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Analytical Modeling of Flat Face
Flanges With Metal-to-Metal
Contact Beyond the Bolt Circle
Design rules for flat face flanges with metal-to-metal contact beyond the bolt circle are
covered by Appendix Y of the American Society of Mechanical Engineers Code. These
design rules are based on Schneider’s work (1968, “Flat Faces Flanges With Metal-to-
Metal Contact Beyond the Bolt Circle,” ASME J. Eng. Power, 90(1), pp. 82–88). The
prediction of tightness of these bolted joints relies very much on the level of precision of
the self-sealing gasket compression during operation. The evaluation of this compression
requires a rigorous flexibility analysis of the joint including bolt-flange elastic interac-
tion. This paper analyses flange separation and the bolt load change in flat face bolted
joints. It proposes two different analytical approaches capable of predicting flange rota-
tion and bolt load change during operation. The first method is based on the beam theory
applied to a continuous flange sector. This approach is an improvement of the discrete
beam theory used in the Schneider model. The second method is based on the circular
plate theory and is developed for the purpose of a more accurate assessment of the load
changes. As in the Taylor Forge method, this approach is, in general, better suited than
the beam theory for flat face flanges, in particular when the flange width is small. The
proposed models are compared with the discrete beam theory and validated using nu-
merical finite element analysis on different flange sizes.
�DOI: 10.1115/1.4001655�
Introduction
Before the advent of digital methods, a multitude of ap-

roaches, theories, and experimental studies had been conducted
n order to analyze the behavior of bolted flange joints with metal-
o-metal contact beyond the bolt circle. In 1967, Webjörn �1� laid
ut the first basics of a design method of this type of assembly.
ater, Schneider �2� used a beam theory model to solve flanges
ith metal-to-metal contact. His method was quickly adopted by

he American Society of Mechanical Engineers �ASME� Code and
orms the basis of Appendix Y �3�. Pindera and Sze �4� focused on
xperimental methods to determine the influence of the bolts with
ashers on the flange metal-to-metal contact. The authors have

dentified the seat preload and rigidity of the bolts as design pa-
ameters. They noted that increased values of these parameters
educes the load on the bolts in the operating conditions and in-
reases the contact pressure between the two flanges. Webjörn and
chneider �5� applied their theoretical and experimental findings

o another type of metal-to-metal contact flanges known as com-
act flanges. No sign of separation was observed below a bolt
reload of 80% of the elastic limit. The authors noted 6% bolt
oad change at higher pressure, which lead them to conclude that
yclic pressure below a certain limit does not cause fatigue of the
olts or the deterioration of the joint.

Webjörn �6,7� compared the different metal-to-metal contact
anges with and without the application of external loads, such as

he bending moments and misalignment shear loads, taking into
ccount the effect of temperature and corrosion. He concludes that
he tension on the bolts increases on average by 5% due to exter-
al efforts and offered some practical advice for the design of
ssemblies. Webjörn �8� stated that the ASME Code flange design
s conservative because the elements of the assembly are designed
eparately. He recommended a comprehensive study that takes
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into account the interaction between all components. Lewis et al.
�9� described a method for determining the initial gap between flat
face flanges with initial wedge before applying pressure. They
considered various configurations and wide flanges with positive
and negative slopes. They observed that, in the case of the flange
with a positive slope, the initial rate of leakage increases dramati-
cally with the extension bolts. While in the case of the flange with
a slightly negative slope, the leakage rate decreases with the initial
expansion bolts. Lewis et al. concluded that the leak rate in a
slightly negative slope case is less sensitive to the bolt hydrostatic
end force and bolt stretch, whereas the leak rate in a slightly
positive slope case is very sensitive to the bolt stretch. They added
that the quality of the surface flanges plays a crucial role in the
seal and has a greater influence than the distortion induced by the
crushing of the joint. Fessler et al. �10� conducted a linear elastic
finite element deflection study on flanges with wedges. The au-
thors concluded that for flanges with a slightly positive slope, the
leak paths are closed, if the bolts are tight enough, and therefore,
the leak rate decreases considerably. Hyde et al. �11,12� continued
the finite element work of Fessler and added experimental studies
to determine the tension on the bolts and the loss of contact pres-
sure between the flanges. They noted that the flanges with a small
slope are tighter that those of flat and parallel faces. They men-
tioned that the effect of the axial load is the most dominant among
the efforts applied. This dominance is intensified when the contact
surface decreases. Most of the recent work on flanges with metal-
to-metal flanges is dedicated toward the study of compact flanges.
References �13–16� gave comparative and parametric studies on
compact flanges.

