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Abstract

The central detectors used in High Energy Physics Experiments require the use of light and stable
structures capable of supporting delicate and precise radiation detection elements. These structures
need to be highly stable under environmental conditions where external vibrations, high radiation
levels, temperature and humidity gradients should be taken into account. Their main design drivers
are high dimension and dynamic stability, high stiffness to mass ratio and large radiation length. For
most applications, these constraints lead us to choose Carbon Fiber Reinforced Plastics (CFRP) as
structural element. The construction of light and stable structures with CFRP for these applications
can be achieved by careful design engineering and further confirmation at the prototyping phase.
However, the experimental environment can influence their characteristics and behavior. In this case,
the use of adaptive structures could become a solution for this problem. We are studying structures in
CFRP with bonded piezoelectric sensors and actuators, able to monitor and compensate the vibrations
affecting the performance of these systems. In this paper a detailed description of the simulation model
is presented and the results compared with the experimental measurements. The transient response of
a plate structure under vibrations with and without feedback control are shown.
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1 Introduction
In the last three decades our understanding of nature’s fundamental particles and the forces which act between
them has advanced dramatically. The resulting theory, known as Standard Model is one of the greatest intellectual
achievements of physics. Even so, we know the Standard Model can only be a stepping-stone to a more complete
theory: it leaves too many questions unanswered. How do particles get their masses, for example? And why does
nature triplicate the family of basic particles which make up all matter as we know it? At CERN we plan to address
these and other fundamental questions of physics with the two general purpose experiments (ATLAS and CMS)
that will operate at the Large Hadron Collider (LHC). Both these experiments have the typical onion-like layout of
a High Energy Physics (HEP) collider detector with sub-detectors disposed symmetrically around the interaction
point. Each of these sub-detectors is able to measure one or more of the parameters that are needed for the full
identification of each particle.

Both experiments, CMS and ATLAS, are enormous in size and complexity and cannot be compared with any
previous HEP experiment. They are typically a cylinder with 30(45) m long, 15(30) m diameter and weight about
14000(9000) ton, depending on the experiment [1]. The inner part of these detectors is able to measure the passage
of charged particles with a precision of tens ofµm. These inner sub-detectors are much smaller (6 m length, 4 m
diameter and a weight of a few tons) and their support structures must be light, highly stable and stiff in order
to achieve these demanding performances [2]. A natural choice of structural materials are CFRP. A particularly
interesting point of the conceptual engineering design of these structures is to understand to what extent one is able
to measure and control the vibrations of these large CFRP structures.

2 Finite Element Formulation
The equations of motion for a laminated composite plate containing piezoelectric elements can be derived using
Hamilton’s principle

δ

∫ t2

t1

(T − U + Wext) dt = 0 (1)

wheret1 andt2 are arbitrary instants,T is the kinetic energy,U the potential energy (including strain and electrical
energies) andWext the work done by external forces. The term of non conservative work was neglected.

For coupled electro-mechanical systems the kinetic and potential energy terms are defined as

T =
∫
V

1
2
%{q̇}T {q̇} dV U =

∫
V

1
2
[ {S}T{T } − {E}T{D}] dV (2)

where{q̇} is the velocity vector,% the mass density,{S} the strain vector,{T } the stress vector,{E} the electrical
field vector,{D} the vector of electrical displacements and the integration is done over the volumeV of the
structure.

2.1 Constitutive Equations

The linear piezoelectric constitutive equations coupling the elastic field and the electric field vector can be ex-
pressed by the direct and the converse piezoelectric equations [3]

{D} = [e]T {S}+ [εs]{E} (3)

{T } = [CE ]{S} − [e]{E} (4)

with [e] the piezoelectric module matrix,[εs] the dielectric constants matrix evaluated at constant strain and[CE ]
the matrix of the elastic coefficients for the piezoelectric material at constant electric field. Normally one can
consider piezoelectric materials as transverse isotrope in the plane normal to the polarization axis (z − axis).
In the case of piezoceramics (PZT) Equation (3) and Equation (4) can be simplified. Given this isotropy, the
coefficientse34, e35 ande36 are null, and the actuation and/or sensing of torsion movements can not be done. If
the material studied is not isotrope transverse in the reference plane the coefficiente36 is non zero and can be used
to measure or control torsion movements.
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In the case of non-isotropic materials and when the piezoelectric is cut in other directions different from its or-
thotropy axes, the stress and strain relations in the material coordinate system are related to the global coordinate
system by the following expressions

{T }m = [R]{T }g {S}m = [R]−T {S}g (5)

wherem stands for material coordinates andg for global coordinates.[R] is the transformation matrix between
the two coordinate systems.

