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CHAPTER 1

INTRODUCTION TO MICE SOLENOID COIL SYSTEM

The purpose of the MICE spectrometer solenoid is to provide a uniform field for a
scintillating fiber tracker, and thus, it is also called tracker solenoid. The uniform field is
produced by a long center coil and two short end coils. Together, they produce 4T field
with a uniformity of better than 1% over a detector region 1000 mm long and 300 mm in

diameter. Throughout most of the detector region, the field uniformity is better than
0.3%.

In addition to the uniform field coils, we have match coil 1 and match coil 2. These two
coils can be independently adjusted to match uniform field region to the focusing coil
field. Figure I-1 shows the tracker solenoid cold mass design. Figure [-2 shows the cold
mass support against 50 ton axial load. Figure I-3 shows the cryogen free system with
cryocooler, recondenser, and Hi-Tc lead. Figure 1-4 shows the vacuum vessel. Finally,
Table I-1 shows the list of magnet parameters Drwg MICE- 0000 shows the final design
of overall cross section if cryocooler installed in the sleeve. Drwg MICE-0000A shows
the overall cross section if cryocooler is directly bolted to cold mass.

TableI-1 Tracker Magnet Parameters

Coil package length = 2544 mm

— T

Parameter Match1l Match2 Endl Center End2
Coil length (mm) 201.2 199.5 110.6 13143  110.6
Coil inner radius (mm) 258 258 258 258 258
Coil thickness (mm) 44.7 29.8 - 39.6 21.3 63.9
Number of layers 42 28 56 20 60
Number of turns per layer 120 119 66 784 66
Coil overall current density (A mm™) 120.06 141.13 139.84 149.04 148.64
Coil current I (A) 214.2 251.8 248.9 265.3 265.3
Coil self inductance (H) 17.47 9.59 15.39 51.72 16.87
Coil Stored Energy at I (M.J) 0.4 0.3 0.48 1.83 0.59

| |
Separately Powered  Uniform Field Magnet S

* The uniform field magnet coils in series have a self inductance of 78 H.



Fig I-1 Tracker Solenoid Cold Mass

Coil Cover End Coil 2

End Coil 1

Match Coil 1

Center Coil
Liquid Helium
Match Coil 2

Coil Spacer

The two end coils and the center coil
form the spectrometer magnet, which
has a field good to 0.3 % in a region
300 mm in diameter and 1000 mm long.



Fig I-2 Tracker Solenoid 50 Ton Longitudinal
Force Cold Mass Support System

300 K Support End

Cold Mass Assembly

Support Band

4 K Support End



Fig I-3 Tracker Magnet Cold Mass, Coolers
Cryogenic Distribution System

Magnet Cooler

Magnet Leads
Condenser Box

Cold Mass Support -

-7 = Liquid Helium
Helium Gas Pipe



Fig I-4
Tracker Magnet Vacuum Vessel and Iron Shield

Cooler Neck

He Fill Neck \ g

Lead Neck

Cold Mass Support PMT Iron Shield

Space for Radiation Shield Magnet Stand
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CHAPTER I

MICE Detector Spectrometer Solenoid Coil Assembly Design
Engineering design drawing for coil assembly is shown in Appendix II-1

II-1. Five Coil Design, on-axis Field Profile and Peak Field on Conductor

The solenoid consists of five coils; mateh coil 1 (M1), match coil 2 (M2), the end coil
1 (E1), the center coil (C), and the end coil 2 (E2). The end coil 1, the center coil,
and the end coil 2 are connected in series and form the spectrometer solenoid. The
end coil 1 and the end coil 2 can be fine-tuned and adjusted to ensure spectrometer
solenoid field uniformity of 1% over detector volume of 300 mm diameter by 1000
mm long. On the other hand, match coil 1 and match coil 2 are each an
independently-adjustable coil. These match coils will be tuned to match muon beam
between spectrometer coil set and the focusing coil set.

The magnet design is shown in Table II-1-1,

The central field profile is shown in Figure II-1-1. The peak field on conductor in
each coil is shown in Table T1-1-1 and Fig II-1-2.