A new approach that considers the flange as a plate with a
central hole is presented. The one-dimensional aspect of the flange
considered by Schneider is to be verified. In addition, referring to
Schneider’s work �2�, the flange ring could be treated as an annu-
lar plate with either clamped ends or simply supported ends, de-
pending on the remaining contact area. This paper compares three
models—discontinuous beam model, continuous beam model, and
plate model—against the more accurate FE analyses and discusses

a few parameters of design importance.
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Analytical Modeling
The complex structure of the bolted joint may be represented by

he structural elements of a known behavior, the free body dia-
ram of which can be drawn with forces and moments applied, as
hown in Fig. 1. In the analysis, the gasket located near the bore is
oft enough so as its reaction is small compared with the initial
olt load. Applying the force and moment equilibrium together
ith the continuity of displacement and rotation generates a sys-

em of equations that can be used to solve for the unknowns M, Q,
B, HC, and MC.
First, applying the theory of beams on the elastic foundation

17� to determine the displacement and rotation of the cylinder at
he junction with the flange subjected to internal pressure and
iscontinuity edge loads Q and M yields

us =
6�1 − �2�

Eg0
3�3 Q −

6�1 − �2�
Eg0

3�2 M +
�2 − ��B2

8Eg0
P �1�

�s =
12�1 − �2�

Eg0
3�3 M −

6�1 − �2�
Eg0

3�2 Q �2�

he radial flange displacement considered as a thick cylinder is
iven by

uf =
B�P

2E
−

B�Q

2tE
+

t

2
� f �3�

stablishing compatibility between the cylinder and flange gives a
ystem with two equations and three unknowns Q, M, and flange
otation � f. The system is statically indeterminate and requires
dditional equations to solve the problem

uf = us �4�

� f = �s �5�

hen pressure is applied, the hydrostatic end force has the effect
f opening the joint. Therefore the bolts are stretched by an addi-
ional elongation of yfB after being initially tightened to yi. The
orce displacement relationship is given by

HB =
2�yfB + yB�KBnB

�C
�6�

Fig. 1 Flange analytical model
he bolt elastic spring KB is given by

61207-2 / Vol. 132, DECEMBER 2010
KB =
EBAB

�B
�7�

and the initial bolt stretch is related to the initial bolt load by

yB =
W�B

ABEB
�8�

Using the equations of static equilibrium of force and moment in
Fig. 1, the contact force HC and its location b are expressed as

HC = HB − HD �9�

hC =
�HDhD − MC + M + Q

t

2
�

HB − HD
�10�

Additional equations are required to determine the separation of
the two flanges at any location and especially at the inner edge to
facilitate the selection of the diameter of the seal. Schneider �2�
applied the discontinuous beam theory to a sector of a flange that
has two different widths. In order to validate this assumption for
flanges with metal-to-metal contact beyond the bolt circle, it is
proposed as a first step to replace the model of the discontinuous
beam by a continuous or a discrete beam of a linear varying
width, and as a second step, to model the flange as a circular plate
with a hole in the center. Obviously, although the equations are
slightly more difficult to manipulate, it allows a more precise
analytical evaluation of the design parameters.

