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ABSTRACT

Flexural creep in pure and filled acrylic resin systems
by

Ranjan K. Nandi

The creep behavior of poly (methyl methacrylate) and acrylic
polymer concrete (PC) systems based on methyl methacrylate was
studied in flexure. Creep in both pure and filled systems followed a
power law time dependence. A differential form of the power law
equation was used to eliminate the irregularities associated with

time-independent and transient strains in the experimental data.

de;oe/dt = In nk + (n-1) In ¢t

where e;y; is the total sirain and n and k are constants in the

power law equation. Plots of creep rates versus time yielded good
linear fits to the data, the slopes providing values for 'n', the
power exponent. Vertical superposition was then used to reduce
data at different stresses and resin contents, for the PCs onto a
single master curve using different shift-factors. This data

reduction was expressed in the form of an empirical expression :

e(t,S,v) = egref) . EXP (Kg.[S - Sef 1) - EXP (Ky. [V - Vpep ]) . t1

which expresses the total creep strain as a product of separable

functions of time (t), stress (S) and the resin volume fraction (v).
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CHAPTER 1

INTRODUCTION

1.1 DESCRIPTION OF POLYMER CONCRETE

Concrete in general can be defined as an artificial congloinerate
consisting of aggregate (or filler) and a fluid binder, which
solidifies as the system "sets" or cures. Unlike portland cement
concrete, which uses a paste of cement and water as binder, in
polymer concretes (PCs) a synthetic polymer such as a polyester,
epoxy or acrylic is utilized as a binder. In other words, polymer
concrete (PC) is a composite material in which a mineral aggregate
such as sand and gravel is combined with a liquid organic resin

and hardened through polymerization reactions.

Polymer concretes have various advantages over conventional,
portland cement concretes. They have higher tensile, compressive
and flexural strengths, and rapid cure rates. Many PCs achieve
full strengths in several hours or less, whereas portland cement
systems require 2-4 weeks. Also, they have excellent resistance
to impact, abrasion, weathering, freeze-thaw, chemicals, water
and salt sprays. Disadvantages include high cost and the failure to

bond to wet surfaces. However, their biggest drawback lies in
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their viscoelastic behavior. Due to their viscoelastic properties PCs
can creep significantly and be highly sensitive to temperature
changes. Table 1 shows a comparison of the properties of PC with

Portland Cement Concrete (PCC).

1.2 ELASTIC AND TIME - DEPENDENT RESPONSE TO STRESS

When a polymeric material is subjected to a constant load, the
resulting deformation tends to increase with time as entangled
chain segments undergo conformational changes in response to
external stress. The process is called creep. Accordingly, creep
tests measure the time - dependent strain on specimens subjected
to constant stress. Residual deformation is found immediately
‘upon removal of the ioad. This gradualiy reduces with the passage
of time and in some cases a tested specimen may regain its original

dimensions. The process is called creep recovery.

The same type of conformational changes in the macromolecular
matrix that generate creep also give rise to a time dependent
decay in stress when viscoelastic- materials are subject to constant
deformation. The process is called stress relaxation. Consequently,
stress relaxation tests measure the time dependent stress on

specimens under constant strain.



TABLE 1. Comparison of the properties of Polymer Concrete

with those of Portland Cement Concrete.

- o = e = - ———— A e he-EEE RS EEEG® e, ETaGEEESEE oS o® e ==

Polymer

Concrete

Portland

Cement

Compressive Strength, psi

Tensile Strength, psi

Modulus Of Rupture, psi
Modulus Of Elasticity, *100 psi

Hardness, Impact Hammer, psi

5,700 - 21,300

1,000 - 2,000

3000

1,200 - 3,000

1.0-2.0

55

4,000 - 5,000

300 - 360

700

470 - 530

2.8 - 3.6

32
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Data from creep and stress relaxation tests are interconvertible
though the methods involved are quite complexl. The following
equation, however, provides to a first approximation a relation

between creep and stress relaxation.

~~
o
.
-
[

N

[et/e0 lcreep = [ S0/St ] stress relaxation

where : ey = creep strain at time t

creep strain at time 0

o
=)
I

Sy = stress at time t, and

Sg = stress at time O

1.2.1 MODELS

The simplest models for representing creep and stress relaxation
utilize Hookean springs and Newtonian dashpots, connected in
series (Maxwell model, Fig. 1.2.1) or in parallel (Voigt model, Fig.

1.2.2). The modulus of the spring is E and the viscosity of the
dashpot is M. In the Maxwell modell a constant strain is imposed
and the stress is measured as a function of time. The stress due to

the spring is eE and that due to the dashpot is m(de/dt). In this



MODULUS =E

VISCOSITY =n

SN

Figure 1.2.1 Representation of a Maxwell unit.

model the net rate of change is zero as a change in the elongation
of the spring is compensated by an equivalent change in the
dashpot. We therefore have :

de/dt = (1/E) ds/dt + Sm=0 (1.2.1)

The solution of equation (1.2.1) gives :

S/Sg = EXP (-Et/n) = EXP (-t/t) (1.2.2)



where t = relaxation time = n/E.

MODULUS =E

VISCOSITY =n

NARMNOOMRNOMOOMOCOMOOGORNORNRGNNRNARNARRRNRNRNNNNN

FIGURE 1.2.2 Representaticn of a2 Voigt unit.

In the Kelvin or Voigt model2 (Figure 1.2.2) a constant stress is
imposed and the strain response is measured as a function of time.
The spring and dashpot are in parallel and the total stress is given
by :

S = E.e + n.de/dt (1.2.3)
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Assuming constant stress and, eg = 0 att = 0, integration of

equation (1.2.3) gives :
e=S/e. EXP (-t/t) (1.2.4)

where t= n/E, is the retardation time.

A better approximation of creep is given by the four element

model as shown in Figure ( 1.2.3 ). Here we have a spring of

modulus Ej, followed by a spring Ep and dashpot mj in parallel,

and finally a dashpot m3 in series. At constant loading, the total

elongation is a sum of the elongations of the three component

parts. Therefore we have :

e = So/Eq + Sp/Eg (1 - EXP ( -t/)) + Sgt/n3 (1.2.3)

where t =1n9/Ey is called the retardation time.
Upon immediate removal of the load there is an instant reduction

owing to the elastic part Sg/Ej. The recovery for the residual

deformation is given by :

e=ey. EXP [-( tt1)/ 1+ Sot1/ 73 (1.2.4)

where eg = Sg/Ey {1 -EXP[-t;/t]}.
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Except for the viscous part due to the dashpot all the creep is
recoverable. Figure (1.2.4) shows the creep and creep recovery of

a four element model.

(%)

e

FIGURE 1.2.3  Representation of a four element model.
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FIGURE 1.2.4 Creep and creep recovery of a four element model.

1.3 PREVIOUS WORK ON POLYMER CREEP

Early studies on creep were carried out by Weber3 in 1835. He

found that upon application of a load to a raw silk filament, the
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initial elastic extension was followed by a further time dependent
deformation. He noticed that removal of the load caused an elastic
contraction equal to the initial elastic cxtension. With further
passage of time further contraction took place and in some cases
the specimen recovered to its original dimensions. He called this
creep phenomenon an elastic after effect. Based on simple
hypotheses he made an aitempi tc fit creep and recovery curves.

He proposed the following relationship between the creep rate and

deformation :
de/dt = f(e) | (1.3.1)
& e=K(t+c)? (13.2)
Where K, C, n are constants.

One of the earliest and most popular creep laws was that of

Norton# who worked on different alloys. According to this model,

de/dt =K (S/Sg)1 : (1.3.3)

where, S = applied stress, and K, n are material constants.

