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A WEIBULL BRITTLE MATERIAL FAILURE MODEL FOR THE ABAQUS 
COMPUTER PROGRAM 

by 

Joel Bennett 

ABSTRACT 

A statistical failure theory for brittle materials that traces its origins 

to the Weibull distribution function is developed for use in the general 

purpose ABAQUS finite element computer program. One of the funda­

mental assumptions for this development is that Mode I microfractures 

perpendicular to the direction of the principal stress contribute indepen­

dently to the fast fracture. The theory is implemented by a user 

subroutine for ABAQUS. Example problems illustrating the capability 

and accuracy of the model are given. 

INTRODUCTION 

Brittle materials (glasses, ceramics, graphites, and concrete) exhibit a scatter in 

their fracture strength. Current theory says that such a scatter is caused by the distribu­

tion of microscopic flaws intrinsic in the material. However, many other properties, such 

as corrosion resistance, low thermal conductivity, etc., of this class of materials have 

made them very attractive for use as a structural material. One of their chief attractions 

is high-temperature strength and, thus, their structural applications have focused on 

heat engines, turbine blades, and reactor cores. Their "brittle" characteristic (linear or 

near-linear stress-strain behavior to fracture) and their near-zero ductility, combined with 

the large scatter in fracture strength, have led to a probabilistic approach for a design 

philosophy when brittle materials are used. 

WeibulM first proposed that statistics be used in a probabilistic prediction method. 

He used a weakest link theory (WLT) and assumed a unique form for the cumulative 

distribution for uniaxial fracture data, which he determined by simple tension tests. Later 

he demonstrated that the distribution function he had assumed had wide applicability to 

many naturally occurring processes.^ 
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A number of papers and reports that appeared in the literature in the 1970s and 

1980s dealt with the Weibull approach to fast fracture. Generally, they took one of the 

following forms: 

(1) papers that deal with reporting the influence of the assumed cumulative 

distribution function;3 

(2) papers that attempt to combine the statistical approach with Griffith-lrwin-

Orowan fracture mechanics;'*-^ 

(3) papers and reports on experimental results and their correlation;7-io 

(4) papers that describe the Weibull approach and its applications to various 

design problemsi^-'''' 

(5) and papers that discuss combining the statistical approach with finite 
element stress analysis codes and methods.^^-u 

Handbooks on brittle material design are represented by Refs. 15 and 16. 

The principal point of agreement of all of these works is that the Weibull approach 

has good utility for the design of brittle material components. For the same reason, the 

approach provides an excellent tool for safety evaluation studies of graphite reactor core 

components such as those proposed for usage in the New Production Reactor (NPR) 

and, in particular, the modular high-temperature gas-cooled reactor (MHTGR) concept. 

This application is one of the primary motivations for the research reported here. 

The work reported in Refs. 12-14 deals with postprocessing schemes for finite 

element computer codes. The approach taken in the work reported here is to include a 

Weibull probability of failure (POF) estimation in the finite element solution process. 

Indeed, in the conventional finite element displacement formulation, recovery of stresses 

is, in some sense, a "post-calculation." Because all information necessary to calculate 

the POF on an element-by-element basis is available at this point in the calculational 

flow, the most logical place to implement this computation seems to be at the point of 

stress recovery. 

Since its introduction at the Los Alamos National Laboratory, the widely used 

ABAQUS^^ code has become a production code for many users who deal with stress 

analysis and heat transfer. One of the better features of the ABAQUS general purpose 

finite element code is the ability to add user-coded subroutines for describing new 

elements, materials, loads, constraints, etc. The author has used many of these 

features, usually with good results,^^ and these features are improved with each new 

version of the code. This report will describe the implementation of a Weibull POF 

model for Version 4.8 of the code. 
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FUNDAMENTAL BASIS FOR THE WEIBULL MODEL 

WeibulM postulated that a uniformly stressed volume in a state of uniaxial tension 
a has a set of failure statistics described by the three-parameter equation. 

Pf = 1 -exp a - On 

Oo J 

m 

(1) 

where 

Pf = probability of failure, 
Gu = the "threshold" stress for which P̂  is finite, usually assumed zero, 
Oo = one of the Weibull distribution fitting parameters for a set of data, and 

m = a second Weibull distribution fitting parameter for the data set (m is called 

the Weibull modulus). 