2.1 Model Based on the Discrete Beam Theory. An expres-
sion of the moment of inertia based on the varying width of an
element of a unit arc of the flange �Fig. 2� and corrected for the
plate effect can be written as

EI�x� =
Et3

12�1 − �2��1 − a0

L
x + a0� �11�

with

a0 = 1 +
2L

B
and L = hD + hC �12�

Fig. 2 Free body diagram of the continuous beam
Equation �11� may be expressed as

Transactions of the ASME
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EI�x� = Ct1x + Ct2 �13�

ith

Ct1 =
Et3

121 − �2�1 − a0

L
� and Ct2 =

Et3

121 − �2a0 �14�

eglecting the edge moment MC at the contact point where the
otation is zero, as in Ref. �2�, the moment as a function of the
istance x, M�x� is given by

For 0�x�hC

M�x� =

HDhD + M + Q
t

2

hC
x = Ct3x �15�

ith

Ct3 =

HDhD + M + Q
t

2

hC
�16�

or hC�x�L

M�x� = − HDx + HDL + M + Q
t

2
= Ct4x + Ct5 �17�

ith

Ct4 = − HD and Ct5 = HDL + M + Q
t

2
�18�

he rotation is given by integration of the moment over EI. At the
nner edge or x=L this gives

� f =	
0

hC Ct3x

Ct1x + Ct2
dx +	

hC

L
Ct4x + Ct5

Ct1x + Ct2
dx

=
Ct3�Ct1hC − Ct2 ln�Ct1hC + Ct2� + Ct2 ln�Ct2��

Ct1
2

+
Ct4LCt1 + ln�Ct1L + Ct2�Ct5Ct1 − Ct2Ct4

Ct1
2

+
− Ct4hCCt1 − ln�Ct1hC + Ct2�Ct5Ct1 − Ct3Ct4

Ct1
2 �19�

he flange separation or displacement is obtained by double inte-
ration of M over EI and applying the condition that the rotation
s zero at the contact reaction location

yfB =
Ct3

2Ct1
3 �hC

2 Ct1
2 − 2�Ct1Ct2hC − Ct2

2 �ln�Ct1hC + Ct2��

+
Ct3

2Ct1
3 �2Ct1Ct2hC�1 + ln�Ct2�� + 2Ct2

2 ln�Ct2�� �20�

system of equations in Eqs. �1�–�6�, �9�, �10�, �19�, and �20� is
hen solved for the unknowns M, Q, HB, HC, hC, yfB, uf, � f, us,
nd �s.

2.2 Model Based on the Plate Theory. Young �18� expressed
he deformation yf�r� and rotation � f�r� of a circular plate with a
entral hole under different boundary conditions and subjected to
ifferent loads �Fig. 3�. For a circular plate clamped at the outer
dge and subjected to a ring load W applied at a radius ro

yf�r� = yfi + � firF1 + Mri
r2

F2 + Qfi
r3

F3 − W
r3

G3
Df Df Df

ournal of Pressure Vessel Technology
� f�r� = � fiF4 + Mri
r

Df
F5 + Qfi

r2

Df
F6 − W

r2

Df
G6 �21�

For a circular plate clamped at the outer edge and subjected to an
edge moment Mo applied at a radius ro

yf�r� = yfi + � firF1 + Mri
r2

Df
F2 + Qfi

r3

Df
F3 + M0

r2

Df
G2

� f�r� = � fiF4 + Mri
r

Df
F5 + Qfi

r2

Df
F6 + M0

r

Df
G5 �22�

Constants F and G are given in Ref. �18�. By application of the
above to the flange case, where the contact is at some distance
from the edge, the determination of flange separation due to inter-
nal pressure P is obtained.

The bolt additional stretch due to flange axial displacement and
rotation at the bolt circle are obtained by superposition of the
loads HD and HB, as given in Tables 1 and 2 for the clamped and
simply supported cases, respectively. The edge loads M and Q
�not shown� are such that

