	5,0	5,0	
OF100	ffs	10,5	7,0	7,0	
OF-200	ffs	23,0	11,0	11,0	

				1310	1550
OF 300					
OF 500	As per ISO 11801 Ed 2				
OF 2000					
OF 5000				4,0	4,0
OF 10000				6,0	6,0

Nexans Activities

 Nexans Activities are concentrated in NRC Lyon (Central Nexans Research Centre, France)

Nexans participates in three EU Projects

- Motifes
- ✓ Home Planet
- ✓ Interconnect by Optics

 To develop interoperable GI-POF products, cooperation among participants to develop connectivity and transceiver components for GI POF

Nexans

- Task:
 - Basic R&D (Materials +Properties)
 - Development of Preform Production
 - Research: Comparision of different production technologies

- Status 2004:
 - ▶ POF drawing facilities operating; fibres reach target properties
 - Type 1 120/500µm
 - Type 2 62,5/250µm
 - Sample quantities available
 - Work ongoing for process control and optimisation

√exans

Achievements

- ✓ Good optical performance
 - √ 10 times better attenuation than SI POF
 - ✓ Support of multiple wavelength 650 / 850 / 1300nm
 - √ Good Index profile; Independence of launching conditions
 - ✓ High bandwidth (equal to GOF 62,5/125)
 - ✓ Less modal noise than GOF (better quality for video signal)
 - ✓ Works with available equipment, 850µm cards
- Good mechanical properties of plastic material
 - ✓ Good ageing and thermal resistance for in-door applications
 - ✓ Low bending radius
 - ✓ Ease of installation

Challenges

- Technical Challenges:
 - Finish distance testing for Gigabit Ethernet
 - Develop connectors that make use of plastic material
 - Develop low cost production processes for base material
 - Develop low cost transceivers that make use of simplified alignment

120μm230μm
490μm

GI POF compared to Gigabit Ethernet Standard

Standard	Fibre	Bandwidth (MHz/km)	Range (m)
1000BASE-SX (850 nm) OM1	MMF 62.5 / 125 MMF 50 / 125 <i>GI POF</i> *	160 400 510/812*	220 500 300
1000BASE-SX (850 nm) OM2	MMF 62.5 / 125 MMF 50 / 125 GI POF*	200 500 510/812*	275 550 300
1000BASE-LX (1300 nm)	MMF 62.5 / 125 MMF 50 / 125	500 400 - 500	550 550
1000BASE-LX (1300 nm)	SMF 9/125	N/A	5000

^{*}Due to non linear behaviour the real bandwidth of GI-POF over 1 km would be 812MHz (in case attenuation will lower in future)

POF Gigabit Ethernet Testing

Test Setup and Results

- 400 meters of POF
- IXIA 1600T Chassis containing LM1000GBIC load modules with 1000BASE-SX GBICs
- Transmitted over three-trillion 64-byte Gigabit Ethernet packets with 96 ns inner-packet gap with no errors. Translates to a FER of 3.30x10⁻¹³.

Bandwidth Performance

^{*} measured bandwidth on 300m of Nexans GIPOF 120/490 under different launching conditions / offsets

Measurement Results

10.7 Gbit/s Transmission over GIPOF at 850 nm VCSEL (Supplier A)

> 100 m GIPOF; RX: PIN + TIA; optimised offset launch

Successful test: 10 Gbps over 100m Fibre used: 120/230 /490µm GIPOF

Optical fibre production

- Historical methods
- Current techniques
- Future development

Drawing from a preform

Drawing from a preform

 Concentrically manufactured cylinders with different refractive index

Procedure:

•preform is heated until a fiber can be drawn.

Fiber type:

Step Index POF or Graded Index POF

Comments:

- •used for glass fiber manufacturing
- •well suited for the production of GI POF

√exans

Batch extrusion

Procedure:

- monomer distillation
- •addition of initiator and polymerization regulator.
- •the extrusion of through a nozzle with nitrogen
- •cladding immediatly applied.

Fiber type: Step Index POF

Comments: not widely used.

D / Batch Extrusion

Continuous Extrusion of core and cladding

Procedure:

- •pre-polymerized (80%) monomer
- •mixture pumped towards the extruder
- second extruder for the cladding

Fiber type: Step Index POF

Comments:

- Process suitable for continuously manufacturing POF on a large scale
- •very low contamination during the process.
- standard process for SI-PMMA manufacturing.

2004-09-16 page 29

Melt spinning process

Procedure:

- •polymer melted and pressed through a die.
- •Cladding applied after fiber formation.

Fiber type:

Step Index POF or Graded Index POF

Comments:

- Possibility to manufacture several fibers simultaneously
- Extremely high drawing speed.
- •Technique very expensive to set up.

Direct UV cross-linking of resins

Procedure:

- Cladding and core resins pumped towards a reactor
- •Liquid resins flowing trough a nozzle
- •UV curing in line.

