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Diffusion through a plane sheet

• Diffusion through a plane sheet models flow through a 
membrane

• At the start: concentration in the membrane c0

• Concentration c0 changes until steady-state is established

• Common experimental setting: c0 = c2 = 0

c1 = const c2 = const

l

c0
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Diffusion through a plane sheet

• Boundary conditions: c0 = c2 = 0

• Solution:

• With t → ∞:

• Intercept (lag time):
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Diffusion through a plane sheet

Donor Barrier Akzeptor

Concentration-depth profile Cumulated drug
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Permeability and lag-time

permeability
coefficient kp

lag-time tlag

Donor Barrier Akzeptor

Concentration-depth profile Cumulated drug
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Time dependent solutions for Fick‘s second law:
Diffusion from a single spot

• Point source of particles (e.g., injection, small crystal)

• t = 0, all n0 molecules at r = 0

• Concentration is finite at all points

• Number of particles is constant

• Flux is radial

• Remember:
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Time dependent solutions for Fick‘s second law:
Diffusion from a single spot

• Point source of particles (e.g., injection, small crystal)

• Diffusion is spherically symmetric

• t = 0, all n0 molecules at r = 0

• Concentration is finite at all points

• Number of particles is constant

• The solution is:
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Steady-state solutions

• Sources
– create particles

• Adsorbers
– destroy particles

• Non-uniform distribution of particles

• Steady-state:

• Solution for spherically symmetric diffusion processes:
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Spherical adsorber

• Spherical adsorber of radius a

• Boundary conditions:
– concentration at surface is 0, i.e., c(a,t) = 0

– concentration at infinite distance is c0 = const

a

c = 0
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Spherical adsorber

• Spherical adsorber of radius a

• Boundary conditions:
– concentration at surface is 0, i.e., c(a,t) = 0

– concentration at infinite distance is c0 = const

• Solution:
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Diffusion current

• Remember:
– Flux Jr(a) = number of particles entering the sphere per unit area in 

time τ

• Particles are adsorbed by the sphere at the rate flux * surface
area:

• I is called diffusion current
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Disk-like adsorber

• Cylindrically symmetric problem

• Boundary conditions:
– concentration at surface is 0

– concentration at infinite distance is c0 = const

04DscI =
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Disk-like aperture

• Cylindrically symmetric problem

• Boundary conditions:
– concentration at surface is 0

– concentration at distance x = -∞ is c1 = const

– concentration at distance x = ∞ is c2 = const

( )122 ccDsI −=
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Disk-like adsorbers on a sphere

• Nonadsorbing sphere of radius a

• N disk-like adsorbers of radius s << a

• Concentration at r = ∞ is c0

• For small N: I ∝ N 4Dsc0

• For large N: I = 4πDac0
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Disk-like adsorbers on a sphere

• In analogy to electricity:

• Diffusion resistance for sphere: Ra = 1/4πDa

• Diffusion resistance for each disk: Rs = 1/4Ds

• Total resistance: R = Ra + Rs/N = 1/4πDa + 1/4DNs

I = c0 / RI = V / R
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Disk-like adsorbers on a sphere

• Solution:

• The half maximum of I/I0 is at:
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Disk-like adsorbers on a sphere
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Disk-like adsorbers on a sphere

• Example:
a = 5 µm

s = 10 Å

N1/2 = πa/s = 15,700

Surface fraction covered by adsorbers:

N1/2πs2/4πa2 = 1.6 x 10-4

Distance between neighboring adsorbers:

(4πa2/N1/2)1/2 = 0.14 µm = 1400 Å
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Diffusion through apertures in a planar barrier

x = b
c2

x = 0
c1
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Diffusion through apertures in a planar barrier

• I2,1 = DA(c2-c1)/b

• Rs = ½ Ds

•

with n = number of apertures per unit area
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Diffusion to capture: two adsorbing boundaries

• Particle released at x = a

• What is the probability of being adsorbed at x = 0 ?

x = b
c = 0

x = 0
c = 0

x = a
c = const = cm

Ileft Iright
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Diffusion to capture: two adsorbing boundaries

• Ileft = DAcm/a

• Iright = DAcm/(b-a)

• Probability of being adsorbed at x = 0:
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Mean time to capture: two adsorbing boundaries

• Particle released at x = a

• What is the mean time W(a) for particles to be captured at x = 0 
and x = b ?

x = b
c = 0

x = 0
c = 0

x = a
c = const = cm

Ileft Iright
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Mean time to capture: two adsorbing boundaries

• Particle may step left or right, so

( ) ( ) ( )[ ]δδτ −+++= xWxWxW
2

1

( ) ( ) ( )

( ) ( )[ ] ( ) ( )[ ]

( ) ( )

0
1

0
2

0
2

0
112

0)(2

2

2

22

2

=+

=+

=+−

=−−−−++

=−−+−++

−

Ddx

Wd

dx

Wd

dx

xdW

dx

xdW

xWxWxWxW

xWxWxWxW

xx

δ
τ

δ
τ

δ
δ

δ
δδ

τ
δδτ

δ

87

Mean time to capture: two adsorbing boundaries

• Boundary conditions:
– adsorbing boundary

W = 0

– adsorbing boundary
dW/dx = 0

• In the above example:
– adsorbing boundaries:

W(0) = W(b) = 0

– solution:

– mean time to capture particle released at random position x:
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Mean time to capture:
adsorbing and reflecting boundary

• Boundary conditions:
– adsorbing boundary at x = 0

– reflecting boundary at x = b

• With

W(0) = 0

dW/dx = 0 at x = b

the solution is
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Mean time to capture:
adsorbing and reflecting boundary

Mean time to capture particle released at random position x:
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Mean time to capture

0 b/2 b
0

b2/4D

b2/2D
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x

adsorbing boundary at x = 0,
reflecting boundary at x = b

adsorbing boundaries at x = 0, x = b

91

Mean time to capture

• In one dimension:

• In two or three dimensions:
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Diffusion

1. Microscopic modelling: Molecular dynamics

2. Mesoscopic modelling: Random walk

3. Macroscopic Theory
a. Fick‘s laws of diffusion

b. exact solutions

c. numerical solutions
H.C. Berg: Random walks in biology - Princeton University Press

J. Crank: The mathematics of diffusion – Oxford University Press
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Physical derivation
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Physical derivation

• Amount diffusant entering through unit area in time τ:

• Amount diffusant leaving through unit area in time τ:

• Net gain of diffusant:
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Numerical solutions (one-dimensional)

• Select two grid constants h (space) and k (time)

• Grid points are (xi, tj) with xi = ih for i = 0, 1, …, m and tj = jk
for j = 0, 1, …, n.
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Numerical solutions (one-dimensional):
Forward scheme

• Explicit finite-difference formula:

• Error: O(k+h2)

• Conditionally stable:

• Number of multiplications:
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Forward scheme

With

and

this can be written as
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• Implicit method

• Error: O(k+h2)

• Unconditionally stable

• Needs boundary conditions

• Values may be negative

Numerical solutions (one-dimensional):
Backward scheme
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Backward scheme

With

and

this can be written as
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Numerical solutions (one-dimensional)

• Implicit: Crank-Nicholson method

• Error: O(k2+h2)

• Unconditionally stable

• Number of operations (inluding solving the tridigonal system):

• Needs boundary conditions

• Values may be negative
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J. Crank, P. Nicolson. A practical method for numerical evaluation of solutions of partial 
differential equations of the heat-conduction type. Proc. Camb. Phil. Soc. 43:50-67 (1947)
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Crank-Nicholson method

With

and
( )

( )

( )⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−

−

−

−+−

−+

=

λλ

λ

λ

λλλ

λλ

1
2

00

2

0
2

0

2
1

2

00
2

1

L

OOOM

OO

MO

L

A

( )2/ hkD=λ



102

Crank-Nicholson method

and

this can be written as
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The tridiagonal linear system

• The equation

can be written as

which is basically a tridiagonal linear system:
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Solving the tridiagonal linear system

• Direct methods
– Gauss‘s elimination method without pivoting

– LU decomposition / Thomas algorithm

– Crout reduction

• Iterative methods
– Jacobi method

– Gauss-Seidel method

– Successive over-relaxation method
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LU decomposition

H.R. Schwarz: Numerische Mathematik – Teubner Verlag Stuttgart

G.D. Smith: Numerical solution of partial differential equations – Oxford University Press
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Crank-Nicolson method w/ Crout reduction

Let nx = the number of data points + 1

Let c[x] be the concentration for x = 0,...,nx with
c[0] = c[nx] = 0.

Step 1

INPUT c[x] = input data for x = 1,...,nx-1

Set c[0] = c[nx] = 0

Set lambda = Dk/h2

Set u[0] = 0

Step 2 (Initialization of C-N tridiagonal matrix)

For x = 1 to nx-1

Set l[x] = 1 + lambda + lambda/2 * u[x-1] 

Set u[x] = -lambda/(2*l[x]) 
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Crank-Nicolson method w/ Crout reduction

Step 3 (Iteration of C-N algorithm for nt time steps)

For t from 1 to nt

Set z[0] = 0

(Solution of tridiagonal system by Crout 
reduction)

For x from 1 to nx-1

Set z[x] = ( ( 1 – lambda ) c[x] +

lambda/2 * ( c[x+1] + c[x-1] +

z[x-1] ) ) / l[x] 

(Back substitution)

For x from nx-1 to 1

Set psi[x] = z[x] - u[x]*psi[x+1] 

Step 4

OUTPUT c[1] through c[nx-1]



108

Boundary conditions

• Dirichlet conditions:
value at the boundary is function of time, e.g., w(0,t) = b(t)

• Neumann conditions:
specify flux at the boundary

• Mixed boundary conditions

• Periodic or wraparound boundary conditions
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Numerical solutions:
Two dimensional forward scheme

• Basic equation:

• Grid:
– x, y space divided in elements of length h, k with indices a, b

– timestep of length τ, index n

• Concentration at all points is known for t = 0

• Solution:

• Stable for:
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Mathematical derivation of solutions

• Approximate

by Taylor series

e.g.: addition
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Miscellaneous equations

• Douglas equation
– implicit

error: O(k2+h4)

unconditionally stable

– explicit

error: O(k2+h4)

conditionally stable: λ ≤ 2/3
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Miscellaneous equations

• Du Fort and Frankel
– explicit

– unconditionally stable

– error: O(k2+h2)

• Implicit three-time level difference equation

– unconditionally stable

– error: O(k2+h2)
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