A model developed by Eyring5 for the effect of the applied shear

component in creep still remains to be one of the most
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accepted models to describe such creep behavior. He considered
the transition of a particle from an initial position to a final
position by overcoming an energy barrier. The principle can be
suitably applied to the creep process in plastics, as creep probably
involves only localized segmental rearrangments (' as indicated by
decreasing flow rates with time and a large recovery of flow).
Assuming that the barrier to rearrangement has the free energy

height AF* relative to the initial state, the probability of a segment

having this energy AF* at any time is proportional to exp(-AF*/kT)
where k is the Boltzmann constant. With the application of a shear
stress the rearranging segments that move in phase with the stress
absorb mechanical energy which contributes to the energy
required for crossing the barrier. " If the flow element absorbs
mechanical energy tb on moving from the initial position to the top
of the barrier then the energy associated with T, the absolute
temperature, is reduced to (AF* - tb). The flux now becomes

”n [nd

kT}, with a probality of one half of

proportional to exp{- (AF* - tb)/
continuing to the final position. Again, the probality of a backward
transition is proportional to exp {- (AF* + 1tb)/kT}. The net forward

flux of rearrangements is then given by :
(net flux) = 2 exp {-AF*/kT} . sinh {tb/kT}. (1.3.4)

Findley6 proposed a model which seemed to describe most creep
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curves quite accurately. His equation was of the form :

e (tot) = eg + KB (1.3.5)

The value of ep is not necessarily that of the elastic strain but a

value of strain used to fit different test data. Taking logarithms,

Ln(e(tot) -eg)=LnK+nLnt - (1.3.6)

A plot of ( e(tot) - eg ) versus time on logarithmic scales gives us a

straight line with the value of n being predicted from the slope. A

method of successive approximations may be used to find the

value of ep. Three different times are chosen such that one is the
geometric mean of the other two. If t{, tp, t3 are the three times

chosen then t3 = Sq. rt ( tj.t5 ). Using some some simple

mathematics and substitutions we get :
ep = (ejep - e32) [ (e] +eo - 2e3) (1.3.7)

where ej, ey and ez are the strains corresponding to the times tj,
ty, t3. He later’ found that eg and K could be represented by

hyperbolic functions such that :
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eg = eg’' Sinh S/Se (1.3.8)

& K =K' Sinh S/S (1.3.9)
where S, Si, €p', and K' are constants.

Equation (1.3.5) reduces to :
e = e’ Sinh S/Se + K' Sinh S/Sp (1.3.10)

An extension of Norton's model by Marin and Pao8, who used
Plexiglass and Lucite (different forms of PMMA) for their
experiments, provided the following relation :

e =DS™M + BtSh (1.3.11)

where D, m, B, n are material constants which depend upon the

loading mode.
McLoughlin’s9 equation was,

Log (Zg - Logigp E) = A+ BLogipt (1.3.12)

where, Zy =Logig Eg + C/K. [10(Kx0/CO)]
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A=Logig CK
B =K/Cy
His equation predicted the creep of PMMA quite well to

temperatures of 600cC.

McVettle used the following equation for creep in chrome steel :

de/dt = K + Ko EXP (-pt) (1.3.13)

where K, Kq, p are constants of the material, temperature and

stress level. On integratiom.

e =eg + Kt - ( Kg/p). Exp (-pt) (1.3.14)

where ep is the integration constant.

A similar law using logarithmic functions instead of exponentials

was suggested by Weaver2 where the strain was given by :
e=-b+Kt+alogt (1.3.15)

where b, K, a are material and temperature constants for a given

stress level.
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Previous creep studies on polymer concretes are rather limited.
Howdyshell11 measured the creep characteristics of polyester PC.
He used three different stress-strength ratios of 0.23, 0.44 and
0.66 for a testiag period of 1000 hours. He found that the only
specimens which withstood the full length of time were those at
the 0.23 level. The others failed prematurely. On comparison of
the creep strains of polymer concretes with those in portland
cement concretes it was seen that strain decreased with increasing

times in PCC whereas they reached an asymptotic value in PCs.

Prin and Cubaudl?2 studied the application of PCs in the
construction industry. They chose polyester as the parent resin
and then investigated the mechanical properties of the polyester
concrete. In flexural tests they noticed that the slenderness ratio
affects the behavior of the PC. The material had a tendency to
exhibit less linearity at higher values of slenderness. Also, creep
strains at compressive stress-strength ratios of 0.5 are less than

the coresponding elastic strains and stabilize in about 1-3 months.

Knabl3 studied the short term and long term flexural behavior of
reinforced polyester concrete beams. He developed a
mathematical model to predict long term deflection. Significant
deformations‘ were observed under both long and short term

loadings thus limiting to a great extent its use in structural

applications.

Yo
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Ohamal4 performed compressive creep tests on polyester

concretes and developed the following equation for creep strain :

ec=t/A+Bit (1.3.17)

where e. is the creep strain and A and B are arbitrary constants.

He used low stress to strength ratios for his experiments, the

highest being 0.18.

Okada et al.l3 studied the influence of temperature on polyester
concrete behavior. Using low stress to strength ratios it was found
that creep increased increased with an increase in the resin

content and the temperature.

Broniewski et al.l0 performed compressive creep experiments on

epoxy based PC's. The creep strain according to their model is

given by,
e; = eg (t / b)y™M (1.3.18)

where b, m are arbitrary constants, e; the time dependent strain
and eg the initial strain. The equation can be used in PC systems

without fibre reinforcement as well as systems containing steel

fibers at different volume fractions.
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Helall7 found that at high stresses there is a large deviation of
creep behavior of PC from traditional viscoelasiic theories.
Reinforced concrete beams were not successful in enhancing
mechanical properties owing to severe internal stresses caused by
high shrinkage deformations during polymerization. As a
result inadmissible deflections, severe cracking, and eventually
premature failure was observed in diagonal tension. He found that

specimens that did not fail could be represented by the hyperbolic

creep law of Ross.

Hsul? performed some flexural studies on MMA based PCs. He
used stress to strength ratios of 0.3, 0.4, 0.5. He found that a
higher stress to strength ratio resulted in a larger strain. Also the
creep was not linearly proportional to the applied stress, an
observation made previously by Helal during his polyester
concrete studies. The specimens were loaded for one year and it
was seen that 20% of the final creep took place within the first day
and about 50% in the next 5 days. Creep in PC was one to two

times higher than that in conventional concrete.

Dharmarajan19 attempted to describe the creep behavior in
polyester and epoxy based polymer concretes. He used a "triple
superposition scheme" to develop a constitutive equation for
prediction of long term creep in PCs. He investigated the influence

of stress, temperature and resin content on the creep responses of
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the PC, and reduced the data onto a chosen reference state. This
successful data reduction made it possible to describe the creep
compliance of PC systems as a product of separable functions of

time(t), stress(S), temperature(T) and resin volume fraction(v),

such that :

Jit, T, S,v) =J;. [ exp (-HRT) . exp (Kg . S) . exp Ky . v) . t] ™
e (13.19)

Some recent work was done by Kumar20 on poly methyl
methacrylate in flexure. He developed a constitutive equation
which expressed creep strains as separable functions of time,

temperature and stress. The model he used for curve fitting was :
eot (1L, S) =M (S) + N(Sor T or both) . f (1) (1.3.16)

where S is the applied stress, T the temperature and t the fime.

Accordingly plots of {eyo; - M(S)} versus time on a logarithmic

hours. He considered this time to be the duration of transient
strains and neglected the data for the first six hours, based on this
assumption. The other observation he made was that the creep

response curves are highly sensitive to changes in the value of
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M(S). Consequently he used different curve fitting packages to
obtain values for M(S) which gave the best linear fit to the
experimental data. The values he got for M(S), the time
independent strain, were close to the elastic strain values for that
material. His constitutive equation, an extension of Findley's

work, had a power law dependence with an exponent 0.24.

The previous studies on polymer concrete have certain limitations.
A major portion of the work has been restricted to poiyesters and
epoxies. Not much emphasis has been put on acrylic based PCs.
The commonly used mode of testing is of the compressive type
even though the systems fail more readily in tension and flexure
than in compression. Previous experimental work show that a
power law dependence of creep is probably one the most accurate
models for describing creep responses in polymers and composites.
Doubts remain,however, concerning the nature and the value of
the power law coefficient 'n' of equation (1.3.5). These questions

leave us room for further study.