Table II-1-1 MICE MAGNET DESIGN

PARAMETER

LBL ORIGINAL SPEC.
R1 (MM) 258
COIL THICKNESS (MM) 46.2
R2 (MM) 304.2
MID-Z POSITION 124
COIL LENGTH (MM) 198
Z1(MM) 25
Z2(MM) 223
_# OF LAYER 42
# OF TURN PER LAYER 120

WANG NMR DESIGN: (MM)

CONDUGTOR INSUL THK 1.0000
CONDUCTOR INSULWIDTH ~ 1.8500
LAYER THIGK(+2.5 MIL) 1.0643
TURN WIDTH {+ 1 MIL) 1.6764
sP 56.0499
DESIGN CURRENT 214.2
COIL THICK NESS 44.699
COIL LENGTH 201,168
BPEAK (T) 4.43

MID R POSITION (LBL) 281.10
MID R POSITION (Wang) 280.35
Delta Mid-R (mm) 0.75

DESIGN COIL DIMENSION (MM)

R1{MM) 258.000
R2 302.699
Z1 23.418
z2 224,584

MATCH1 MATCH2

258
30.8
288.8
564
197
465.5
662.5

28
119

1.0000
1.6500
1.0643
1.6764
56.0499
251.8
29,799

199.492
4.01

273.40
272.90
0.50

258.000
287.789
464.254
663.746

SIDE WALL INSULATION (.125" G-10 + KAPTON)

COIL MANDREL INSULATION

END1

258
61.6
319.6
964
110
909
1019

56
66

1.0000
1.6500
1.0843
1.6764
56.0499
249.5
59.599

110.642
5.90

288.80
287.80
1.00

258.000
317.589
908.679
1019.321

(2 LAYERS G-10 0.015" + 2 LAYERS KAPTON 0.005")

BOBBIN DESIGN:

R1(MM) ' 257
R2 :

Z1 20.22
Z2 227.78
COIL BOBBIN DESIGN IN INGH
R1(INCH) 10.118
R2

Z1 0.796
22 8.968

257

461.05
666.95

10.118

18.1562
26.258

257

8905.48
1022.52

10.118

35.649
40.257

CENTER

258
22
280
1714
1294
1067

- 2381

20
784

1.0000
1.6500
1.0643
1.6764
36.0489
265.9
21.285

1314.298
4.19

269.00
268.64
0.36

258.000
279.285
1056.851
2371.149
3.2MM
1.0MM

257

1053.685
2374.35

10.118

41.482
93.478

END2

258
68.2
326.2
2464
110
2409
2518

62
&8

1.0000
1.6500
1.0643
1.6764
56.0499
266.2
§5.984

110.642
6.37

29210
280,99
1.1

258.000

323.984
2408.679
2519.321

257 -

2405.48
2522.62

10.118

84,704
89,312



Fig II-1-1

Magnetic Induction on Axis versus
the Axial Position in the Solenoid
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Fig I1-1-2

Tracker Solenoid Peak Field

End Coil 2

End Coil 1

Match Coil 1

Center Coil

Match Coil 2

Coil Spacer



II-2. Conductor Design, Ie-Be, Operating Current and Load Line (LBL task)

(A) Conductor Design

LBL has designed and procured a rectangular conductor with formvar insulation
(dimension: 1.0 mm by 1.65 mm). Its copper to superconductor ratio is 3.9+0.4. The
number of filaments is 222. The filament diameter is 41 p. The filament twist pitch
is 1943 mm. The conductor crossection is shown in Figure II-2-1. Six spools of
MICE conductors were delivered to LBNL in May 2006. The QC on the mechanical

properties are shown in Table II-2-1. It will be delivered to Wang NMR Inc. in July
2006.

(B) [c-Bc
The Ic-Be electrical specification of the superconductor is > 760A at 4.2K and 5T.

The QC test on each spool is shown in Table 11-2-2. A typical short sample test is
shown in Figure 11-2-2, which is further plotted in Figure IT-2-3.

(C) Operating Current. Load Line, and Temperature Margin

As shown in Figure II-2-3, the load lines for each of five coils in spectrometer
solenoid are shown to have temperature margin of more than 2K.

Fio I1-2-1 Conductor Cross-section

< 1.65 mm

Y

1.00 mm

Hem Kanithl, OKAS,

RRR =70 Copper  Waterbury, CT 06410 ~ 41 pm Nb-Ti Filament

10



Table 11-2-1
Conductor Mechanical Characteristics

Both tests look for filament breakup

and defects in the filament bundle. \

36680 32964 393.7 0.995 1.644 pass pass
36679 33140 396.5] 0.996 1.645 pass pass
36761-1 27363 329] 0.9%4 1.646 pass pass
367612 5366 64.7] 0.994 1.646 pass | pass
36760-1-1 15218] = 18221 0.994 1.644 pass pass
36760-1-2 7440 89.21 0.994 1.645 pass pass
Total | 121491 1485 N\ |, o oo o ]
Hem Kanithi, OKAS, The dimensions are

Waterbury, CT 06410 acceptable.