2yfB = 2�yfB;HD
+ yfB;MQ − yfB;HB

− yfBL;HB
�

� fi = � f;HD
+ � f;MQ − � f;HB

�23�

A system of Eqs. �1�–�6�, �9�–�11�, �23�, and �24� is then solved
for the unknowns M, Q, HB, HC, MC, hC, yfB, uf, uf, us, and �s. In
the case of dissimilar flanges their respective displacement and
rotation are different. Equation �23� becomes

yfB = yfB;HD
� + yfB;MQ� − yfB;HB

� + �yfB;WHB
� + yfB;HD

� + yfB;MQ� − yfB;HB
�

+ �yfB;WHB
� �24�

� fB� = �BHD
� + �BMQ� − �BHB

�

� fB� = �BHD
� + �BMQ� − �BHB

� �25�

�yfB is the local compression variation in the flange that can be
obtained from Ref. �19�. The plate outside diameter considered for
the case of a clamped edge is limited to the diameter of the loca-
tion of the contact force HC, i.e., B+2�hD+hC�. For the case
where the contact force acts on the outside flange edge A, the
flange is simply supported, and the equations for displacement and
rotation are given in Table 2. It is to be noted that the rotation of
the flange at the support edge is not equal to zero, as shown in
Table 2. In this situation, one can choose as an indicator of con-
vergence, the final bolt load HB.

Finally, the flange separation at the gasket position can be ob-
tained using the plate bending equations. In particular, the sepa-
ration at the gasket location can indicate the suitability of the

Fig. 3 Clamped circular plate subjected to „a… ring load and „b…
bending moment at ro
gasket knowing its resilience from the load compression test.

DECEMBER 2010, Vol. 132 / 061207-3
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Finite Element Model Used for Validation
ANSYS 3D 20-node solid elements SOLID169 with three de-

rees of freedom per node �20� were used to model the flange and
olts, as shown in Fig. 4. Because of symmetry of the geometry
nd loading, only one portion of the flange, delimited by the plane
etween two bolts and the plane passing through the bolt axis
ncluding half of the bolt, was modeled. The axial displacement of
he whole flange face contact area was constrained to move down.
he initial seating or bolt-up load was applied by imposing an
quivalent axial displacement to all bolt nodes that belong to the
ection lying on the symmetrical plane.

In studying the contact between two bodies, the surface of one
ody is taken conventionally as a contact surface and the surface
f the other body as a target surface. For rigid-flexible contact, the
ontact surface is associated with the deformable body, and the
arget surface must be the rigid surface. For flexible-flexible con-
act, both contact and target surfaces are associated with deform-
ble bodies. The contact and target surfaces constitute a “contact
air.” The CONTA174 contact element is associated with the 3D
arget segment elements �TARGE170� using a shared real constant
et number. CONTA174 is an eight-node element that is intended
or general rigid-flexible and flexible-flexible contact analyses.
ONTA174 is applicable to 3D geometries and is applied for

able 1 Superposition of loads „clamped circular plate with a
entral hole…

HD
r0

yfi yfB

B/2+hD+hC
B/2

QfA

MfA
MrA

QfA
fi

HB
r0

yfi

yfB

B/2+hD+hC
B/2QfA QfA

MfAMfA

fi

With the edge load w=HD or HB

3
1 6

fi 3
f 4

W A 2 C L
y L

D C
W A 2 C LW A 2 C L

3L1 66C L1 L1 6C1

4C 3C 3
;

2

fi 6
f 4

W A 2
θ L

D C
W A 2 ;

7 6
fA 9

4

C LAM W L
2 C

LA C
W

LA C7 67 6L7C7AA
9L 7L 7C7L

22 9
4CCCCCC99 C9 ; 0

fA
r

Q W
A 2

0r0W
A 2

;

M+Qt/2
r0

yfi
yfB

A/2
B/2

MrA
MrA

fi

With the edge moment
2
tQMM0 QM

constants Ls and Cs are given in [3]
2

0 1 5
fi 2

f 4

M A 2 C L
y L

D C
C L0M A 200 C L

2L1 55C L1 L1 5C1

4C 2C 2 ; 0
fi 5

f 4

M A 2
θ L

D C
M A 200M A00 ;

4

57
80rA C

LC
LMM ;
ontact between solid bodies or shells.