An important deiriment to the accurate representation of creep
strains developed in polymer concretes is the inability to extract
with conviction the creep strain from the total strain of the
specimen, which contains its elastic deformation, as well as, any
transient strains, due to misalignment or other experimental

factors. Models developed by Turner2! and Kumar20 where :
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etot (6 S) =M (8) + N (S or T or both) . f (t), showed a strong

dependence of the [ etot - M (S) ] versus time plots ( logarithmic
coordinates), on the value of M (S) ( Figure 1.3.1 ). Kumar
assigned a time period of six hours to the duration of the
transients as it was after this time that he obtained straight line
correlations ( Figure 1.3.2 ). However, this was typical to his case
where he worked solely on unfilled PMMA. From his observations
though, one thing becomes increasingly clear: the importahce of

separating the time independent and transient strains from the

creep strains.
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Fig 1.3.4 Manipulation of Kumar's (20) creep data.
If M(S)+N.f (t) is assumed, an appropriate choice
for M(S) can simplify the form of f(t).

21
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Fig 1.3.2 1Isothermal creep strain vs time in an
attempt to find the transient strain period (Kumar's data).
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CHAPTER 2

SCOPE AND OBJECTIVES

In this research project we set out tc :

1. Investigate the flexural creep of pure PMMA and
MMA based polymer concrete systems under different conditions

of stress, -temperature and resin content.

2. Use an alternate method to that of Kumar20 for
obtaining the value of 'n', the exponent in the power law equation :
er = eg + Ktl'. Instead of the total strain the strain rate was plotted
against time in an effort to eliminate the inaccuracies owing to the
sensitivity of the time independent strain ep. The slope of the

least squares fitted line would be (n-1) and the intercept K.n.

3. Study the influence of stress, temperature and resin

content on the value of 'n’, both in pure and filled resins.

4. Compare the creep behavior of the acrylic PC to that
of the parent resin and attempt to correlate the behavior of the

concrete to that of the resii.
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5. Use this value of 'n' to develop an empirical
expression which predicts the creep response of polymer concrete

systems in terms of stress and resin content.

6. Conduct long term experiments on polymer concretes

to see if the observed responses match the behavior predicted by

the empirical equation.

Most of the previous work on polymer concretes has been in
tension or compression. In our study we used the flexural mode of
‘testing to generate the experimental data. It is believed that the
creep process originates in the resin phase. Hence, the parameters
that affect the creep behavior of the parent resin should also
influence the creep response of the polymer concretes. Based on
this assumption we worked on both filled and unfilled acrylic resin
systems and investigated how closely the responses matched.
Considerable attention has been given to the temperature
dependence of creep and extensive investigations have been
conducted to determine the temperature sensitivity of creep. In
comparison, studies on stress and resin content, as factors which
play an important role in predicting the creep response of polymer

composites seem lacking. Also, the nature of the exponent 'n' in
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the power law equation has not been investigated in detail. In
this work we endeavored to find a method for eliminating the
initial strain from the creep equation of polymeric materials in an
effort to determine more accurately and easily the creep behavior
of polymeric materials. This was simply accomplished by using
Findley's creep equation in differential form. Instead of plotting
the strain values against time we used strain rates instead. It was
seen that the experimental strain responses were reasonably
described by polynomial functions and a computer program was
used to fit different functions to the observed data. The same
program was used to generate derivatives of the interpolating
functions at given time intervals. The objective of using this

procedure was to provide an alternate method of finding n and K
values. It shall be shown how plots of In( dein /dt ) against In t

indeed yielded straight lines whose slopes and intercepts would

provide us with values for n and K, constants in the power law

equation.
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CHAPTER 3

EXPERIMENTAL PROCEDURE

3.1 CREEP APPARATUS

All creep experiments were carried out in flexure, using the
set-up shown in Fig. 3.1. Three specimens can be loaded
simultaneously using this arrangement . Dead weights are used to
load the specimens. Their effect is magnified by a ten-to-one lever
arrangement so that high stresses can be achieved using relatively
low dead weights. The specimens are housed inside a casing used
to protect the experiments from drafts and other external
disturbances. Thus, significant stress - strength ratios are
generated by using dead weights ranging from 500 to 3500
grams. A four-point loading mode is employed using two loading
noses resting on top of the specimen The support spar is 15.2 cms.
Once the dead weight is applied to the lever arm the force is
transmitted to the connecting rod which in turn transfers the load
onto the two loading noses resting resting on the specimen. A
linear variable differential transformer (LVDT) is attached to the
connecting rods and its output is digitally recorded. The LVDT is

first calibrated using a micrometer set up (appendix A).
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Temperature  fluctuations within the casing are monitored by
using a copper/constantan thermocouple using ice-water as the
thermocouple reference state. The average temperature under

ambient conditions is 249C +/- 20C.

We covered a stress range from 5 to 17 Mpa for the unfilled
polymethyl methacrylate and 6 to 11 Mpa for. the polymer
concretes. In the latter case lower stress values had to be used
owing to quicker failure of the polymer concretes compared to the

parent resin.The stress was calculated using the following

relation22 :

S =PL / bd2 (3.1.1)

where,

P = Applied load at a given point in the load deflection curve
L = Support span, mm

b = Specimen width, mm

d = Specimen depth, mm

S = Applied stress, Mpa

The flexural creep strains correspond to the maximum strain in the

outer fibers at midspan and are given by :

e = 4.70 ( Dd/L2) (3.1.2)
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Figure 3.1 Sectional view of the flexural creep apparatus.
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where,

e = strain, mm/mm

D = midspan deflection obtained from LVDT readings.
d = Specimen depth, mm
L

= Support span, mm

It is important to note that the above relation utilises midspan
deflections (D 1 /p) whereas our deflections are measured at a
length equal to ome third of the support span (D 1 /3) . Some
simple calculations based on the fundamentals of mechanics show
that D y/9 = 1.15 D g /3. Thus midspan deflections may be

easily computed and consequently °~ creep strains measured

using equation 3.1.2.

3.2 METHODS AND MATERIALS

3.2.1 Acrylic Resin System

The unfilled polymethyl methacrylate (PMMA) which was used for
the first part of the experiments was provided by Rohm and Haas

(available under the trade name of "plexiglass”"). PMMA is a linear
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thermoplastic polymer, resistant to most inorganic solvents and
some organic solvents. It resists the plasticizing action of water
and is therefore unaffected by atmospheric humidity. It
undergoes glass transition at a temperature of 100°C, and
consequently its mechanical properties show a strong temperature

dependence within the range from 00C to 1000C.

Methyl Methacrylate (MMA) was the primary monomer, used for
making the particle reinforced composites which were léter
subjected to mechanical testing. MMA was supplied by Du Pont. It
is a clear, low viscosity monomer with a high volatility and a
sharp, pungent odor. Approximately one part per million can be
detected by smell. It polymerizes easily within temperature
ranges from OOF to 1009F when combined with the proper
initiators, and accelerators (promoters). During our specimen

preparation MMA was cured at ambient temperatures.

Acrylic resins provided by the Sartomer Company were used to
provide shrinkage control. The two resins used were Sartomer
205 (Triethylene Glycol Dimethacrylate) and Sartomer 231
(Diethylene Glycol Dimethacrylate). These are clear liquids with
mild odors, high boiling points and low viscosities. These resins
act as crosslinking agents as they are difunctional monomers

Owing to their relatively high molecular weights the sartomers

have low vapor pressures which helps reduce the unpleasant MMA
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odor when they are mixed together, and reduces considerably

evaporation losses at peak polymerization exotherm.

The acrylic resin used in the preparation of the polymer concrete
specimens contained small amounts of PMMA powder (Elvacite
2013) provided by Du Pont. The main purpose for using this
PMMA powder was to increase the  viscosity of the resin in
order to maintain uniform suspension of the filier particles during

polymerization, as well as further decrease monomer evaporation

at peak exotherm.

Free radical addition polymerization was used to prepare the
specimens. Benzoyl Peroxide (BPO) was used as the initiator in
the form of a paste containing 40% BPO. The promoter, DMPT,
was used in conjunction with the BPO to accelerate the
polymerization process by lowering the activation energy for the

generation of free radicals.