2.2 Strain-Displacements Relations

Under the same assumptions and restrictions as in the classical laminate theory, the displacement field of the
first-order shear deformation theory is of the form [4]

u(x, y, z, t) =u0(x, y, t) + zφx(x, y, t)
v(x, y, z, t) =v0(x, y, t) + zφy(x, y, t)
w(x, y, z, t) =w0(x, y, t)

(6)

whereu0, v0 andw0 are the in-plane and transverse displacements of a point(x, y) in the mid-plane, andφx and
φy are the rotations of a transverse normal about they andx axes. Substituting Equation (6) into the infinitesimal
strain relations we obtain{S} = {S0}+z{κ}where{S0} = {S0

x, S0
y , 0, γ0

yz, γ
0
xz, γ

0
xy}T are the membrane strains

and{κ} = {κx, κy, 0, 0, 0, κxy}T are the bending strains. This equation can be rewritten as
Sx

Sy

Sz

γyz

γxz

γxy

 =



∂u0
∂x
∂v0
∂y

0
∂w0
∂y + φy

∂w0
∂x + φx

∂u0
∂y + ∂v0

∂x


+ z



∂φx

∂x
∂φy

∂y

0
0
0

∂φx

∂y + ∂φy

∂x


(7)

The generalized strain vector,
−
{S} = {S0

x, S0
y , γ0

xy, κx, κy, κxy, γ
0
xz, γ

0
yz}T , can be defined in terms of the nodal

displacements vector{q} and in terms of the differential operator matrix[L] by
−
{S} = [L]{q}. Expanding all the

terms one obtains 

S0
x

S0
y

γ0
xy

κx

κy

κxy

γ0
xz

γ0
yz


=



∂
∂x 0 0 0 0
0 ∂

∂y 0 0 0
∂
∂y

∂
∂x 0 0 0

0 0 0 z ∂
∂x 0

0 0 0 0 z ∂
∂y

0 0 0 z ∂
∂y z ∂

∂x

0 0 ∂
∂x 1 0

0 0 ∂
∂y 0 1




u0

v0

w0

φx

φy

 (8)

2.3 Stress-Strain Relations

The stress and moment resultant vector is defined by

−
{N} = {Nx, Ny, Nxy, Mx, My, Mxy, Qx, Qy}T

{Nx, Ny, Nxy, Qx, Qy} =
N∑

k=1

∫ h/2

−h/2

(Tx, Ty, Txy, Txz, Tyz) dz {Mx, My, Mxy} =
N∑

k=1

∫ h/2

−h/2

(Tx, Ty, Txy)z dz

(9)

and can be written, taking into account Equation (4), as the result of two components

−
{N} =

−
[D]

−
{S} − {Xp} (10)
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One,
−

[D]
−
{S}, represents the resultant of the mechanical stresses and the other,{Xp}, the equivalent stress created

by the piezoelectrics as a consequence of the actuation strains. The matrix
−

[D] is the transformed stiffness matrix
of the plate in the plate axis system, and is defined in terms of the extensional stiffnesses, the bending stiffnesses
and the bending-extensional coupling stiffnesses. The piezoelectric resultant for the laminate is defined by

{Xp} =

{EN}
{EM}

0

 =


∑N

k=1

∫ zk

zk−1

−
[e]

(k)

{E}(k)
dz∑N

k=1

∫ zk

zk−1

−
[e]

(k)

{E}(k)
z dz

0

 =


∑N

k=1

−
[e]

(k)

V (k)∑N
k=1

−
[e]

(k)

V (k)z0
k

0

 (11)

where{E}(k) = V (k)/hk. V (k) is the electric voltage applied across theKth layer,hk is the thickness of theKth

layer, andz0
k is thez distance of the lamina mid-plane from the laminate mid-plane, defined byz0

k = 1
2 (zk +zk−1)

[5].