61207-4 / Vol. 132, DECEMBER 2010
Comparisons between the two developed analytical models,
i.e., the Schneider model and Finite Element Model �FEM� re-
sults, were conducted on two flange geometries of 10-in. �250
mm� and 24-in. �600 mm� inside diameter. These are carbon steel
integral hubless flanges with dimensions shown in Table 3. A
displacement equivalent to 24.7 ksi bolt-up stress was applied to
the 10-in. flange before applying an internal pressure �100–1500

Table 2 Superposition of loads „simply supported circular
plate with a central hole…
Fig. 4 3D finite element model

Transactions of the ASME
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si�. In the case of the 24-in. flange, a 23 ksi bolt-up stress was
pplied before applying the internal pressure �50–450 psi�. These
anges were used in pairs.

Comparison and Discussion of the Results
The parameters for the analysis are the contact force between

he flanges, its position relative to the bolt circle, the rotation of
ach flange, flange separation, and the bolt stress. These param-
ters are important design indicators that can describe the behav-
or of the assembly. They are also used to compare the different

ethods.
Figures 5 and 6 show the contact forces and their locations as a

unction of pressure for both cases. These two parameters affect
he calculation of moments and flange rotation. It is to be noted
hat for the two flanges the contact force is located between the
uter edge and the bolt circle. Therefore, the rotation at the outer
dge is zero and the clamped plate case is applicable. The rotation

Table 3 Flange dimensions in inches

B A C t g0 g1 dB nB

10 16 14 1.25 3/8 3/8 1�1/8� 16
24 32 29.5 2 1�1/16� 1�1/16� 1�1/4� 24
Fig. 5 Contact force variation with pressure

ournal of Pressure Vessel Technology
at the bore is shown in Fig. 7 for all three methods. Although the
rotations are the same for the cases treated, the analytical model
developed can handle assemblies of nonidentical flanges, having
different rigidities �thicknesses and materials� for which the rota-
tions will be different. It is worth noting that if the internal pres-
sure of the fluid increases, the contact between the flanges move
to the outer edge of flange and separation will be higher. In the
case where the fluid pressure is relatively large, the contact is at
the outer edge, and the flange rotation at this location is not null.
Table 4 shows the comparison of the bore rotation of the two
flanges with FEM for internal pressures of 200 psi and 400 psi
applied to flanges of 10-in. and 24-in., respectively. Even though
the rotations are slightly higher with FEM due to the presence of
the holes, the beam and plate theories give good predictions.

On the sealing point of view, separation between the two
flanges is the main parameter to determine if the compression on
the seal in the operating conditions is adequate. Figure 8 shows
flange separation at the bore as a function of pressure for the
models compared with FEM and summarized in Table 5. The
values obtained by the numerical finite element models are a
benchmark to evaluate the analytical models. The models based
on plate and continuous beam theories compare well with finite
element analysis relative to the continuous beam model. In addi-
tion, at the higher pressures, the discontinuous beam model pre-

Fig. 6 Variation in the contact force position with pressure
dicts much lower separation than the other two models. This in-

DECEMBER 2010, Vol. 132 / 061207-5
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icates that there will be cases where the modeling of circular
anges by beam theory may not be conservative.
Figures 9 and 10 show the radial distribution of the flange con-

act stress and separation obtained from the FE study. The sepa-
ation from the plate model is added for comparison. A liftoff is
hown at the bore vicinity during boltup and slightly bigger during
peration. The metal-to-metal contact flanges have the advantage
f not bending the flanges comparatively to raised face flanges.
he contact pressure between the two flanges is much higher at

he bolt position than between bolts. Nevertheless, the separation
t these two locations is very similar and very close to that pre-
icted by the analytical model based on the plate theory. This
uggests that the variation of separation in the circumferential
irection is not significant. Obviously, in general, separation is not

Fig. 7 Rotation variation at the flange ID with pressure

Table 4 Flange rotation

lange

Flange rotation at bore �deg�

Schneider
Continuous
beam theory

Plate
theory FEM

10 0.0187 0.0182 0.0179 0.0204
24 0.0101 0.0100 0.0097 0.0117
61207-6 / Vol. 132, DECEMBER 2010
constant and depends on bolt spacing. Notwithstanding, such in-
formation is useful to select the position of the seal based on its
ability to spring back. The elastic recovery of the gasket is neces-
sary to fill the space produced by flange separation as a result of
the pressure and other external loads. Furthermore, in order to
maintain a sufficient force on the seal, it is recommended to locate
the latter as close as possible to the bolt hole, where flange sepa-
ration is relatively smaller compared with that at the bore. How-
ever, as a trade off, this may result in a higher hydrostatic end
force.