This cumulative distribution function has the derivative, with respect to s, given by 

F(a) = _ m | g - a u 
CTQ 

m-1 

exp 
(a-Gu)" l̂ 

(2) 

Equation 2 is the frequency or probability distribution function for the cumulative 
distribution function in Eq. (1) for the data set. The mean failure stress Of will be given by 

Of = I aF(o)da . 
Jo 

If the substitution that 

l O - C u l _ 
m 

is made into the expression for this integral, then the mean failure stress can be written 

as 

Of = aor(yl-+l) + Ou , (3) 

where the gamma function, which is defined as 
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H Y{n) = xn-1 e-'̂  dx , 

has been used.^^ 

One of the properties of the gamma function is that 

n! = r(n +1), so that of = Co [^\\ + Oy 

is a notation that is often seen. Note that the gamma function is a continuous function of 

n if n > - 1 ; it is, thus, sometimes called the generalized factorial function because n is 

not required to be an integer. 

The substitution of Eq. (3) into Eq. (1) and some algebra will show that 

Pf = 1 -exp -
^fn'Maf-au 

m\ 

We define the probability of survival of a uniformly stressed element as 

Ps = exp - (^i) Of - Ou /J 

ml 

(4) 

Then consider a uniformly stressed tensile specimen of volume V. We let V be made of 

N unit volumes v so that V = Nv. For a uniaxial specimen, the probability of survival of 

any given unit volume i is 

Ps = exp 1 I l_0 - CJu 

m ' louvf - Ou 

m 

where Ouvf 's the mean unit volume failure stress. The survival probability of the uni­

formly stressed uniaxial specimen is the product of the survival probabilities of all the 

unit volumes, that is, 

pf«i = pii)xPi2)xPi'^x...K") . 

Taking the natural logarithm of both sides of this expression, we have 
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lnP*s°*̂ ' = InPi^) + InPi^) + ... inPi") . 

and substituting the expression for Ps , we have 

InPf̂ ' = £ 
i . 1 mt^ff-^n&i 

There are various ways to handle the test data, but, from the test data, a Weibull 

curve fit is given by 

\nPT^^ g - Ou 

O f - Oy 

m 

itotal then equating the two expressions for InPs , will result in 

N fjLi]( o-Ou 
; " ^ " ' t e u v f - o 

m 

\g f - Oui 

By substituting, 

N = V 
V 

1̂ vl 
1/m 

guvf-ouM^'' g 
1 

gf - gu 

So ^uvf and gf are related by 

guvf = ( ^ ! ) ( ^ f ' " ' ( a f - g u ) + gu (5) 

We again note |v| = 1, but we keep the symbol for clarity and dimensional homogeneity. 

Equation (5) is the key equation for determining the mean unit volume strength from a 

tensile specimen data set. 

NONUNIFORM STRESS FIELD 

Consider a magnitude-varying but uniaxial stress field acting on a finite volume 

Av (Fig. 1). Associated with each point Dv, there is a P^^, so 



• ^3 

Xa 

Xl 

Fig. 1. Stress that varies but remains uniaxial. 

ptotal ^ pAVi . pAV2 . pAV3 . pAVM 
S S S S ' ' ' S ' (6) 

where 

P^^i = exp, [1 ij[q_(xi)-gu 

\ guvf - gu 11 

m 

(7) 

Again, taking the natural log of Eq. (6) and multiplying and dividing each term by Avj.we 

get 

N 
Inptota i^ jL £ 

AVi i=1 

h jj (g (xj) - gu 
\ t̂ uvf - CTu 11 

m 
AVi 

We now require AVjto be unity in size, while the measure of unity approaches 

zero as N approaches «>. in the limit, we have 

InPf^' = 1 I [ ( l i l fg(Xi)-gu 
^ J , [^^"^guvf-gu 

m 
dv ; 



here, we have made AVj = TI one unit of volumes, that is, N = 1 unit of volume, and, 

again, we maintain the symbol for dimensional homogeneity. Thus, for a nonuniform 

stress field, where the stress varies 

in magnitude but not in direction, 

Pi°^ '̂ = exp )• ^I-[(^')(l (x) - gu 

<7uvf - gu II 

m 
dv 

(8) 

PRINCIPLE OF INDEPENDENT ACTION (PIA) AND MULTIAXIAL STRESS 
FIELDS 

Equation 8 is the most fundamental basis for the Weibull model we implemented. 