3.2.2 Coupling Agents

In order that a filler not be detrimental to mechanical properties,
stress must be efficiently transferred from the polymer to the
filler23. However, unlike organics which are hydrophobic,

inorganic filler particles have hydrophillic surfaces. As a result
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adhesion between the resin and filler particles is poor. The
tendency of the inorganics to absorb water further degrades
adhesion and worsens the problem. Coupling agents are used to

overcome these difficulties. The most common ccupling agents are
silanes with the general formula YRSi (OR')3. The (OR') group

reacts with the inorganic substrate and the Y group reacts (forms
secondary bonds) with the polymer thereby enhancing interfacial
adhesion. The silane can be added to the filler as a pre-treatment
step or it can be added directly to the resin during the processing
stage where it migrates to the resin/filler interface.  Another
advantage provided by these coupling agents is that by converting
an otherwise hydrophillic surface to a hydrophobic one
compatibility with the polymer is improved. This helps in
producing a easier and more uniform dispersion of the filler in the
polymer. Also, for a given amount of filler the viscosity may be
significantly reduced, thus improving processability. For the
polymer mortar in our study we used a silane coupling agent. r-
Methacryloxypropyl - trimethoxy silane was provided by
Polyscience. The functional groups in them react with both the
sand and the resin to form hydrogen or covalent bonds. In our

systems the silanes were added directly to the resin.
3.2.4 Additives

The mineral Montmorillonite, a hydrated clay mineral was
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dispersed in the resin phase of the acrylic polymer concrete
systems in order to ccatrol setting stresses and obtain zero cure
shrinkage systems. Cure shrinkage is a typical property of most
polymerization systems. The formation of macromolecular chain
networks involves the conversion of secondary bonds ( bond
distances of 3 - 4 A) to primary bonds with shorter bond distances
( bond distance about 1.5 A), thereby causing a decrease in
volume. In highly filled polymer systems, where the solid
aggregate particles occupy over 60% of the volume, the resin no
longer forms a continuous phase. It is confined largely in the
discrete spaces between the rigid aggregate particles, where it is
forced to cure at constant volume. This constraint in cure
shrinkage generates within the polymer matrix  setting stresses,
which are tensile in nature. @ When the cured composite is
subjected to external loads the presence of setting stresses causes
a considerable decrease in strength (ca. 25% in compression and
30-35% in tension or flexure). Consequently, special additives are
used in these composites to counteract cure shrinkage and
eliminate setting stresses. One such additive system developed in
these laboratories24:25 is the mineral montmorillonite. For our
specimens we used specially modified montmorillonite (MMT)
particles to provide the necessary shrinkage compensation . The
hydration water present in the MMT was replaced by ammonia

and then dispersed into the resin. The ammonia forms

coordination bonds with the SiO; in the mineral which in turn are
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broken when the temperatures rise during the exothermic
reaction. The gaseous ammonia is now trapped inside the resin
imbedded MMT particles and this causes them to dilate
significantly. By varying the amount of ammonia-modified MMT
we can thus obtain systems in which the net shrinkage is zero and
setting stresses are absent. Consequently, the strengths of the PCs

can be increased by about 20%-40%.

3.2.4  Aggregates

Silica sand was used as the aggregate, supplied by the Clemtex
Corporation in Houston, Texas. The particle size ranged from 8 to
100 mesh. Depending on the resin content desired, the amount of
filler used was varied. For our specimens we worked within a
range of 78% - 85% by weight, of sand. Much of the heat
generated from the polymerization exotherms is lost in the heating
of the aggregate particles. As these constitute a major portion of
the polymer concrete system there results a reduction in the peak

exotherm temperature during cure.
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3.2.5  Specimen Preparation

The composition of the acrylic polymer concrete system is shown
in Table 3.2.1. Four different resin - aggregate ratios were used to
give samples having resin volume fractions of 0.33, 0.36, 0.39,
and 0.41. The following steps were followed in the preparation of
the polymer mortar and the polymer cement systems : 1) The
PMMA was dissolved in the MMA and to the resulting solution the
acrylic dimers were added and mixed. 2) The initiator, promoter
and coupling agents were then dissolved in the resin. 3) MMT or
MMT/aggregate was then blended into the resin. 4) The polymer
mortar mixture was poured into rectangular molds along with the
siliceous aggregates. The mixture was now left to cure at ambient
temperatures. After curing, the specimens were allowed to cool
down before demolding. The polymer concrete bricks now
obtained had dimensions of 6" x 4" x 2". For testing purposes these
were cut up into smaller specimen sizes having average
dimensions 6" x 1" x 1/2" using a circular saw. Diamond blades
provided by Felker were used for cutting the samples. In addition,
the surfaces of the samples were further finished on the belt
sander to achieve (reasonably) uniform thickness and parallel
surfaces. Our specimens were now ready for the creep
experiments. The elapsed time between the cure and the testing

had no effect on the creep responses of the materal.
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TABLE 3.2.1 Composition of acrylic polymer concrete systems.

Component Weight %
Acrylic Resin System

Methyl methacrylate ( MMA ) 42.7
Triethylene glycol dimethacryiate { Sartomer 205 ) 20.0
Diethylene glycol dimethacrylate ( Sartomer 231 ) 12.0
Poly methyl methacrylate ( PMMA ) 15.0
Fumed silica ( Cab-0O-Sil ) 2.0
Benzoyl Peroxide (40 % paste ) 1.0
N, N' dimethyl p-toluidine ( DMPT ) 0.3
3-methacryloxypropyltrimethoxy silane 1.0
Ammonia modified Montmorillonite ( MMT ) 6.0
Mineral aggregates

#1 Sand (8-20 mesh size) 40.0
#3 Sand (16-40 mesh size) 30.0
#6 Sand (60-100 mesh size) 30.0
Note : A combination of the acrylic resin system and mineral

aggregates was used to make PC samples having differents

amount of resin by weight. For example PCs with v=0.39 contain

20 % acrylic resin and 80 % mineral aggregates.
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3.3 LOADING MODE

Beams can be subjected to four different modes of deformation :
tensile, compressive, flexural and torsional. In our study we used
the flexural mode of testing which is both easier and more
economical than compression tests. Using the lever arm
arrangement for the flexural tests, large stress - strength ratios
may be generated using relatively low weights, whereas in
compression, much higher loads would be required to preduce
similar stress - strength ratios. In pure bending of a beam, the
longitudanal fibers on the convex side (i.e. below the neutral axis)
suffer an extension, while those on the concave side (i.e. above the
neutral axis) undergo compression. On this basis flexural behavior
may be used to provide information on both the tensile and

compressive properties of the material.

Flexural tests may be performed using a distributed load,
three-point or four-point load. For a simply supported beam,

three-point loading imposes the load on a single point or line in the
center of the beam. It is on this line that we have the maximum
bending moment and the maximum axial fiber stress. On the other
hand, in four-point loading, the shear force is zero and the
bending moment constant over the central portion of the beam
between the two loads. The maximum fiber stress acts uniformly
over the distance between the two loading noses, which in our

case is one-third of the total support span. Thus, any irregularities
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in measuring flexural responses owing to the presence of point
defects on a line in three-point loading, are removed in the
four-point mode, as the maximum bending moment in this case
occurs over an area and not a line. Figure 3.3.1 shows the shear
and bending moment diagrams for a beam loaded in

four-point26’27.

In figure 3.3.1 (a) the beam shown is loaded by two equal forces P
each at a distance of L/3 away from the supports, where L is the
total support span. Figure 3.3.1 (b) isolates a section of the beam
at a distance of x from the left support. This section is applicable
for any value of x just to the left of the applied force P. As can be
seen from figure 3.3.1 (c), the shear remains constant irrespective

of the distance from the support and its value is +P.