Table II- 2-2
Conductor Electrical Characteristics

| End A End B

36680 3.90 826 50 374 | 955 | 57 | 75
36679 3.55 868 54 | 370 | 826 | 51 71
36761-1 3.65 867 49 | 383 ] 872 | 49 | 91
36761-2 383 | 872 | 49 | 383 | 826 | 51 91
36760-1-1 3.84 793 56 | 371 | 824 | 57 | 73
36760-1-2 | 371 | 824 | 57 | 372 ]| 837 60 | 73

Hem Kanithi, OKAS,
Waterbury, CT 06410

The specified conductor critical current is >760 @ 4.2 Kand 5 T.
The specified conductor n value is >35. '
The specified conductor copper to 8/C ratio is 3.9 + 0.4.

The RRR values for the conductor copper are acceptable.



Fig II- 2-2
Typical OKAS Short Sample Test Plot
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Fig II- 2-3

Current (A)

Design Tracker Magnet Load Lines and Ic Versus B

for OKAS Superconductor

QOKAS Co{'lductor (76bA@SET) | : le Vs B
1.65 mm X 1.00 mm (ihsulated) OKAS Conductor
~222 NbTi ifilaments, 41 microns|dia. LT
Twist Pitgh =19 +/- 3jmm
CufSc = 3}55~3.90 : 1
RRR=71 tp 91
Load line End 2
Load lineCenter ne 37 T), _i\
PR T Er— {265 9(A @ 4.19T) T -
oad line NIatch £
(251A@4.01T) \\3 — ,,%-//’
) . 3 —— I e—cey ~ SR
Load |ine Match ":,’——
(214.2 A @ 4.43T) ................ Pk H—oad line
e Lo : (249.5A
= T//' P
1

2 3 4 5 6 7

Magnetic Induction (T)
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I1-3 Insulation Design of Conductor, Turn-to-Turn, Layer-to-Layer, and of Coil to
Ground .

(A) Conductor insulation

The superconducting composite shall be insulated with formvar (0.001” or 0.025 mm
thick) per NEMA standard MW-1000 section 18-C poly-vinyl formal resin/ class 10J/
heavy build. The insulated overall dimension of conductor is 1.00 mm by 1.65 mm,
with corner radii in the range of 0.2 mm to 0.475 mm.

(B) Turn-to-Turn Insulation

The turn-to-turn insulation including gap will be 0.050 mm (0.002”) thick formvar.

(C) Layer-to-Layer insulation

The layer-to-layer insulation will be 0.0625 mm (2.5 mil) thick fiberglass cloth (E
glass) plus 0.050 mm (0.002) formvar.

(D) Coil-to-ground insulation

Coil to mandrel will be insulated with 2 layers of Kapton (0.002" x 2) and two layers
of G-10 sheets (0.018” x 2). Coil to the coil former side wall will be insulated with
0.125” G-10 and 0.002” Kapton.

These insulation design will be meggered test to satisfy 5 kV and 200 pA leakage
current requirement.

II-4. Coil Winding Pack Design and Design of Coil Former

(A) Control winding density

During each layer winding, winding density (# of turn per cm) will be controlled to
assure field uniformity.

(B) Coil layer and potting epoxy

2.5 mil thick fiberglass will be used for layer to layer winding. Stycast 2850 FT will
be used to wet wind each coil layer.

(C) Aluminum Coil Banding to Support Coil Force

Outer most coil layer will be insulated with one layer kapton and two layers G-10
totaling 1 mm thick. A high strength aluminum alloy 6061T6 banding will be used to

14



band each coil. This will provide additional hoop force support and will ensure coil is
tightly packed when it is cool-down.

(D) Conductor Joints and Voltage Tap

After banding, conductor joints will be made by lapping joints over at least 24" long.
All joints will be carefully insulated, supported, and epoxy potted in a G-10
supporting plate. Heating due to conductor joints must be as small as possible to keep
overall refrigerator load within cryocooler capability. If necessary, superconducting
joints will be made to eliminate the heating due to joints. Voltage taps will be made
at each joints.

(E) Coil leading superconductors

In the helium space, each coil leading conductors (in and out) will be soldered with at
least three times superconductor/ copper to avoid burn out due to vapor locking. In
the vacuum space, each coil leading conductors will be soldered with at least five
time superconductor/ copper to avoid burn out. The leading conductor lengths should
be kept as short as possible. All leading conductor must be well-insulated and well-
supported. '

(F) The inner coil radius (R1)

The inner coil radius of all coils will be 258 mm or 10.158” (R1).
(G) The turmn-to-turn width

Adding a turn-to-turn gap of 0.001” to conductor width 1.65 mm (0.065™), the design
turn-to-turn width will be 0.001” + 0.065” = 0.066”.

(H) The layer-to- layer thickness

The layer-to-layer insulation will be 0.0025” fiberglass cloth, thus layer-to-layer thick
will be 0.0025"+0.0394” = 0.0419",

The winding build (AR x AZ), the number of layer, L, and the number of turns per
layer, N are shown in Table II-4-1.