2.4 Finite Element Discretization

The displacement and the electrical potential can be defined in terms ofi nodal variables via the shape functions
matrices[Nq] and[Nφ]

{q} = [Nq]{qi} {φ} = [Nφ]{φi} (12)

where{qi} is the mechanical generalized coordinates and{φi} the electrical generalized coordinates. Writing
the electric field and Equation (8) in terms of nodal variables one obtains for the finite element discretization the
following set of expressions

{S} = [L]{q} = [Bq]{qi} [Bq] = [L][Nq]
{E} = −∇{φ} = [Bφ]{φi} [Bφ] = −∇[Nφ]

(13)

2.5 Equations of motion

Considering only discrete applied external forces,Wext can be written as

Wext =
nf∑
i=1

{q}T {Fc} (14)

where{Fc} is the external force vector acting atxi andnf is the number of applied external forces. The equations
of motion of the electro-mechanical system can be obtained by solving Equation (1).

∫ t2

t1

{
∫
V

(%
.

{δq}
T .

{q} − {δS}T [CE ]{S}+ {δE}T [εs]{E}+ {δE}T [e]T {S}+ {δS}T [e]{E}) dV +
nf∑
i=1

{δq}T {Fc}} dt = 0

(15)

The first term in Equation (15) can be integrated by parts and Equation (12) substituted in. Allowing arbitrary
variations of{q} and{φ}, two matrix equations in the generalized coordinates are obtained

[Mmm]
..

{q}+ [Kmm]{q} − [Kem]{φ} = F (16)

[Kem]T {q}+ [Kee]{φ} = 0 (17)

where the mass and the mechanical stiffness matrix are defined as
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[Mmm] =
∫
V

%[Nq]T [Nq] dV [Kmm] =
∫
V

[Bq]T [CE ][Bq] dV (18)

the coupled electrical/mechanical stiffness and the piezoelectric stiffness matrix as

[Kem] =
∫
V

[Bq]T [e][Bφ] dV [Kee] =
∫
V

[Bφ]T [εs][Bφ] dV (19)

and the forcing matrix as

{F} =
nf∑
i=1

[Nq]T {Fc} (20)

Equations (16) and (17) represent, respectively, the actuator and the sensor equations used in the simulation models.

3 Experimental set-up
The experimental set-up (Fig. 1) comprises a graphite T300/epoxy cantilever beam with two symmetrically bonded
piezoceramics. The piezoelectric patches are sampled and controlled by a 12-bit Data Acquisition Board with a
maximum sampling rate of 500KHz.

Figure 1: The experimental set-up. One pair of PZT patches attached to a carbon fiber cantilever beam [mm].

The beam, with a stacking sequence of[0/45◦]2s, has an Young’s Modulus of 53.6GPa and density of 1438
Kg/m3. The piezoceramic pair is a 0.2mm thick P1-91 piezoceramic block with 36mm long and 12mm wide,
polarized in the same direction. Its electro-mechanical properties are listed in Table 1.

The piezoceramics are bonded near the clamped edge of the beam in order to maximize the bending moment. In
the simulations it was assumed that the thin bonding layer between the piezoelectric and the composite beam can
be neglected [6].

4 Simulation and Experimental Results for Static Loads
Static sensing and actuation mechanisms were investigated for a carbon/epoxy plate described before. Analytical
models are based in plate and solid brick formulations. Voltage is considered as an additional degree of freedom.
The experimental relation between the applied voltage in the actuator and the displacement at different lengths of
the beam (Fig. 2) was used for comparison with the simulations.

The simulated points of Fig. 3 were obtained when a constant voltage of 10 Volt is applied on both piezoceramics.
As expected [7] one can find a good agreement between plate and solid brick element formulations. The good
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Table 1: Material properties for the P1-91 piezoceramic material.

CE
11 [N/m2] 12.09x1010 d31 [m/V ] -247x10−12

CE
12 [N/m2] 7.63x1010 d33 [m/V ] 600x10−12

CE
13 [N/m2] 7.31x1010 d15 [m/V ] 509x10−12

CE
33 [N/m2] 11.26x1010 εs

11/ε0 1820

CE
44 [N/m2] 3.36x1010 εs

33/ε0 1461

CE
66 [N/m2] 2.23x1010 % [Kg/m3] 7410

10 20 30 40 50 60 70 80 90

Applied Voltage [Volt]

0

100

200

300

400

500

D
is

pl
ac

em
en

t [
m

ic
ro

n]

93.6
81.6
67.9
98.5

x/L [%]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Longitudinal Position [x/L]

0

10

20

30

40

50

60

70

D
is

pl
ac

em
en

t [
m

ic
ro

n]
Plate
Solid
Experimental

Applied Field 10 Volt

Figure 2: Experimental relation between the applied
voltage and the displacement at different lengths of
the beam.

