

- Program of CNPq/MCT with partnership of FAP's and CAPES
- 123 projects
- R\$ 581 millions
- Period: 2009 a 2014

NAMITEC

- Scope of the networks
 - Mobilize, aggregate and articulate actions in specific fields
 - Foster advances at scientific frontiers
 - Stimulate technological development to promote innovation and entrepreneurship
 - Contribute to education and formation of qualified human resources
 - Contribute to the diffusion of S&T to general public

INCT NAMITEC Micro and Nanoelectronics Systems

- CNPq Proc. no. 573738/2008-4
- FAPESP Proc. no. 2008/57862-6
- Period: March 2009 a Feb. 2014
- http://namitec.cti.gov.br
- namitec@cti.gov.br

NAMITEC

INCT NAMITEC Micro and Nanoelectronics Systems

- Members:
 - 136 researchers
 - 23 institutions
 - 13 states
- Financial support:
 - CNPq + FAPESP + CAPES
 - -R\$7.197.327,57 + 431.839,65 = 7.629.167,22

NAMITEC is an Interdisciplinary Network

- EE Dept's:

Informatics/Computer Dept's: 3

– Physics Dept's:

– Chemistry Dept's:

– Agriculture: Embrapa

Biologia/ecologiaINPA

– General R&D Institutes:IPT, CCS, CTI, CT-PIM, VonBrawn

Impact of the NAMITEC Project

- Generation of Scientific & Technological knowledge
- PhD, master, undergrad & specialization education
- Up grade of laboratories
- Collaboration between groups in Brazil
- Collaboration with international universities
- Interaction & technology transfer to industries
- Knowledge diffusion to society: web site, workshops, colloquia, expositions, press releases, etc.

NAMITEC

NAMITEC - Research Objectives

- R&D on System on Chip and Wireless Sensor Network Systems;
- R&D on IC design and test methodologies and tools for low power consumption, fault tolerance, including analog, RF and digital circuits;
- R&D on micro and nanoelectronics, photonics, optoelectronics, MEMS and NEMS devices and its integrations processes and packaging;
- R&D on materials and techniques for micro and nanofabrication, necessary for the fabrication of devices and IC's.

NAMITEC NAMITEC

R&D Activities and Selected Results

- 1. SoC and Sensor network
- 2. IC design
- 3. EAD
- 4. Devices
- 5. Materials and techniques

NAMITEC NAMITEC

A1 – SoC and Sensor Networks **ACTIVITY COORDINATOR** WLSNW applied to monitoring of amphibians A1-1 Linnyer Monitoring of environment variables (climate changes) A1-2 Linnyer WLSNW for monitoring leakage current at lightning Freire A1-3 protection for high voltage network André Torre A1-4 Precision irrigation A1-5 Monitoring of ambient parameters in chicken farms and in Freire crop farms André Torre A1-6 Monitoring and tracing of animals (ambience) A1-7 Instrumental sphere for wireless monitoring of temperature Fabiano Fruett and humidity in grain storage silos WLSNW with SoC based on network of chips A1-8 Susin A1-9 Solution development with SoC for WLSNW applications Experiments with WLSNW in high humidity and high vegetal Roberto Tavares A1-10 density ambients Instrumental sphere for monitoring of transport conditions of Carlos Eduardo Pereira fruits. NAMITEC

A2 – IC Design				
#	ACTIVITY	COORDINATOR		
A2-1	Interfaces to sensors	Catunda		
A2-2	Electrical characterization	Gilson Wirth		
A2-3	Design and characterization of RF circuits	Saulo Finco		
A2-4	IP's of RF IC's	Rangel		
A2-5	Design and characterization of analog IP libraries	Schneider		
A2-6	A/D and D/A convertors	Freire		
A2-7	Design and characterization of digital IP libraries	Guntzel		
A2-8	Operational amplifiers	Ivan S. de S.S.		
A2-9	CMOS analog filters using compansor architectures	Ana Cunha		
A2-10	Power managing units	Saulo Finco		
A2-11	Simulation and design of radiation and variability tolerant circuits	Fernanda Lima		
A2-12	Multiband RF amplifiers	Robson Nunes		
A2-13	IC design with nanoelectronic devices	Camargo		
	Centro de Tecnologia da Informação Renato Archer	NAMITEC		

	A3 - EAD	
#	ACTIVITY	COORDINATOR
A3-1	Computer assisted design and layout of robust analog circuits to fabrication process parameter variation and with minimum silicon area	Petraglia
A3-2	Transactional modeling tool for systems on silicon	Jacobi
A3-3	"Library Free" IC logical synthesis	Reis
A3-4	Routing and positioning for IC's	Johann
A3-5	Automatic layout synthesis of IC's at transistor array level	Reis
A3-6	Development ambient for wireless sensor network applications based on SoC for network of chips	Susin
A3-7		Lubaszewsk
	Centro de Tecnologia da Informação Renato Archer	NAMITEC

A4 - Devices

- Emphasis on microsensors on MEMS structures
- Nanometric FinFET transistors
- Photonic devices
- Organic solar cells

#	ACTIVITY	COORDINATOR
A4-1-1	ISFET (Ion Sensistive Field Effect Transistor)	Diniz
A4-1-2	Polymeric Micro and nanofibers by electrostatic deposition	Ana Neilde
A4-1-3	Chemical sensors based on nanostructured carbon	Maia da Costa
A4-1-4	Chemical sensors on SiC to detect hydrogenated compounds	Fernanda
A4-1-5	Chemiresistors to detect hydrogen	Sebastião
A4-1-6	SOI FinFET transistor as hydrogen sensor	Martino
A4-1-7	Organic sensors based on polymers	Artemis
A4-1-8	Acetylene sensor using green ceramics	Sebastião
A4-2-1	Development of integrated optical sensors for environmental chemical analysis	Morimoto
A4-2-2	Photometry and imaging at the THz band spectrum	Pierre
A4-3-1	Nanofabricated thermo-electrical oscillator	Fabiano Fruett
A4-3-2	Development of a photo-acoustic spectrometer using a camera with pressure chip to characterize biofuels	Milton Bugs
A4-3-3	SAW sensors with carbon nanotubes	Sergey
A4-3-4	Development of a silicon-polymer conductor flexible cantilever as a water vapor sensor	Herrmann
A4-3-5	Development of microfluidic decives	Aristides
A4-3-6	Development of a ultra-sensitive spectrometer with an integrated capillary analytical column to a mass spectrometer detector based on SAW devices	Aristides
A4-4	Alternative photovoltaics	Victor
A4-5	Antennas on circuit board for wireless sensor networks	Glauco
A4-6	Packaging for devices	Biasoli

	Area A5	
#	ACTIVIDADE	COORDINATOR
A5-1	Nanostructured carbon materials (CNT, graphene)	Stanislav
A5-2	Synthesis and characterization of nanostructured semiconductor materials: Si, Ge, III-V e II-VI	Prioli
A5-3	Synthesis and characterization of thin film and bulk materials: high k dielectrics, SiC, Ge	Fernanda
A5-4-1	Deposition of proteins on metallic substrates for R&D of BioMEMS	Raquel Bugs
A5-4-2	Synthesis and characterization of organic materials for biochemical sensors	Casarini
7	Centro de Tecnologia da Informação Renato Archer	NAMITEC

Acknowledgments and contacts

- Thanks for you interest
- Thanks to all NAMITEC members
- Thanks to CNPq, FAPESP and CAPES for financial support
- Contacts:
 - http://namitec.cti.gov.br
 - namitec@cti.gov.br
 - jacobus.swart@cti.gov.br
 - Phone: +55-19-3746.6001

