

Search for Gamma-ray Spectral Lines in the Milky Way Diffuse with the Fermi Large Area Telescope

Andrea Albert

The Ohio State University/CCAPP with Brian Winer, Richard Hughes, and Elliott Bloom (KIPAC-SLAC) On behalf of the Fermi-LAT Collaboration The Fermi Symposium 11/2/2012

- Weakly Interacting Massive Particles (WIMPs) are a promising dark matter candidate
- WIMP annihilations in the Milky Way may produce gamma rays detectable by the Fermi Large Area Telescope (LAT)
- $\chi\chi \rightarrow \gamma\gamma$, γZ^0 , γH^0 would produce a narrow feature
 - Sharp, distinct spectral feature ("smoking gun")
 - Likely a small branching fraction
 - Signal predicted to be small

- 2 year analysis accepted for publication in PRD
 - Current analysis uses similar method
- 4 year analysis nearing completion
 - Use Reprocessed "Pass 7 Clean" data
 - Low cosmic-ray contamination
 - Reprocessing shifts energy scale by 1-4% to account for slight radiation damage to calorimeter
 - See P7REP poster
 - Mask 2FGL Sources
 - Plan to submit paper to PRD end of December 2012
- Search for lines from 5 to 300 GeV
 - Maximum Likelihood Fit
 - Use sliding $\pm 6\sigma_E$ windows
 - Fit for energies in σ_E steps
 - Perform finer $0.5\sigma_E$ scan near significant energies
 - Model bkg as single powerlaw
 - $\Gamma_{\rm bkg} \text{ and } f_{\rm sig} \text{ free in fit}$

Fermi LAT Spectral Line Search

Improved Line Model

- Use full detector simulation to get Fermi
 LAT energy dispersion
- Previously modeled line with a triple gaussian fit ("1D PDF")
- This analysis adds a 2nd dimension to line model: P_E
 - P_E is the probability that measured energy is true energy
 - Labeled "CTBBestEnergyProb" in our extended data
 - "2D PDF" (a function of both energy and P_E)
- Break Line into 10 P_E slices and do triple gaussian fit in each slice separately
 - Fit explicitly at 9 energies and interpolate parameters in each slice to produce lines at other energies
- Including P_E → ~15% improvement to signal sensitivity (when there is signal) and counts upper limit (when there is no signal)

Region of Interest (ROI) Optimization

Fermi LAT Spectral Line Search

11/02/2012

11/02/2012

- Our blind search does not find globally significant feature near 135 GeV
 - Reprocessing shifts feature from 130 GeV to 135 GeV
 - Most significant fit was in R0, 2.23 σ local (<0.5 σ global)
- Much interest after detection of line-like feature localized in the galactic center at 130 GeV
 - See C. Weniger JCAP 1208 (2012) 007 arXiv:1204.2797
- 4.01σ (local) 1D fit at 130 GeV with 4 year unreprocessed data
 - Look in 4°x4° GC ROI
 - Use 1D PDF (no use of P_E)

Note: Fit in 4°x4° GC ROI Not one of our a priori ROIs

- Our blind search does not find globally significant feature near 135 GeV
 - Reprocessing shifts feature from 130 GeV to 135 GeV
 - Most significant fit was in R0, 2.23 σ local (<0.5 σ global)
- Much interest after detection of line-like feature localized in the galactic center at 130 GeV
 - See C. Weniger JCAP 1208 (2012) 007 arXiv:1204.2797
- 4.01σ (local) 1D fit at 130 GeV with 4 year unreprocessed data
 - Look in 4°x4° GC ROI
 - Use 1D PDF (no use of P_E)
- 3.73σ (local) 1D fit at 135 GeV with 4 year reprocessed data
 - Look in 4°x4° GC ROI
 - Use 1D PDF (no use of P_E)

Note: Fit in 4°x4° GC ROI Not one of our a priori ROIs

- Our blind search does not find globally significant feature near 135 GeV
 - Reprocessing shifts feature from 130 GeV to 135 GeV
 - Most significant fit was in R0, 2.23 σ local (<0.5 σ global)
- Much interest after detection of line-like feature localized in the galactic center at 130 GeV
 - See C. Weniger JCAP 1208 (2012) 007 arXiv:1204.2797
- 4.01σ (local) 1D fit at 130 GeV with 4 year unreprocessed data
 - Look in 4°x4° GC ROI
 - Use 1D PDF (no use of P_E)
- 3.73σ (local) 1D fit at 135 GeV with 4 year reprocessed data
 - Look in 4°x4° GC ROI
 - Use 1D PDF (no use of P_E)
- 3.35σ (local) 2D fit at 135 GeV with 4 year reprocessed data
 - Look in 4°x4° GC ROI
 - Use 2D PDF
 - P_E in data → feature is slightly narrower than expected
 - <2 σ global

Note: Fit in 4°x4° GC ROI Not one of our a priori ROIs

- Fit in 4°x4° ROIs along the galactic plane in 1° steps
 - Fit with "1D PDF"
 - To find where the counts are coming from
- Find excess near ~135 GeV near GC
 - But find similar features at other energies along the GP
 - Some indication the 135 feature not smooth, but 2-3 smaller "hot spots"
 - Excess near 135 GeV is one of the largest and near GC, but is not otherwise unique
 - See talk by E. Charles for more details

nic ray

- Earth Limb is a bright gamma-ray source
 - From cosmic-ray interactions in the atmosphere
 - Expected to be a smooth power-law
 - Can be used to study instrumental effects
- Have made changes to increase our Limb dataset
 - Pole-pointed observations each week
 - Extended "targets of opportunity" (ToOs)
 - Trace limb while target is occulted
- Line-like feature in the limb at 135 GeV

Space Telescope

- Appears when LAT is pointing at the Limb
 - |RockAngle| > 52°
- Surprising since limb should be smooth
- On-going systematic studies have found interesting results
 - See talk by E. Bloom
 - See talk by E. Charles

 θ_{zenith}

 θ_{inc}

ra

Fractionally small, but significant deviations

- We see fractionally small, but significant fluctuations in the galactic data and limb spectrum at low energies
 - Fractional deviation \approx or smaller than uncertainties in A_{eff}
 - See similar features in earth limb at low energies
 - See section 7.5 of Pass 7 performance paper
 - The Fermi-LAT Col. ApJS 203, 4 (2012)
 - Need to consider both fit significance and fractional deviation

Gamma-ray Space Telescope

- Improved Line Search
 - 2D Line model includes P_E
 - Reprocessed dataset with corrected energy scale
 - Chosen optimized ROIs a priori using MC background model
- Use Galactic Plane and Earth Limb to study potential line-like features
 - 135 GeV feature in Galactic Center not smooth, but seems to be from 2-3 "hot spots"
 - See similar features at other energies along the Galactic Plane
 - Earth Limb should be a smooth powerlaw
 - See feature at 135 GeV
 - See significant features that are fractionally small in low energies
- Performed a search for spectral lines from 5 to 300 GeV with 4 years of data in 5 a priori ROIs
 - No globally significant lines detected and strong $\langle \sigma v \rangle_{\gamma\gamma}$ limits are set
- Line search has raised many interesting questions. Our understanding will continue to get better with future studies and more data from the Fermi LAT
 - Implementing strategies to increase limb dataset
 - Mission extended through at least 2016
 - Pass 8 reconstruction will improve A_{eff} and energy reconstruction