On the other hand, the bending moment varies linearly from the
support, and reaches a maximum of +P.L/3. In figure 3.3.1 (d) we
have shown an arbitrary section applicable anywhere between
the two applied loads. In this section no shearing force is
necessary to maintain equilibrium of a beam segment. In this zone
a constant bending moment of +P.L/3 must be resisted by the
beam. Under such conditions of flexure the bending is called 'pure’
bending. There is no axial force at any section in the beam, hence
the absence of axial-force diagrams. The complete shear and
bending-moment diagrams are shown in figures 3.3.1 (c) and (e).It

should be noted that the LVDT readings correspond to deflections
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at a distance of one-third of the support span. We are, however,
interested in midspan deflections for the purpose of our strain

calculations. The two values can be interrelated fairly easily from

-P A L/2
I P

L) (d)

N

(e)

Figures 3.3.1 (a) - (e). Shear and bending - moment diagrams for

a beam loaded in four - point.

basic mechanical equationszo. For the beam loaded as shown in
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figure 3.3.2 the deflections at midspan and at one-third the length
were calculated using the following equations developed for

elastically deforming materials,

D /3 = 0.030864 . ( PL3/EI) (33.1)
Dr,p = 0.035494 . ( PL3/EI) (3.32)
where, E = elastic modulus, I = first moment of area,

P = applied load @& L = support span.

From the above two equations the deflections at midspan can be

estimated from the deflections at the point of measurement
(one-third of the support span), so that, Dysp = 1.15 Dy /3. In
materials where E is time - dependent we assume that D follows

the same dependence.

Figure 3.3.2 The relation between deflections at one-third the

support span and those at midspan.



41
CHAPTER 4

RESULTS AND DISCUSSION

4.1 FLEXURAL CREEP BEHAVIOR OF UNFILLED PMMA

The total time - dependent strain in a creep experiment can be

separated into three components : the elastic component (eej),

transient component (e;) and the creep component (ecr). The

transient strains include short term changes caused by rapid
equilibration of stress concentrations owing to small misalignments
of the polmer specimen. For flexural experiments the total time
dependent strain is given by d/2R, where d is the beam thickness

and R the radius of curvature of the bent beam.

Fig. 4.1.1 shows the nature of the strain - time curves obtained in
flexural creep expériments with pure PMMA at a constant
temperature of 450C, with different imposed stresses. It is
evident from the creep curves that stress has a strong influence on
the isochronal creep strains, an increase in stress levels causing
higher values of creep strain. Accordingly to Findley6, the total

strain can be expressed as seperate functions of time-independent
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and time - dependent strains such that :

erot = ¢g + Ktt (4.1.1)

where e is the time - independent strain, and n and K are

constants.

It should be noted that ey may or may nct be the same as the
elastic strain. It is merely a value of strain used to fit the data.
Plots of total strain minus the time independent strain ( eyot - € )

versus time on a logarithmic scale should therefore yield linear
plots provided a proper value of the initial strain is used. Fig. 4.1.2

shows the effect of different ep values on the creep resonse curves

for PMMA. There is a significant shifting of the creep curves and
for the initial part of the experimental data one does not get
straight lines at all. In this work we endeavored to find a .method
for eliminating the initial strain from the creep equation of
polymeric materials in an effort to determine more accurately and
easily the creep behavior of polymeric materials. This was simply
accomplished by using Findley's creep equation in differential
form. Instead of plotting the strain values against time we used

strain rates instead.

Differentiating equation ( 1.3.5 ) we get :
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dejor /dt=n. K.t (@D (2.1)

assuming that the time independent strain ep is a constant under

the given conditions. Taking logarithms on both sides of the above

equation we then have :
In(detgr /dt)=In(n.K)+(n-1)Int - (22)

Since the exact form of the time-dependent creep equation is not
known we used curve fitting techniques to describe the data. A
computer program was used to generate polynomial functions to
interpolate between the experimental data points. It was seen that
polynomials fit the data quite well. The values of the derivatives

of the interpolating functions at different times were computed by
the same program.  Plots of In( de¢,¢/dt ) against In t were now

made as shown in Fig 4.1.3 and Fig.4.1.4, at two different
temperatures and stress levels. Thus, an easier alternative was
used to evaluate the n and k values, constants in the power law
equation. As expected from theory we got good straight. line
correlations. The values of 'n' remained constant at a patricular
temperature level but seemed to show some variation with
changing temperatures. Variations in stress did not seem to have
a noticeable effect on 'n'. Within a temperature range from 22 to

459C 'n' ranged from 0.18 to 0.27 which corresponds well with
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the value of 0.24 observed by Kumar20 in his work using
"plexiglass”. Fig. 4.1.5 shows how temperature affects 'n’ values,
though not much confidence can be put into this behavior, due to
considerable scatter of the n values. The plot includes previous

experimental data on PMMA from other investigators.

4.2 EFFECT OF STRESS

Creep data for the PMMA samples were collected at various stress
levels at constant temperature. Fig.4.1.1 shows the creep curves
for PMMA at 450C at progressively increasing stresses : 5.31, 9.09,
12.95 and 16.71 MPa. The creep rates for these curves were now
computed using the differential form of the power law equation
and Fig.4.2.1 shows plots of creep rates versus time on logarithmic
coordinates . The solid lines in Fig.4.2.1 represent the best least
square linear fit to the data at different stresses. The curves are
all linear and parallel to each other with a consiant slope (n - 1).
An increase in stress causes an increase in the overall creep rate of
the specimens. The 'n’ values are fairly constant and occur within
a range from 0.25 - 0.27. Fig. 4.2.2 shows similar plots at a
different reference temperature (350C). The 'n' value in this case

ranges between 0.22 - 0.24.

In order to reduce the expense associated with the generation of
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sufficient creep information for design purposes, methods for
interpolating and extrapolating the experimental data are
required. @ From a practical standpoint it would be of great
importance if ome could hasten these tests, for example, by
increasing the stresses or the temperatures to which the specimens
are subjected. However, a fundamental prerequisite28 to any
such kind of acceleration, is that the mechanisms active in the

accelerated situation and the actual situations are the same.

For linear viscoelastic polymeric materials a considerable amount
of work has been done on extending creep, stress relaxation and
other data through the method of time - temperature
superposition. The main concept behind this method is to perform
short term creep experiments at progressively increasing
temperatures and then superpose the creep curves by means of
'shift factors' onto a lower reference temperature, thereby
creating a "master curve" predicting behavior for times much

longer than the duration of the actual experiment.

Probably the most well known form of such temperature

shift-factors was provided by Williams, Landel and Ferry29. For

polymeric materials above glass transition the shift -factor (a) for

most amorphous polymers was given by :

Logjp ar = (1744 (T-Tg) /516 + T- T, (4.2.1)
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where Tg, the glass transition temperature , is used as the

reference temperature.

Owing to the severely restricted chain mobility in glassy polymers,
they are not expected to follow the W-L-F equation. However,

alternate methods of creep data superposition are possible. For

many polymers below their glass transition temperature, ar

follows the exponential form of an activated rate process:J’0 .

We dealt with an analogous process called stress - time
superposition, where a master curve was obtained by shifting
creep curves at progressively increasing stresses by using
different stress shift-factors. For the superposition to be
applicable we had to work outside temperature ranges where

major thermodynamic changes take place (e.g. glass transition).

Having obtained values for 'n' and K from the gradients and
intercepts of the creep curves in Figs. 4.2.1 and 4.2.2 we now use

these values to provide a value for the imitial time - independent

strain ep. Plots can now be made of total strain minus the

instantaneous strain, against time on logarithmic axes. Ignoring
data for the first six hours, during which time the plots are
nonlinear ( owing to the presence of transient strains ), we see

that the creep curves are linear and parallel ( Fig. 423 & Fig.

424 ).
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Also, isochronal creep strains increase with increasing stresses
indicating a non-linear viscoelastic response at the chosen stress
levels. The horizontal shifting of creep curves at different stresses
along the log-time axis wuntil they superimpose, can be

mathematically represented by:

e(Sy, t) = e(S, tag) (4.2.2)

where S;is the chosen reference stress in MPa and ag is the stress

shift-factor. The creep curves being linear and parallel to one
another, two different types of superposition may be used,
namely, horizontal or vertical. Horizontal superposition has been
used extensively in past studies and has been briefly discussed
before. It results in an equivalent shift along the log-time axis.
Since the curves are parallel with a constant time exponent we can
also use a vertical shifting procedure which is easier in application.