Following the approach discussed in Ref. 12, we postulate that the contribution to the 

survival probability of the material at a particular point is the sum of the effect of the 

principal stresses there. Such an element of volume is shown in Fig. 2, with g(j) being 

the state of the principal stress field. For a nonuniform stress field and for the volume Vj, 

Psi = exp - J - X 
T] j=1 

1 iW^O-tJu^ 

- gu 

m 
dv , 

(9) 

where r\ = 1 unit volume. 

a(l) 

dv,aJuvf,mJ 

Fig. 2. Principal stresses acting on a differential volume element dv. 



The fundamental PIA assumption is that only a Mode I crack or flaw contributes to fast 
fracture. 

As pointed out in Ref. 13, there should be no problem in principle, in incorpo­
rating any failure criteria that is desired into Eq. (8). Several other failure criteria have 
been proposed and are in general use, but nearly all of them are based on some stress 
invariant or on a combination of stress invariants. One such failure criteria is based on 
the Mises-Huber-Heneky criteria.̂ o which basically says that failure occurs when the 
critical magnitude of equivalent stress ge is reached, where 

2gi = [g(l)-g(2)]2+[g(2)-g(3)]2 + [g(3)-g(1)]2 . (10) 

Incorporating this criterion into a Weibull model is an application of Eq. (8). 
Anisotropic Materials 

For materials whose strength properties vary in direction, we must modify the 
model represented by Eq. (8). Appropriately, the model that will be implemented into 
our ABAQUS installation will reduce to the isotropic model if all directional properties 
are the same. 12,13 

Let the set of orthogonal material axes Xi, A,2,and X3 represent the principal 
material directions such that the strength of the material in these directions can be 
plotted on them. We assume that Xi is the strongest direction, and that 

°uvf > °uvf > °UVf ' 

but this is not a programming restriction. 
Failure data for materials tested uniaxially in directions other than the principal 

material directions generally tend to fall on a triaxial ellipsoidal surface, with semi-major 
axes given by the values of the mean unit volume strengths in the A,i space (see Fig. 3.) 
The equation of this surface is 

mi^)iw"'' (11) 
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LINE GIVEN BY ITS 

DIRECTION COSINES 

U uvf 

Fig. 3. The failure surfaces in X, space. 

The Ouvf point on the ellipsoid represents the failure in a uniaxial state of stress in the 

direction associated with the line whose direction cosines are l| (i = 1,3) in the X, space. 

The equations of this line are 

7 - - - j— - T - - guvf , 
I1 I2 '3 (12) 

or alternatively, the g^vf point on the failure surface has the coordinates 

X°, ^2, >.3. given by X° = guvfl. 

Clearly, then, the mean unit volume failure stress g^yf, under a state of uniaxial stress in 

the direction given by the direction cosines I,, is found by solving Eqs. (11) and (12) 

simultaneously, which gives 

guvf = 
h 

o\JiJ lo^.i/ \g;,Ji 'uvf uvf;' 'uvf;' (13) 
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Note that, at present, this equation restricts the global axes to alignment with the 

material axes because l| are in the global system. We suppose that our anisotropic 

material also has the following Weibull directional properties: 

mi = the Weibull modulus in the j direction, 
d̂ jŷ  = the mean unit volume strength in the j direction, and 

g(j = the threshold stress assiciated with the j direction. 

A generalized Weibull model, based on the principal of independent action and Eq. (9), 

is 

pyi = exp - 1 £ 
M j = i / 

All directional properties are determined from Eq. (13) or a similar one with m or gu, as 

needed, replaces guvf and the direction cosines Ij are the direction cosines associated 

with the principal stress g(j) at any point in the volume. 

Actually, the Weibull modulus, experimentally, is nearly independent of direction 

for most materials, but the data sets we have seen are seldom large enough to agree on 

a single value. Keeping the modulus in this form allows the analyst considerable 

flexibilty and keeps the analyst from having to choose a modulus or use an average 

value or some other method. In addition, if a material has known directional dependent 

Weibull moduli because of processing or fiber orientation, then the model will still apply. 

This anisotropic model given by Eqs. 13 (generalized) and (14) will reduce to all 

other PIA models found in the literature. This is the model we implemented into our 

ABAQUS installation. 