Another parameter worth investigating is the bolt load variation
with pressure. It is clear that the bolt load always increases since

Fig. 8 Comparison of the flange separation at the bore with
the three models

Table 5 Flange separation comparison with FEM

Flange
�pressure�

Separation at the bore �mils�

Schneider
Continuous
beam theory

Plate
theory FEM

B10 �400 psi� 0.72 0.78 0.84 0.8
B24 �200 psi� 0.47 0.58 0.69 0.75
Transactions of the ASME
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eparation causes the bolt to elongate more. It is therefore impor-
ant to evaluate the amount of increase especially if the bolts are
ightened near yield or subject to fatigue. Figure 11 shows the
omparison between the three models as the pressure is increased
n the two cases. While the increase is somewhat exponential, it
emains that there is a good agreement between the three methods.
n addition, Table 6 includes the FEM results for validation.

Conclusion
An analytical method has been developed to analyze flanged

oints with metal-to-metal contact beyond the bolt circle. This
ethod provides additional considerations comparatively to the

urrent method when designing such flanges. The developed
odel based on the plate theory has the advantage of showing

ationality and consistency in the approach of treating metal-to-
etal flanges since the same structural theoretical analysis as

aised face flanges is used. Besides being more comprehensive,
he model based on the plate theory gives more confidence on its
bility to predict flange separation and the bolt load increase dur-
ng operation.

omenclature
� 2 1/4

Fig. 9 Contact stress and separation in 10-in. flange
� �6�1−� � /Bg0�

ournal of Pressure Vessel Technology
� � rotation �rad�
� � flange Poisson ratio
� � �+ �K2+1� / �K2−1�
A � flange outside diameter �in.�

AB � total bolt stress area �in.2�
Ap � pressurized area encircled by flange ID �in.2�
B � flange inside diameter �in.�
C � bolt circle diameter �in.�

dB � bolt nominal diameter �in.�
D0 � flange centroid diameter �in.�
E � modulus of elasticity �psi�

g0 � shell thickness �in.�
g1 � hub thickness �in.�

HB � bolt force �lb�
HC � contact force �lb�
HD � hydrostatic end force �lb�
hC � radial distance from the bolt circle to HC �in.�
hD � radial distance from the bolt circle to HD �in.�
K � ratio of outside diameter to inside diameter of

flange �A /B�

Fig. 10 Contact stress and separation in 24-in. flange
KB � bolt uniaxial stiffness �lb/in.�

DECEMBER 2010, Vol. 132 / 061207-7
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�B � initial effective bolt length �in.�
L � equal to HC+HD �in.�

M � discontinuity edge moment �in.lb/in.�
MC � moment per unit circumference at the flange

contact �in.lb/in.�

Fig. 11 Bolt load increase with pressure

Table 6 Bolt load increase

lange

Bolt stress �psi�

Schneider
Continuous
beam theory

Plate
theory FEM

10
Boltup 24,715 24,715 24,715 24,715

Pressure 24,754 24,756 24,754 24,761

24
Boltup 23,092 23,092 23,092 23,092

Pressure 23,147 23,148 23,147 23,137
61207-8 / Vol. 132, DECEMBER 2010
Mf � flange moment per unit circumference
�in.lb/in.�

nB � number of bolts
P � pressure �psi�
Q � discontinuity edge load �lb/in.�
t � flange thickness �in.�
u � radial displacement �in.�

W � initial bolt load �lb�
Y � axial defection �in.�

Subscript
B � refers to the bolt
f � refers to the flange

P � refers to the pressure
M � refers to the moment
S � refers to shell

Superscript
i � refers to the initial bolt-up condition
f � refers to the final operating condition
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