The prediction of the thermal conductivity of xenon

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
(http://iopscience.iop.org/0022-3727/11/17/008)

The Table of Contents and more related content is available

Download details:
IP Address: 128.3.35.116
The article was downloaded on 17/03/2010 at 01:28

Please note that terms and conditions apply.
The prediction of the thermal conductivity of xenon

PC Jain
National Physical Laboratory, New Delhi-110012, India

Received 20 June 1978

Abstract. The usefulness of the extended law of corresponding states, the 11-6-8 and Barker-Watts-Lee-Schafer-Lee potentials and a recommended correlation to predict thermal conductivity of xenon has been evaluated by comparison with the recently generated data in the temperature range 800-2000 K. The agreement in all these cases is satisfactory with varying degrees of accuracy.

1. Introduction

Jody et al (1976) have recently measured the thermal conductivity \(k\) of xenon by the column method. Their data in the temperature range 800–2000 K are represented, within average absolute and maximum deviations of 0.57 and 1.39% respectively, by the following quadratic polynomial in temperature \(T\):

\[
k(T) = 2.294 \times 10^{-2} + 1.516 \times 10^{-4} T - 1.860 \times 10^{-8} T^2
\]

where \(k\) is in mW cm\(^{-1}\) K\(^{-1}\) and \(T\) is in K.

They have also tested the following recently proposed interatomic potentials for their ability to predict the experimental data on thermal conductivity:

It has been found that all these six potentials predict the \(k(T)\) data on xenon well within the experimental limits. But the Barker et al (X3) potential has been considered to be the best potential for xenon because of its ability to correctly predict all the transport properties of xenon.

It may be, however, also useful to test the extended law of corresponding states proposed by Kestin et al (1972), which has been found by Taylor (1976) to agree with his experimental thermal diffusion data (which provide a sensitive test of the intermolecular forces) on xenon with an uncertainty of the order of the best available measurement.
2. Comparison with k data and discussion

The k values of xenon computed by employing the scaling parameters of Kestin et al (1972) in the kinetic theory expression (Hirschfelder et al 1964) have been compared in figure 1 (curve A) with the k data of Jody et al. The agreement is very good (the average absolute and maximum deviations being 0.5% and 0.8% respectively) and is better than that found in the case of the Barker et al potential (curve B of figure 1). The average absolute and maximum deviations in the latter case are 0.9% and 1.4% respectively. However, the agreement of the k data with the predictions of the 11–6–8 potential (Hanley 1973) appears to be the best (curve C of figure 1), the average absolute and maximum deviations being 0.3 and 0.6% only.

3. Correlation of Jain et al

The thermal conductivity correlation recently established by Jain et al (1975) by applying the principle of corresponding states to their own thermal conductivity data on noble gases can also be similarly tested for xenon by comparison with the k data of Jody et al. This comparison is shown in figure 1 by curve D, the average absolute and maximum values of which are 2.0 and 3.4% respectively. This disagreement, being within the maximum uncertainty of the correlation, can be considered to be satisfactory. It is also seen from figure 1 that the deviations are decreasing monotonically with increasing temperatures and lie between 0.7 to 2.5% in the range 1200–2000 K.

4. Conclusions

The 11–6–8 potential provides the best fit to the k data of Jody et al. The extended law of corresponding states of Kestin et al and the Barker et al potential are successful in predicting the thermal conductivity of xenon and the corresponding states correlation of Jain et al is not so accurate but still quite satisfactory particularly in the high temperature range 1200–2000 K.
Acknowledgment

The author is grateful to the Director, National Physical Laboratory, New Delhi, for permission to publish this paper.

References

Gough DW, Smith EB and Maitland GC 1973 Molec. Phys. 25 1433
Hirschfelder JO, Curtiss CF and Bird RB 1964 Molecular Theory of Gases and Liquids (New York: Wiley) p 534
Kestin J, Ro ST and Wakeham W 1972 Physica 58 165
Lee JK, Henderson D and Barker JA 1975 Molec. Phys. 29 429
Taylor WL 1976 J. Chem. Phys. 64 3344
Thakkar AJ and Smith VH 1974 Molec. Phys. 27 191