Finite Element Implementation 

Equations 13 (generalized) and 14 have been implemented on an element-by-

element basis, so the volume involved is the individual finite element volume, and the 

survival probability of the element is calculated. Thus, the total probability of failure of 

the structure is given by 

P1°* '̂ = 1 - .n PL , 

where N is the total number of elements, and 

mJ 
dv' 

(14) 
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N 
n has the usual meaning of the product taken over N elements of each P's, 
I-1 

implying independent Ps and a weakest link hypothesis. 

In the finite element calculational flow for a displacement formulation, stress 

recovery is made at each element integration point following the displacement 

calculation. This point in the solution is by far the best place to implement the POF 

calculation (Eq. 14) because only the weighted element differential volume (which is 

available at this point) and a summation scheme are needed for implementation. Many 

of the reported finite element POF calculations in the literature use a postprocessing 

scheme, but we have chosen to include the calculation as part of the finite element 

process because of the ease of implementing it at this point in the calculational flow. 

There are several possibilities for including the POF calculation in the ABAQUS 

program. These possibilities include adding a completely new element. Thought, 

however, convinced this author that the best approach was through a "UMAT" user 

subroutine. ABAQUS allows various user subroutines to be included in the solution 

process. Subroutine UMAT is called at each element integration point and expects the 

Jacobian matrix of the constitutive model dAo/d Aeto be returned and the stress tensor 

to be updated. For elastic materials that follow Hooke's Law, g= C e, and the Jacobian 

matrix is just C. This matrix is well known and well documented for isotropic and 

anisotropic finite elements.21.22 We will assume the reader has a working knowledge of 

the finite element process for an incremental program like ABAQUS, and we will not 

describe this part further. Subroutine UMAT is entered for each element and at each 

element integration point for stress recovery during an increment. Thus, Eq. 14 is 

integrated numerically over the finite element i by 

K = exp - I s Z 
( ^ j=1 n=1 

where DVp is the weighted differential volume at the integration point and G is the total 

number of integration points. DVp and other needed variables exist in FORTRAN 

common blocks in the ABAQUS code and are obtained in this manner. For the details of 

the integration process, the reader is referred to any modern finite element text, such as 

Ref. 22. A flow-chart summarizes subroutine UMAT in Fig. 4. Subroutines to obtain 

principal stresses and directions are callable from UMAT, and the relevant procedure is 

described in the ABAQUS users manual.""^ 

mJ 
DVn r (^Aa\ 
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SUBROUTINE UMAT 

DETERMINE THE ELEMENT TYPE 

FOR THIS ELEMENT TYPE. 

LOAU THE MATERIAL 

CONSTITUTIVE MATRIX 

1 
AT THIS INTEGRATION POINT, 

RECOVER THE STRESSES AT THE 

BEGINNING OF THE INCREMENT 

I 
GET THE INCREMENTAL STRESS 

AND UPDATE THE STRESS 

DURING THIS INCREMENT 

ARE THE EQUILIBRIUM 

EQUATIONS SATISIFIED 

I 
IS THIS TIIK FIRST 

ELEMENT INTEGRATION 

POINT 

NO 

YES 

__r 

BASED ON THE STRESS, 

CAIX:ULATE THE CONTRIBUTIONS 

TO THE STRESS VOLUME INTEGRAL AT 

THIS INTEGRATION POINT AND SUM THEM 

(FIRST PART OF EQ U ) 

SBR5 

CPS8 

CAX8 

C3D20 

CPEB 

I 

IF NOT ONE OF 

THESE, CALL 

ERROR ROUTINE 

I 
STOP 

. RETURN FOR ANOTHER ITERATION 

INITIALIZE THE PROBABILITY 

OF ELEMENT SURVIVAL AND 

THE STRESS VOLUME 

INTEGRAL VALUES TO ZERO 

LAST INTEGRATION POINT -
NO 

RETURN 

CALCULATE AND STORE THE ELEMENT 

PROBABILITY OF SURVIVAL 

(THE SECOND PART OF EQUATION 14a) 

AND SUM OVER THE MATERIAL DIRECTIONS 

LAST ELEMENT -
NO 

RETURN 

CALCULATE THE POF AND 

OUTPUT ALL RESULTS 

RETURN 

Fig. 4. Flow chart for the ABAQUS subroutine UMAT. 