Fiber type:

Step Index POF or Graded Index POF

Comments:

Continuous process

Nexans

Cable Structures for Gigabit POF

Standards:

• IEC 60794-2-42 (in preparation)

■ Bending radius* =20mm

BENEFITS

- Long Lifetime
- No additional buffer to strip
- Enables fast termination
- Drives down total networking cost

MC Design for Breakout cabling

- 2-4 fibres
- Aramid strength member

- UT Design for Backbone cabling
 - Up to 12/24 Coloured fibres490μm
 - Dry tube solutiono

Mexans "Easy to install" Connector for Gigabit POF

• FERRULE:

- New ferrule adapted for Gigabit-POF
- Supports 2 fibre types: 120/490 and 62,5/245μm
- Mechanical fixation of the fibre (patent pending)
- Reusable (no crimp)

CONNECTORS

- Usable for SC, ST, LC, MTRJ connectors
- Compatible to standard components
- Preassembled connector
- Avoids glue and heat
- Polishing not mandatory

• BENEFITS:

- Short installation time
- Simple termination like copper

Nexans

Parallel Optics Ribbon GIPOF

62,5 μm 1X8 ribbon POF

Thickness (h) 310 µm

Width (w) 2100 μm

Ribbon BW: 8 x 5 GHz @ 100 m

> 40 GHz over 100 m @ 850 nm

Ribbon Bitrate: 8 x 10 Gbps @ 100 m

> 80 Gbps over 100 m @ 850 nm

European POF Activities

(Interconnect by Optics within Electronics Systems)

Objective: Develop high-density high-speed interconnect systems

plastic fibre, cable Nexans

Alcatel high-level IP router design

IMEC modeling, integration, demonstration

FCI connectivity

microwiring fibre deposition RCI

sandwiched diffused glass waveguide PPC

Home Planet 🥥

Objective : Build a Home Plastic Optical Fibre Network

Nexans plastic fibre, cable, connectivity

NMRC O/E research, modeling

FireComms O/E RCLED, VCSEL, Transceivers Grundig AV demonstration, 1394 & HaVi stacks

MOTIFES 💍

Objective : Elaborate Multimedia POF Technologies for In-Flight Entertainmen

University of Surrey 650 nm VCSEL design 650 nm VCSEL fabrication **NMRC Nexans** High temperature POF transceiver development Thales **FireComms** 1394-to-PCI board assembly

2004-09-16 page 35

IO: interconnect by optic

IO (interconnects by Optics) is a European project, co-funded by the EC, in the framework of the Information Society Technology (IST) program Contract number is IST-2000-28358

Parallel optical interconnections

The project runs from September 1, 2001, to August 31, 2004

www.intec.rug.ac.be/IO

IO: Interconnect by **O**ptics within Electronics Systems

- Assess trade-offs between parallel and serial I/O modes
- Develop high-density high-speed interconnect systems
 - ✓ between Integrated Circuits (on-board and in-board)
 - ✓ between Printed Circuit Boards and Backplanes (on-Backplane and in-Backplane)
- Based on
 - ✓ 2D (up to 256) plastic fiber arrays (stacked ribbons of high temperature small diameter POF fibers,
 - ✓ glass sheet waveguides, operating at 1,25 Gbps/channel
- Consortium: Nexans (plastic fiber, cable), Alcatel Bell (high-level IP router design), IMEC- R.U.Gent (modeling,integration, demonstration), FCI (connectivity), RCI (microwiring fiber deposition). PPC (sandwiched diffused glass waveguide), Caswell, Opto Speed, Helix

Nexans

GIPOF Flexfoil

2004-09-16 page 38

Wiring of POF on flex foils:

- Elaborate end-to-end European technological capability in the Japan-dominated arena of consumer electronics
- Build a Home Network based on the
 - ✓IEEE1394 interface standard (i-Link, Firewire)
 - ✓ HaVi stack (supporting Digital Video broadcasting std)
 - ✓ PMMA small numerical aperture fiber
 - √650 nm RCLEDs and VCSELs
- Testbed to operate at 200 & 400Mbps (50m)
- Demonstrate 800Mbps and 1600Mbps technology feasibility
- Consortium: Nexans (plastic fibre, cable, connectivity)

NMRC (O/E research, modeling)

FireComms (O/E RCLED, VCSEL, Transceivers)

Grundig (AV demonstration, 1394 & HaVi stacks)

IQE (wafer growth)

Aerospace MOTIFES

Multimedia Optical-Plastic Technologies for In-Flight Entertainment Systems (MOTIFES)

CONSORTIUM OVERVIEW

Participant		Business activity		
National Microelectronics Res.Centre (NMRC) Ireland		650 nm VCSEL fabrication/environmental test		
Department of Physics, University of Surrey, UK (UNIS)		650 nm VCSEL design/ wafer characterisation		
	Nexans Filotex, France	GI-POF development/environmental tests		
	Thomson-CSF/LCR, France	transceiver development/ 850 nm VCSEL fabrication		
FireComms Ltd, Ireland		1394-to-PCI board assembly		

Conclusions

- POF capacity for improving usefulness of multimode optical fiber has been demonstrated
 - Simplified termination
 - Superior resistance to mechanical stress
 - Improved bandwidth
- Combined advantages of MMOF and Copper
- Practical and relevant POF components development is underway
 - Supports 850nm
 - Supports gigabit networking
 - Wider distance scalability