In this case the shift factor is expressed as :
ag = e/erer = Kg t / KS(ref) tB 4.2.3)

Therefore, the shift factor for vertical superposition simply

reduces to :

ag = Kg/ Kg(ref) : 4.2.4)



57
Franceschini and Momo28have proposed a relation between the
stress - time superposition and the Zhurkov equation31 for
polymer life. According to them the stress shift-factor ag is given

by:
ag = e K(S-S(ref) ) /RT (4.2.5)

where R is the universal gas constant , K is a material constant and

S(ref) is the reference stress.

Both horizontal and vertical superposition have been used by
Cessna30 in studies involving filled and unfilled Polypropylene.
He used vertical superposition to eliminate time - independent
strain and horizontal superposition to produce a "master curve" for

true creep at a reference stess level. His vertical superposition is

equivalent to our removing initial strain (ep) from the total strain

data.

The stress shift-factors as obtained from the vertical shifting of the
creep curves are plotted against against applied stress on

semi-logarithmic coordinates in Fig.4.2.5. A linear dependence of

In ag on stress is noticed thus indicating that the Arrhenius

relationship is followed quite well.

ag = ¢ (Kg9S) (4.2.7)
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where KS is expressed in terms of material constants and
temperature.

Fig. 4.2.6 compares the shift-factors obtained from the two
different methods. The values are fairly close to one another and
the plots have very similar gradients. Thus, we have successfully
developed a method by which we can define shift-factors without
entering into complexities associated with the uncertain néture of

the initial and transient strains.

4.3 FLEXURAL CREEP BEHAVIOR OF POLYMER CONCRETE

After having established a new method for determining the power
law coefficient and generating vertical shift-factors based on the
differentiai form of Findley's equation with PMMA samples we
now extend this principle to polymer concrete systems using
methyl methacrylate as the parent resin. Our object was to study
the effect of varying both the stress and the resin volume fraction,
on the isochronal creep strains of the PC systems. Fig. 4.3.1 shows
typical time-dependent strain curves of the PC at increasing levels
of stress and resin loadings. The creep strains increase with an
increase in stress levels as seen before with pure PMMA. The
increase in creep strains with increasing resin loadings was not

surprising since it is believed that creep originates in the resin
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phase itself. We used five stress-strength ratios, from 0.22 to 0.38.
In most cases the specimens fractured soon after the start of the
experiment at the highest ratio so our data was restricted to the
first four ratios (0.22, 0.26, 0.29 and 0.33). As the stresses became
higher the creep responses became unstable and at sufficiently
high times led to rupture of the specimens. Fig. 4.3.2 shows the
creep curves for PC at progressively increasing stresses. The
value of the power exponent 'n’ under such unstable creep

conditions no more remains constant but increases significantly.

4.4 EFFECT OF STRESS

Keeping the temperature and the resin contents constant the PC
beams were subjected to progressively increasing stresses ranging
from 6 MPa to 9 MPa. Fig. 4.4.1 and Fig. 4.4.2 show plots of creep
rates versus time for the PC systems at two different reference
states. The solid lines indicate the best least square linear fit to
the data. As, with the pure PMMA we notice an increasing wend
in the creep rates with increasing stresses. The curves are fairly-
parallel to one another with the exponent 'n' varying between 0.16
and 0.19. The slight variation was probably due to experimental
variations in specimen preparation and cutting. ‘ Since the
differences in the values showed no regular pattern we adopted a

constant average value for 'n' in our analysis.
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Figs. 443 and 4.4.4 are plots of creep strains versus time on
logarithmic coordinates. As with the data from the PMMA samples
a non-linear curve fitting program was used, where the 'n' values
obtained from figs 4.4.1 and 4.4.2 were used to find the values of
the time - independent strains. Now plots of creep strain versus
time could be made. Unlike the PMMA samples, however, where
the first six hours of data had to be neglected to get good straight
correlations, in our PC systems data from the first minute itself
yielded good linear fits. A possible reason for such behavior could
be the successful elimination of setting stresses and transient
strains by using montmorillonite to get zero cure-shrinkage
systems. Another reason may be high percentage of inert material
( 58% - 67 % ) in the PCs, which is reflected in a reduction of the

non-linearity associated with the pure resin.

The stress shift-factors ( ag) obtained from the creep curves are
plotted against stress on semi-logarithmic cootdinates in Fig. 4.4.5.
These shift-factors also show an exponential dependence on stress

and good linear fits are obtained.
ag =exp(Kg.S) (4.4.1)

Fig. 4.3.8 shows the difference in the values of the shift-factors
using two different methods and as with the pure resin the values
show good agreement with one another, proving once again the

accuracy of the differential method.
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4.5 THE EFFECT OF RESIN CONTENT

The volume fraction of the resin (v) also influences the creep
behavior of the acrylic PC systems. At constant temperature and
stress the isochronal creep strains increase with increasing resin
contents as can be seen from Fig. 4.5.1 We worked within a range
of v=0.33 to v=0.41. At lower resin contents there was not enough
resin to support the polymer/aggregate mix with the result that
undesirable air bubbles formed within the specimen leading to
their premature failure. At higher resin contents, on the other
hand, the excess resin appeared to "float”" above the bed of
aggregates thus resulting in a non-homogenous PC specimen. For
our experimental puposes, therefore, we had to restrict ourselves

to a narrow range of resin volume fractions.

Fig 4.5.2 shows the linearized curves for the creep rates verus time
at a constant stress level using the differential method. In Fig
4.5.3 and 4.5.4 the creep strains have been plotted against time at
different reference stress levels. Once again the curves are linear
and parallel to one another, thereby, enabling us to use our

superposition methods.

The vertical resin loading shift-factors, are given by a relation

similar to the one used for the stress shift-factors. In this case :

ay = Ky / Ky (ref) (4.5.1)
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Having obtained the shift-factors from the intercepts, plots of a,

versus v were made on semi-logarithmic axes (fig 4.5.5) to see
whether the Arrhenius relationship was obeyed. Good linear fits

suggested that the resin loading shift-factors were given by:

a, = EXP (K, .v) 4.5.2)

where K, is expressed in terms of iemperature and other material

constants. Fig 4.5.6 is a comparison of the Arrhenius plots

obtained from the two different methods.

4.6 TIME - STRESS - RESIN CONTENT ( DOUBLE ) SUPERPOSITION

Once we have obtained the different shift-factors, namely, the
stress and resin content shift-factors, we now attempt to obtain an
empirical expression which describes the creep strains for the PCs
as a product of separable functions of time ( t ), stress ( S ) and
resin volume fraction ( v ). From Figs. 4.4.3, 444, 453 and 454
we see that the creep response curves at different conditions of
the dependent variables for the PC systems are linear with near
identical slopes. The slight variation in the slopes arising from

small deviations in the value of 'n' is attributed to experimental
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error associated with specimen preparation and cutting. For all
practical purposes the curves are parallel to one another. ( It is of
interest to note that in the pure resin, in this case "plexiglass”, at
constant temperatures, the variation in 'n' values was a lot smaller.

Here, all the tested specimens had identical preparation history

and dimensions ).

The linear and parallel curves make it possible to achieve a
complete superposition of all the creep strain data obtained at
different stresses and resin loadings onto a single "master” curve
at a chosen reference state. In principle, this kind of
superposition is similar to one used by Dhaarm:«.u'ajan19 in which he
deals with time, temperature, stress and resin content, thus
using what he calls a "triple superposition” scheme. Our method,
on the other hand uses double superposition. Unlike Dharmarajan
who used horizontal shifting of the parallel curves, we have used
vertical superposition for advantages mentioned earlier. It can
also be related easily to horizontal superposition (appendix B). The

vertical shift-factor may be related to a shift in the time axis as

follows:

tSorv = (KS or v/Kref) L tref (4.6.1)

The superpositicn scheme can be applied only under the condition

that changes in stress and resin loadings should bring about
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identical changes in the relaxation times of the PC systems. Also,
the stress-strength ratios should be such that all measurements
should be made within the range of stable creep. In other words,
reduction of the creep curves using this method would only be

possible in cases where creep leading to rupture did not occur.