A FURTHER DISCUSSION OF THE MEAN UNIT VOLUME STRENGTH 
The passage from experimental volume-dependent data to the mean unit volume 

strength is a concept needed for predicting the POF of a structure under a nonuniform 
state of stress. In fact, the mean unit volume strength and the Weibull moduli are the 
parameters that, presumably, are constant in magnitude for a given material (thus, 
material properties) though we assume directional dependence. Qften these are not the 
tabulated parameters; however, we perceive that the problem is the lack of a universally 
accepted method for treating the Weibull statistical failure model under a multiaxial state 
of stress. Probably, the same statement can be made about failure theories in general, 
with the real test being how well they do in a predictive mode. However, there seems to 
be a feeling that ductile materials are in better shape. The following is quoted from 
Ref. 16. 
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"In principle, the failure test should be conducted with a stress state the 
same as that predicted in the prototype structure. In the case of ductile 
metals, however, a long history of careful experimentation has shown, as 
will be discussed in Unit 6, that correlation between failure in simple 
stress states to that in complicated states can be made through failure 
theories. This is not yet the case with brittle materials and therefore 
failure predictions based upon simple tests for complex situations are 
necessarily suspect. However, because of its simplicity in operation and 
the attractive economics of specimen preparation, the 3 and 4 point 
beam bending, or modulus of rupture (MOR) test, has become almost a 
standard failure test technique and the results therefrom employed in 
developing statistical models for complex states. These models must be 
employed with caution for any but those states approximating the simple 
beam stress state until experimental evidence, which is now being 
accumulated in attempts to establish this correlation, is carefully studied." 

Although this quote is from a 1979 reference, the author has seen nothing in the 

literature that would invalidate it. Thus, as will be illustrated, in the absence of a uni­

versally agreed upon model for multiaxial stress states, we have adopted the one 

developed here for our ABAQUS installation. 

In any case, the relationship shown in Eq. (5) is for data from uniaxial tensile 

specimens. As stated in the quote, much of the test data for these brittle materials 

comes from a 3 or 4 point bending test used to define a parameter called the modulus of 

rupture (MOR). The MOR is the failure stress determined from the famous flexure 

formula, g = Mc/I. For this type of data, the assumptions given in the analysis leading to 

Eq. (5) do not hold, and another relationship between the mean unit volume strength 

Ouvf and gf , the then reported modulus of rupture, must be found. 

Figure 5 shows a MOR test specimen. The procedure for determining the Weibull 

material properties would be to take all the data from testing a number of these 

specimens and use it to develop the following Weibull expression: 

the modulus of rupture, determined by 

6Mrupture/bh2, 

the mean value of the MOR, and 
the maximum applied moment at rupture. 

where gf"o'' = 

cr = 
•^rupture " 
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APPLIED LOAD 

m , CTuvf 

REACTIONS 
Fig. 5. The MOR test specimen configuration corresponding to Eq. 16. 

To develop the relationship for guvf from these tests, the expression for the stress 

at any point in the beam in terms of the bending moment is substituted into Eq. (8) with 

Su = 0 for integration over the beam volume. However, the further assumption is made 

that only the tensile stress will contribute to g^""", so the integration is carried out only 

over the upper half of the beam. The resulting expression for the log of the survival 

probability is 

Inp ^ 1 ( l i f 6"̂  /Mop/2L i+(m+1)L2\ 
' Ti\m-/ b'"-ih2m-i (auvf) [ 2(m+1)2 j ' (16) 

where MQ is the maximum value of the bending moment. The log of the expression from 

the test data with gu = 0, Eq. (15), will be 

lnPs = 

/6Mc ̂ "̂  

|bh? 
^ o r , 

(17) 
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Equating Eqs. (16 and 17) will result in 

_/V-hmbhL2V^'^[1,j^or 

(18) 

Presumably the guvf value from a set of tensile test data and from a set of MOR 

test data will agree if this quantity is truly a material property. 

The author has occasionally seen torsional test data in the literature.^ We record 

for completeness the following expressions. For a solid torsional (circular cross section) 

specimen 

1 /m 

Tl(m+2)J - - 1 . ^ 1 [^']-.. 
(19) 

where Xf is the mean value of the fracture shear stress computed from 

._TRo 
' " J • 

with T = the torsional moment at fracture, 

^ = the specimen outer radius, and 

J = the polar moment of inertia. 

Similarly, for a hollow torsional specimen, 

-=te(^^^r"(^')-,1/m 

(20) 

with Rj being the inner radius and L the torsional specimen length. 