Figure 3: Actuation Mechanism: static deflection
shape for an applied voltage of 10 Volt. The exper-
imental points were obtained from Fig. 2.

agreement between the model and the experimental results attests for the validity of the model. Sensing mechanism
was evaluated by applying a constant tip load. Output sensor voltages were then determined and are presented in
Fig 4.
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Figure 4: Sensing Mechanism: sensing voltages for
several tip loads.

Figure 5: System transient response.
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Figure 6: Effect of constant amplitude feedback (5
Volt) on the transient response of the system.

Figure 7: Effect of constant amplitude feedback (10
Volt) on the transient response of the system.
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Figure 8: Effect of constant amplitude feedback on the damping coefficient of the system.

5 Vibration Control
To study the dynamic problem of vibration control we will consider that one piezoelectric acts as a sensor and the
other one as an actuator. For the control of the vibrations we will consider constant amplitude and constant gain
feedback control.

5.1 Constant amplitude feedback control

In this case the feedback amplitude is constant and opposite to the sensing voltage. The system transient response
is presented in Fig. 5 and the effect of control feedback on Fig. 6 and Fig. 7.

The piezoelectric mechanical/electrical coupling characteristic can be used to increase the damping of the system.
The damping coefficient of the system is calculated by means of the logarithmic decrement,δ. For small damping
ratios (ζ � 1) the expression can be defined by Equation (21), wheren is the number of cycles.

ζ =
δ

2π
=

1
2πn

log
xi

xi+n
(21)

As expected, for small oscillations, the damping coefficient increases linearly with the constant applied voltage
(Fig. 8): ζ = 0.005 + 0.0004V .
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5.2 Constant gain feedback control

The sensor voltage,V s, is fed back to the actuator multiplied by a feedback gain G according to Equation (22).
The gain, constant in time, is changed in order to evaluate its control effectiveness.

V a = GV s (22)

The bending moment applied by the actuator to the beam is directly proportional to the input voltage applied to
the piezoceramic. Its upper limit is given by the voltage limitations of our experimental set-up. Fig. 9 and Fig. 10
present the transient response of the system for different gains.
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Figure 9: Effect of constant gain feedback (2.9) on the
transient response of the system.

Figure 10: Effect of constant gain feedback (5.8) on
the transient response of the system.

The damping coefficient of the system as a function of the feedback gain is presented in Fig. 11,ζ = 0.005 +
0.00014G.

5.3 Frequency analysis

The first mode of vibration was obtained as well as the corresponding modal shape (flexural mode). The compari-
son between finite element method predictions and experimental measurements is summarized in Table 2.

A maximum deviation of 2.1% is found when the experimental result is compared with the finite element results.
The experimental first mode power spectral density for open and close loop (amplitude control voltage equal to 5
Volt) is presented in Fig. 12 and Fig. 13.
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Figure 11: Effect of constant gain feedback on the damping coefficient of the system.
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Table 2: First natural frequency obtained by simulation and measurement [Hz].

Frequency [Hz] Error [%]

EXPERIMENTAL 21.12 -

FEM - PLATE 20.67 2.13

FEM - SOLID 20.86 1.23
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Figure 12: Experimental first mode power spectral
density for open loop system.

Figure 13: Experimental first mode power spectral
density for close loop system - amplitude control volt-
age equal to 5 Volt.

We can observe a first natural frequency around 21 Hertz. The peak around 5 Hertz is a parasite frequency which
was not identified. We can verify that feedback control leads to a lower power spectral density when compared to
the open loop system.

6 Conclusions
We show in this paper that the mathematical models and the assumptions used for the simulation of a composite
beam with piezoceramic patches, are accurate in the prediction of its static and dynamic behavior. A good agree-
ment was found for the deflection shape of the beam when a constant voltage is applied to the piezoceramics and
in the prediction of the first natural frequency. The effectiveness ofconstant gainandconstant amplitudefeedback
control was experimentally evaluated by the comparison of the corresponding variation of the damping coefficient.
These simple feedback control mechanisms already allow an efficient damp of the first mode of our system. A
more elaborated control technique will certainly be needed for the case of more complex structures subjected to
external excitations. In High Energy Particle detectors the requirements of high dimensional stability, high stiff-
ness to mass ratio and maximum displacements are of the order of tens of microns. These requirements orient the
design of their support structures towards the use of the composite sandwich technology. Also, the wide range of
possible combination of core and facing materials provides a higher versatility on the final mechanical properties
of these structures. The finite element models used for this work will be modified for sandwich structures and
adjusted by similar experimental measurements.
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