In the previous sections we have shown how the different
shift-factors based on resin content and stress can be expréssed in
the Arrhenius forms. Also the creep behavior as a whole is well
represented by the power law equation, with 'n' being the time
exponent. This suggests the possibility of writing the creep

equation as a product of these functions such that :
e(t,S,v) = eg .ag .ay .t" (4.62)

where the preexponential eqp is the creep strain of the PC

measured at a reference level of each of the three parameters. We

chose our reference state as : t = 1 minute, T = 249C, S = 6.11

MPa, v = 0.36. Substituting the expressions for ag and ay in eqn.

4.6.2 we now get,
e(t,S,v) = eo.EXP(KS.[S-Sref]).EXP(KV.[V-Vref]).tn

The original form of the above equation was developed by
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Dharmarajan and Armeniades32 and later modified by Kumar20 .
Qur form is more similar to the one used by Kumar. In both the
previous forms, however, there is a certain uncertainty about the
value of the power exponent 'n’ owing to the irregularities
associated with the time - independent strains. They both used
trial and error to get to the value of 'n'. We have, by using creep
rates instead of creep strains ( using the power law equation in

differential form ) found a more definite and easier way to find '’

as well as the shift-factors.

To check for the validity of the empirical creep equation, loﬁg
term tests were made ( ca. 7 days ), and the data compared with
the response predicted by our creep equation. The results are in
good agreement as can be seen from Fig 4.6.1. Though n ranged
between 0.16 and 0.19 for the PCs, the higher value of 0.19 was
assumed for the creep equation as this was in closer agreement
with the n values of the parent resin. Also, insufficient data on
PCs necessitated this assumption. When the power exponent in the
empirical expression for the PCs is replaced by the value of n
obtained from the pure resin samples, the long term prediciion for
creep is even more accurate, as can be seen from Fig 4.6.1. This
further confirms the assumption that creep originates in the
polymer matrix itself. For design purposes it is therefore
advisable to use the power exponent calculated from the data on

pure resins. Table 4.6 lists all the parameters used in eqn 4.6.3.
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Table 4.6 Parameters in the empirical creep equation for acrylic

based polymer concrete systems.

Parameter Value
Kg 0.74
Ky 22.18
eo 9.7685 E-05
Tref 297 0K
Sref 6.11 MPa
tref 1.0 minute
Vref 0.36

'n’, power exponent 0.19
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4.7 APPLICATION OF OUR METHODS TO CREEP DATA FROM
PREVIOUS INVESTIGATIONS

In this study we have found an alternate way to find the value of
the power exponent 'n’, 'by using the power law equation in its
differential form and using the slopes of the creep rate versus time
curves to provide us with values of 'n'. Findley6, as outlined in

the introduction used a method of succesive approximations to find
the value of the initial time - independent strain ep. Plots could
then be made for the total strain minus eq versus time. The value

of the power 'n' was then obtained from the trigonometric slope of

the straight line drawn through the data. He chose three values of

time tj, tp and t3 such that t3 = Sq.rt ( t.ty ). From his equations

ep is now given by:

eg = ej.ep - €32 /e1 + ey - 2.€3 (4.7.1)

where ej, ep and e3 are the strains corresponding to the three

times. We applied this procedure to our data to see how well the

'n' values from the different methods compared with one
another.  Fig. 4.7.1 shows plots of (etyt - €p) versus time. The
different values of ep and 'n' are noted next to each curve. We get

good straight line fits, and the 'n' values compare well with ones
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obtained from our method. The proximity of these numbers with
those obtained from our methods is an indication of the accuracy
and feasibility of our method. Another observation we made was
that though Findley's method worked well with most data sets, in

some cases where the creep data was slightly irregular it was
extremely difficult to get a proper value of ep owing to deviations

from the power law equation caused by fluctuations of the
experimental strain values . In such cases we either did not get
good linear fits or the 'n' values were very erratic. In our method,
however, since we first smoothed out the curves by curve fitting
with appropriate functions, any possible outliers from the
experimental data were automatically taken care of. As a result it
was possible to get reasonably accurate values even from

relatively scattered data sets.

We now extended our method of linearization to tensiie creep data
generated by Ogorkiewicz33 at 209C and 60°C on acrylic cast
sheets at progressively increasing stresses. Fig 4.7.2 shows how
straight line fits are obtained for the creep rate versus time
curves. At 60°C 'n' was 0.3 and at 20°C 'n' was 0.18. The n values
obtained from his data are in reascnable agreement with those
obtained from our work on PMMA, if one takes into account the

temperature dependence ( see Fig.4.1.5 ). We went one step
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further and calculated the stress shift-factors from the intercepts
of the lines in Fig 4.7.2. Here too the shift-factors followed an

Arrhenius dependence as can be seen from the plots of ag versus

stress in semi-logarithmic coordinates in Fig 4.7.3.

Though a considerable amount of creep data is available on pure
acrylics, work on acrylic polymer concretes has been somewhat
limited. Hsul® studied the flexural creep behavior of acrylic based
PCs. He used MMA based PCs with formulations somewhat similar
to ours. His data was generated over a considerable period of time
(ca. 1 year). Despite the fact that our linearization principle was
applied over much shorter times it worked excellently on Hsu's
data. Fig 4.7.4 shows the linearized plots at the three different
stress-to-strength ratios. At  stress-to-stength ratios of 0.3 and
0.4 we get a constant time exponent of 0.165 which is very close
to our 'n' values for the PCs (0.17). At a higher stress-to-strength
ratio of 0.5 the specimens used by him fractured. We thus had a
very high value of 'n’ (0.31) at such high stresses owing to
catasrophic creep which is exactly what we had observed from our

work on the PCs at high stresses.

Ayyar and Deshpande34 performed compressive creep
experiments on epoxy and polyester mortars at varying stresses
and constant ambient temperatures. We again used our method to

treat their data on epoxies. From the plots in Fig 4.7.5 we obtained
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‘'n’ values of 0.24 which were lesser than 0.30 predicted by them.

The data, however, responded well to our linearization technique.

The results obtained from treating data of previous investigators
indicate the success of our linearization techniques in predicting
accurate values for the power exponent 'm’. It also shows how a
constitutive equation in terms of time and stress can successfully
describe creep behavior. It is a well known fact that éreep is
significantly affected by temperature changes and Fig. 4.7.6
applies our methods to Kumar's20 data on PMMA at different
temperatures. The plots are all linear and parallel with strains
increasing with temperature increases. The temperature

shift-factors obtained can also be related by an Arrhenius

relationship :
ap = EXP (-AH /R ( 1/T - 1/Tief) 4.7.2)

Good linear plots confirmed the Arrhenius dependence (Fig.4.7.7).
This implies that temperature shift-factors can also be
incorporated into our creep equation so that creep can now be

defined in terms of time, temperature and stress.

In addition to temperature and stress we have shown how the
volume fraction of the resin present in the polymer concretes also

affects creep behavior , and how resin loading shift-factors can be



1n [Temperature shift-factor]

84

i} 1 1 1
A
@
N 4
@_
o .
Reference stress=9.41 MPa
<
o | Reference temperature=308 K 7
<
o 7 T . T T A
0.00300.00305 0.00310 0.00315 0.00320 0)@0325

1T

Fig 4.7.7 Arrhenius plot of temperature shift-factors
versus 4/T from Kumar's data at a reference temperature
of 35 degrees centigrade and reference stress of 9.1 MPa.



85
included in the creep equation. Though it would be of interest to
treat previous data based on varying resin contents, such data is

not easiiy available.