THE STATS COMPANION SYSTEM 

At Los Alamos there is an interactive version of a program called STATS 

(Ref. 23), for determining the Weibull parameters from a set of test data. This program 

performs a linear least square fit to the data via an analysis in the following form: Let 

CJu = 0 . 

Pf = 1 -exp[-(^^'^ 
gf 
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1 - Pf = exp [- im 
1 ^ 

1 - Pf exp 

= m In g - m In gf , 
(21) 

which is of the required form of y = m x + B. Pf (the expected value) is calculated by 

ranking the total number of N data points in increasing order, then 

Pf L 
N + 1 

where i = the rank of a given point g. When Pf and the corresponding point g are 

known, a linear least square fit can be performed on the data by putting it into the form of 
Eq. (21). Then the m and gf are determined as the slope and from the intercept. 

An illustration of the use of STATS and its output for Fort St. Vrain graphite can be 

had from the data in Ref. (11). Table 3.2 in that reference gives the with-grain and 

against-grain failure data from tensile test specimen found in Ref. (9). Some of the 

plotted output of STATS for the with-grain data are shown in Fig. 6. This output gives 
m = 16.566 with gf = 3702. When we apply Eq. (5) to the specimen used in the test 

—wg 
(V = 0.0494 in.3), we then have guvf = 3102 psi for the with-grain data. Similarly, the 

— —ag 

against-grain data from Ref. 9 show that m = 14.573, g = 3092, and guvf = 2480 psi. 

STATS plots the linear curve fit for Eq. (21), the cumulative distribution function, 

Eq. (1), and the probability distribution function (its derivative), and shows the data 

points so that an "eye" discernable estimate of the goodness of fit can be made. 

EXAMPLE PROBLEMS 

In this section, examples are presented that will illustrate the use of the Weibull 

model to predict the POF of various finite element representations of structures. These 

examples were selected primarily for verifiying the model. 
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Fig. 6. The Weibull cumulative distribution function and properties gf and m, 
determined from Ref. 9, for the with-grain experiments on graphite tensile 
specimens. The curve is the Weibull fit, with the data points shown as 
squares. 

Example 1 - Pressurized Ring 

The example chosen here is also used in Ref. 13. In this example, a thick wall 

ceramic ring is under internal pressure. The exact solution for the stress field for this 

example is known to be (Ref. 24), where 

g« = 

gr = 

R§-R? 

PIRF 

R§-Rp 

l.lB.^^ 

^-\^'' , and 

^2 = 0 

and where, 

Pj = internal pressure, 

Rj = inner radius of the ring, 

RQ = outer radius of the ring, 

r = radial coordinate, 

g^ = radial stress, and 

ge = hoop stress. 
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Because the exact stress field is known everywhere, because the stresses are 

also the principal stresses, and because of their form, the integrals involved in the 

evaluation of the POF can be carried out exactly using the binominal expansion 

theorem. For example, the hoop stress is the maximum principal stress s(1); thus. 

PiRf r / _ H " ' n , ./RoH"' /j-(^ ^'^>=i^Ms:^r'i^^|^ii'^^^^ 
Using the binominal expansion theorem. 

*>-»l5:fe)"n'-W-=«?W 

m(m-1)(m-2)fRo\6. ^ / R o f ^ 
+ •••^••-^^-•-'[1^] +. . .+ | i ^ ) > rdv 

The other principal stress S(2) = g^can be handled similarily; S(3) = g^ is zero for 

plane stress. Thus, the POF may be determined exactly. Table I shows the parameters 

chosen to evaluate the code's ability to model this ring. 

TABLE I 

THICK WALL CYLINDER ANALYSIS 
Rj (in.) 2 
RQ (in.) 3 
I (height (in.)) 0.25 
m (Weibull modulus) 15 
Ouvf (unit volume strength lb/in.2) 262.8 
Ratio of compressive to tensive strength 8 
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We used an axisymmetric finite element mesh for this model, and, as shown in 

Fig. 7, we calculated the POF exactly, using ABAQUS for the chosen ring at various 

pressures. There is no visible difference between the finite element POF prediction and 

the exact POF prediction for this problem. 