15



Table 0-4-1 COIL DESIGN PARAMETERS

COIL MATCH1 | MATCH2 END 1 CENTER | END?2
# of layer (L) 42 28 56 20 62
# of turns/ layer (N) 120 119 66 784 66
Radial Coil Build (AR} 1.7598" 1.1732” 2.3464” 0.838" 2.5978”
Axial Coil Build (AZ) 7.92” 7.854" 4.356” 51.744” 4,356"
Inner Coil Radius (R1)* | 10.158” 10.158" 10,158" 10.158” 10.158"
Quter Coil Radius (R2)* | 11.917" 11.331” 12.504” 10.996” 12.755"
Mean Coil R* {mim) 280.35 mm | 272.9 mm 287.8 mm | 268.65 mm | 290.94
(Current Center) mm
Mean Coil Z** (mm) 124+1 564+1 964+1 1714+1 2404+1
(Axial Current Center)
Coil Inner Z1** (mm) 234 464.25 908.7. 1056.85 2408.7

' (inch) (0.921™ (18.278™) (35.7767) | (41.608') | (94.831™)
Coil Quter Z2** (mm) 224.6 663.75 1019.3 237115 2519.3

(inch) {8.843") (26.132™) (40.130™)  1(93.352™) | (99.185™)

* Radial dimensions are measured from the magnetic axis.

** Axial dimensions are measured from cold mass cryostat end of match coil 1.

(1) Coil winding structure, coil former design. and coil axial groove width design

As shown in Figure I-1 and Table I-1, the coil former will have an inner radius of 245

mm (9.646™) and an overall coil former length (cold mass length) of 2544 mm

(100.1577). Since all five coils shall have a G-10 sidewall thickness of 0.125”, the
longitudinal (axial) distance of each coil winding pack is calculated as shown in

Table I1-4-1,

(1) Coil radial groove depth design

As shown in Table II-4-1, each coil shall have enough radial groove depth to allow
for: (i) coil to mandrel insulation 0.040”, (ii) coil radial build, (iii) banding and its

insulation (0.250"), and (iv) 0.75” space reserved for precool line, or intercoil

connection. In addition, the center coil has the thinnest build, we plan to install coil
protection system (2.5” radial build) on the surface of center coil banding, as shown
in Figure II-4-1. Thus, the outer radius of each winding groove will be 11.25” +2.5”
=13.75” R. The coil former design is shown in drawing MICE-C001.

16




I-5. Calculation of the Axial Forces and Axial Magnetic Pressure
Radial field component, Br, generate axial magnetic force and pressure. Figure

I1-5~1 tabulates the total axial forces and maximum axial magnetic pressure for each
coil.

Figure II-5-1. Axial Coil Force & Maximum Axial Pressure

41 ton| 16 toe 105 ton _ 7 ton 169 ton
M1 M2 E1 C E2 _
. R N R Maxim.
118 kg/cm® 108 kg/cm® 95 kg/cm® 48 kg/em? 210 kg/ em? Magnetic
' Pressure

Therefore, E2 coil has maximum axial magnetic pressure of 210 kg/ cm?.

II-6. Finite Element Stress Analyses for Coil and Reinforcement Rings

The coil forces consists of hoop forces and axial compressive forces. To set up finite
element analyses and to compute hoop force and axial forces, we have computed the
magnetic field component Bz and Br within the winding. The coil is divided into 25
axial-symmetric elements. The reinforcing cylinder is divided into 90 solid elements.
Detail of finite element stress analyses are shown in Appendix I1-6-1. The conductor
stress in each coil is shown in Table II-6-1.

Table I1-6-1 MAXTMUM COIL STRESS

: coil hoop stress ( kg/ cm”) compress stress (kg/ cm?)
M, match 1 538.8 -182.5
M, match 2 643.3 -124.7
Ey end 1 834.7 -298.2
C center ' 818.2 -39.6
E; end 2 882.7 208.9

The Von Mise Stress of Reinforce ring is 960.6 kg / cm
I1-7. Coil Former Fabrication and Quality Control

Coil former is made of forging 606176 aluminum. After forging, besides chemical
composition analyses and heat treatment certification, it must be inspected for
dimensional tolerance and for surface finish, deburring, and for cleaniness. Then, it

will be leak check for a sensitivity of better than 1 x 10 torr-liter/ sec.

The before-machined drawing is shown in Drwg MICE-C001A. The final machined
former is shown in Drwg MICE-C(001
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“Appendix II-6-1

Finite Element Stress Analyses of

Coil and Reinforce Rings -

Wang NMR Inc.
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