Dharmarajan19 did some work on resin shift-factors on polyester
and epoxy PCs. He used horizontal shift-factors and Fig. 4.7.8
shows a linear dependence similar to ones observed in our study.
He used the pure resin (v=1) as the reference resin volume
fraction. Dharmarajan also worked on low shrinkage systems
using montmorillonite to control setting stresses and incorporated
glass fiber reinforcement for additional strength enhancement. By

analogies with his work we can possibly include two more shift

factors, one based on MMT, apq, and the other on fiber
reinforcement ap, such that the overall creep equation may now be

expressed in the form

eot(t .S, v, M, F)=eg.ar.ag .2y . ap - ag . t" (4.7.3)

where all the shift-factors have been previously defined and eg is

the pre-exponential.
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CHAPTER S

CONCLUSIONS

1. Creep in both pure and filled acrylic resin systems is strongly
dependent on temperature and stress, and in the case of the PCs
on the resin content as well. For stress - to - strength ratios less
than 0.4 the PC systems exhibit stable creep behavior which can be
successfully expressed in terms of separable functions of time,

stress and resin volume fractions.

2. Within the stable stress - to - strength range for the PCs it is
possible to sucessfully superpose data at varying stresses and
resin contents onto a single "master curve”, thus enabling us to
predict long term creep behavior from short term observations
‘(ca. 18 to 24 hrs). This superposition scheme, with the help of the
various shift-factors can be used to provide an empirical

expression which describes long term creep behavior in the acrylic

PC systems.

3. Creep in both the pure and filled acrylic resin systems is highly
stress dependent, and increases with increasing siresses. The

stress shift-factors obeyed the Arrhenius dependence well. Creep
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in the PCs also increases with increasing resin contents and here
too the resin loading dependence, described in terms of resin

loading shift-factors followed the Arrhenius relationship.

4. In all cases the creep data followed a power law dependence
on time.
5. The value of the power exponent 'n' can be determined using

the power law equation of Findley in its differential form. The
exponent is determined from the slopes of the creep rate versus
time curves. The creep rates increase with increasing  stresses
and resin loadings. The good linear fits obtainecd using this method
provides an easy way to find 'n' and k values, both constants in

the power law equation.

6. The power exponent shows negligible variation with changing
stresses and remains mostly constant. A change in the resin
loadings also left n unaffected. However, a slight increasing trend

in 'n' values is observed with increasing temperatures for the pure

PMMA samples.

7. The addition of the mineral montmorillonite to the PC systems
during sample preparation helps reduce setting stresses by

eliminating cure shrinkage, which in turn minimizes the transient
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strains. The high percentage of inert material in the PCs also leads
to an overall reduction in the duration of the transient strains.
Thus,in the case of the PCs we could use data from the first minute
whereas for the PMMA samples we eliminated the first six hours
of data to get reasonable results. Annealing the PMMA samples

beforehand, however, helps in reducing the transient strains.
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CHAPTER 6

RECOMMENDATIONS FOR FUTURE WORK

One of the principle objects of this study was to provide a simple
and efficient tool to determine some of the coefficients in the
power law creep equation by eliminating complexities associated
with the irregular behavior of the initial and transient strains.
This leaves us with room for further investigations on the nature
of these coefficients, specially 'n’, the power exponent. A wide
range of experiments at different values of stress, temperature,
etc. should provide substantial information on the effects of such
parameters on the power exponent. This in turn would help in
modifying the existing constitutive equation to give more accurate

predictions of long term creep strains.

In our study we noticed some dependence of 'm' on temperature
which could not be substantiated owing to the lack of sufficient
data. However, the fact that the 'n’' values increase with T, offers
us with interesting possibilities of modifying the creep equation.
One such possibility could be to see if 'n' can be rzlated to some

form of "reduced" temperature ( in the case of polymers, say, T/Tg

where Tg is the glass transition temperature ), similar to that used

in the theory of corresponding states. A correction for 'n' based
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on this scheme would reduce the creep equation to:

eCI' =k.t n (T/Tg)

It would be a significant achievement if one cculd come up with
such a theory but it would also mean plenty of experimenting with

different materiais and cocmparisons of 'n' values at reduced

temperatures.

The methods developed in this study should be extended to
various other commercially available PC systems, containing
different polymerizing systems such as epoxies, esters, etc. It
would be of interesi io see if our methods of data reduction could
be applied to all such systems as well. One could also compare the
activation volume and the activation energy values of different PC
systems with those of their parent resins and thereby relate the

deformation characteristics of the composites to their parent

resins.

Another drawback of this study was our inability to compare the
responses predicted by the empirical expression with actual long
term experiments exceeding times of more than one year. It is

recommended that creep experiments be ccoducted for such long



102
durations at sufficiently low stress - to - strength ratios so as to
avoid catastrophic creep. A more conclusive check on the accuracy

of the empirical equation could then be made.

Lastly, I would like to recommend certain changes be made to the
existing apparatus. The supporting frame should be made as rigid
as possible such that the relative deformations of its members are
negligible. Another problem we encountered was with
experiments with changing temperatures. The environmental
chamber itself was fragile and slight increases in the pressure of
the circulating fluid caused leakages which had to be sealed from
time to time. Also with water cooled chambers there exists
temperature gradients between the surface of the bath and the
specimen. An air cooled chamber using circulating air at the
desired temperature could reduce this problem. A heat exchanger
may be used to provide the correct temperature and a
dehumidifier in series could help remove moisture. Such
conditioned air at the proper temperature and relative humidity

should help in creating more stable experimental conditions.
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CALIBRATION OF THE LVDT
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Calibration Readings:

Excitation = 4.0 Volts

Position (inches) LVDT reading (mV)
0.063 -2.998
0.064 -2.992
0.065 -2.985
0.066 -2.978
0.067 -2.971
0.068 -2.965
0.069 -2.958
0.070 -2.951
0.080 -2.876
0.090 -2.791
0.100 -2.703
0.110 -2.601
0.120 -2.497
0.13n -2.385
0.140 -2.265
0.150 -2.148
0.160 -2.016
0.170 -1.898
0.180 -1.773
0.190 -1.640
0.200 -1.520
0.210 -1.386
0.220 -1.262
0.230 -1.141
0.240 -1.010
0.250 -0.891
0.260 -0.761
0.270 -0.639
0.280 -0.515
0.290 -0.384

0.300 -0.264



111
Calibration Readings:

Excitation = 4.0 Volts

Position (inches) LVDT reading (mV)
0.063 -2.979
0.064 -2.974
0.065 -2.967
0.066 -2.961
0.067 -2.953
0.068 -2.946
0.069 -2.940
0.070 -2.933
0.080 -2.856
0.090 -2.767
0.100 -2.681
0.110 -2.576
0.120 -2.471
0.130 -2.361
0.140 -2.237
0.150 -2.122
0.160 -1.993
0.170 -1.870
0.180 -1.748
0.190 -1.612
0.200 -1.491
0.210 -1.359
0.220 -1.233
0.230 -1.114
0.240 -0.984
0.250 -0.863
0.260 -0.736
0.270 -0.603
0.280 -0.479
0.290 -0.371

0.300 -0.264
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APPENDIX B

HOKIZONTAL AND VERTICAL SUPERPOSITION

In our study we used a vertical- superposition scheme to evaluate
the different shift-factors. A more commonly used procecdure is
one which involves horizontal shifting. The shift-factors calculated

from the two different methods can, however, be fairly easily

interrelated.
A
Ine
K
2 e2 e2
S, T, v
K
1 el
.
t t
1 5 Int

Fig R.1  Comparison of horizontal and vertical superposition.



From the above figure we have,
e; =K 11
er = Kj o = Ky t10

The shift factors may be defined as follows,
ag(s, T or v) = (12 /11 )

& ay@s, Torv)=(e2/e1)

-

From B.I, B.2, B.3 and B.4 we tiierefore get,
a = (Kp /Ky )l/m
H(S, T or v) 2 1

& ay(s, T or v) = (2 /)"

or, ay(s, T or v) = (@H(S, T or V))n
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(B.1)

(B2)

(B3)

(B4)

(BS5)

(B.6)

(B7)

Thus, the two shift-factors can be easily interrelated provided the

value of n is known.