Example 2 - A Silicon Nitride Disc. Spin-Tested To Failure 

The data for this example is taken from Ref. 14. In this example, we compare the 

implementation of the theoretical model we have described with several other models 

that try to extend the concept using fracture mechanics (Fig. 8). Although the other 

models are interesting, from a theoretical point of view, the nature of the statistics of 

brittle materials and the assumptions that are required to implement these models on a 

continuum mechanics level appear to be neither justified nor productive. Table II shows 

the parameters used in making the computation for Fig. 8. 

Example 3 - A Graphite Ring Experiment Under External Mechanical Load 
and a Thermal Gradient 

Reference 11 describes an experimental program that investigated Fort St. Vrain 

reactor grade graphite under combined thermal and mechanical loadings. In that pro­

gram, we did material tests on both tension and torsion specimens, to determine the 

material properties, and on several combined thermal-mechanical loadings (to failure) 

on ring specimens. We use this reference to fully illustrate the combined usage of the 

1.0 

UJ 

>-
b 
CQ 
< 
CQ 
O 
cc 

0.5 

0.0 

ABAQUS MODEL 

1 / 
^ / 

EXACT SOLUTION 

80.0 140.0 110.0 

INTERNAL PRESSURE (psi) 

Fig. 7. A comparison of the ABAQUS POF model vs the exact solution for the 
POF of a thick ring under internal pressure. 
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bz 
_ j 
CQ 
< 
CD 
O 
CC 
Q-

0.5 

0.0 

ABAQUS IVIODEL 

SCARE2-1 

SCARE2-2 

- • — • I • • 

WEIBULL PIA - REF. 14 

EXPERIMENTAL DATA -

5.00 8.25 

ROTATIONAL SPEED (rpm) 

11.50 

Fig. 8. Various Weibull models compared with the experimental data from Ref. 
7. 

TABLE II 

THE PARAMETERS USED FOR THE CALCULATIONS SHOWN IN FIG. 8 

Disk outside radius RQ 
Disk inside radius Rj 
Thickness t _ 
Unit volume strength guvf 
Weibull modulus m 
Young's modulus E of elasticity 
Poisson's ratio n 
Disk spin speeds 

= 41.275 mm 
= 6.35 mm 
= 3.80 mm 
= 827 MPa 
= 7.65 
= 300 GPa 
= 0.11 
= 5 0 - 1 1 5 k R P M 

STATS program and the ABAQUS Weibull model. The STATS analysis of the data from 

Ref. 11, as reported (in the section entitled "The STATS Companion System" in this 

work), gave the parameters shown in Table III for the Weibull properties in the against-

grain and with-grain directions. With the other properties taken from Ref. 11 , the plane 

stress mesh shown Fig. 9 was used to model the room temperature experiments carried 

out in Ref. 11. 
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TABLE III 

PARAMETERS USED IN CALCULATIONS FOR EXAMPLE 3 

Inside radius Rj 
Outside radius RQ 
With-grain Young's modulus Ei = E3 
Across-grain Young's modulus E2 
In-plane shear modulus G12 = G13 
Out-of-plane shear modulus G23 
Ratio of compressive to tensile strength 
With-grain unit volume strength 
Against-grain unit volume strength 
With-grain Weibull modulus 
Against-grain Weibull modulus 
Weibull volume symmetry factor 

DIRECTION OF MAXIMUM 
MAXIMUM STRENGTH 

= 3 in. 
= 8 in. 
= 1.37 X 106 psi 
= 1.12 X 106 psi 
= 0.71 X 106 psi 
= 2.27 X 106 psi 
= 2.7 
= 3102 psi 
= 2480 psi 
= 16.567 
= 14.573 
= 4 

ELEMENT WITH 
MAXIMUM POF 

'"> DISPLACED 
MESH 

ORIGINAL 

Fig. 9. Quarter-symmetry plane-stress mesh for example 3. 
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The results of the against-grain-loading ABAQUS prediction and the band of 

experimental results are shown in Fig. 10. The code overpredicts the experimental 

mean failure load by about 7%, but for the experimental "database" of 4 points, this 

overprediction is not very serious. Of more interest is that, for this problem, the POF 

prediction for the ring is dominated entirely by the single element indicated in Fig. 9. 

Examination of the fracture patterns in Fig. 6.1 of Ref. 11 show clearly the accuracy of 

this approach for indicating the location of fracture initiation. 

The input data deck for this example is given in Fig. 11 with line-by-line 

descriptions. Note the use of a Weibull volume symmetry factor of 4. The POF is 

volume-dependent and the total amount of "stressed material" must be accounted for in 

Eq. 14. Because we have modeled only one-forth of the volume by using symmetry, the 

differential volume used in the integration of Eq. 14 must be multiplied by 4. The output 

of the code gives the Weibull volume, which should agree with the total volume of 

stressed structure (that is, not the volume modeled, but 4 times the volume modeled). 

1.0 

LU 
CC 
3 

5 
GO 
< 
CQ 

O 

0.5 

0.0 

1 1 

ABAQUS MODEL 

EXPERIMENTAL DATA BAND — 

FyPFRIMFNTAI MFAM 
CArCnilVICIN IML IVlCMIN 

1 • J • — 1 • ' - ^""^^ 1 1 

1 1 1 ( 

1 ( 

* 

» — 1 1 

4.0 8.0 

FORCE (lbs) 

12.0 

*10' 
Fig. 10. The POF prediction by ABAQUS for the loaded graphite ring, from Ref. 

11, with the 4-point experimental data band and the mean shown for 
comparison. 
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1 INPUT PILE DESCRIPTION 
2 
3 1 card 1: this valu* is th* nuabar of wsibull natacials 
4 1 card 2: this is th« natacial nuabar 
5 l.,2.7 card 3: unit volua* conversion factor, 
6 ratio of coaprassiv* to to tansil* strength 
7 2480 .,3102.,3102. card 4: unit volua* strengths in th* global directions 
8 16.5667,16.5667,14.573 card 5: weibull moduli! in the global directions 

9 4.0 card 6: weibull voluae syaaetry factor 

Fig. 11. A sample input file for UMAT with the lines annotated. 

Example 4 - An MHTGR Fuel Block Under Normal Operation 

This example is used to illustrate the thermoelastic capability of the model and 
to further emphasize the Weibull volume symmetry factor. Figure 12 shows a finite 
element mesh and boundary conditions for a symmetry segment of an MHTGR fuel 
block of the type proposed for use in the NPR program. This mesh represents a so-
called unit cell of the fuel block. The properties shown in Table IV were used for this 
example to compute the Weibull probability of fracture of a fuel block under normal 
operating conditions. Note the Weibull volume symmetry factor of 3600. The stress field 
for this example is solely caused by the thermal conditions imposed on the model and 
predicts a POF of 
1 X 10-8, a quite reasonable value. 

ADIABATIC AND NO 
HORIZONTAL 
DISPLACEMENT 
BOUNDARY CONDITIONS 

COOLANT HOLE 
CONVECTION 
BOUNDARY 
CONDITIONS 

ADIABATIC AND NO VERTICAL 
DISPLACEMENT BOUNDARY 

unit csLL modc.L ~ normoL operatLon 

Fig. 12. The finite element mesh for example problem 4. The fuel is a heat-
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TABLE IV 

PARAMETERS USED FOR THE CALCULATIONS OF EXAMPLE 4 

Young's modulus of elasticity = 8.5 x 10^ N/mm2 
Poisson's ratio = 0.1 
Thermal conductivity max. 134 W/m°C at 295°C 
min. 32.4 W/m°C at 3000°C 
Coefficient of thermal expansion - 6.1 x lO-^ per °C 
Unit volume strength - 2.13 x 10'' N/mm2 
Weibull modulus - 14.575 
Weibull volume symmetry factor = 3600 

CONCLUSIONS 

A Weibull POF model was implemented through a user subroutine for the 

ABAQUS program. It is available for the elements shown in Fig. 4. (This subroutine can 

easily be made available for other orders of integration of these elements.) The model 

has been tested on some problems with known solutions or with an experimental 

database, and has been demonstrated to be accurate at predicting the POF for materials 

with known Weibull properties. 

This model and its associated program STATS, when applied by an experienced 

analyst, should prove useful both in design applications and in safety analysis for brittle 

materials. 

The advantage of attributing the status of a material property to o v̂f are obvious. 

This assumption could, and should, be thoroughly checked by adequate databases 

using different types of material testing specimens and different sizes of models. We are 

unaware of the status of any papers, pro or con, in this area, except for the material cited 

in Ref 16. Instead, it appears that more activity and time has been spent in incorporating 

fracture mechanics models into an already at-best statistically dominated continuum 

approximation. Perhaps this approach should be reevaluated. 
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