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2.2.4 Find expressions for the average kinetic, potential, and total energies of the vibration
(2.2.4). _

2.3 Standing Waves on a Circular Membrane

We have investigated, in Chap. 1, the normal-mode vibrations of a string seg-
ment with fixed ends and, in the preceding section, of a rectangular membrane
with fixed boundaries. In each case, we based the analysis on a partial differ-
ential equation that described wave motion on the structure. We found that
the method of variable separation leads to certain functions of position and of
time, from which we are able to construct an infinity of normal-mode functions
that satisfy the spatial boundary conditions of the problem, with sinusoidal
time factors that can be adjusted to satisfy initial conditions. In particular, we
found that the spatial boundary conditions inevitably lead to a discrete set of
values (eigenvalues) of the separation constants, telling us the wave numbers
and the frequencies of the normal-mode vibrations.

In the case of the two-dimensional rectangular membrane, we are able to
satisfy the boundary condition of no displacement on all four edges of the rec-
tangle because the edges coincide with the lines of constant x, or of constant 9.
That is, the method of variable separation, using cartesian coordinates, auto-
matically gives functions that are suited to fitting boundary conditions along
these coordinate lines. ’

To fit the boundary condition of no displacement on other than rectangular
boundaries requires the use of an appropriate two-dimensional orthogonal curvi-
linear coordinate system such that the boundary of the membrane coincides with
coordinate lines in this system. Furthermore, it is necessary that the variables
of the wave equation be separable in the new system. It turns out that the
choice of curvilinear coordinate systems is severely limited, and it is impossible,
except in an approximate way, to analyze the vibrations of a membrane having
an arbitrarily shaped boundary. A circular boundary, however, is a coordinate
line of a polar coordinate system, and, as we shall see, it is possible to separate
the variables of the wave equation in polar coordinates. The solution of one of
the separated equations consists of Bessel functions; it is primarily to introduce
these functions that we have chosen to investigate the vibrations on a circular
membrane as a second example of two-dimensional normal-mode vibrations.

Our first task is to change the wave equation (2.1.1) from xy coordinates to
polar coordinates » and 6, with the origin/at the center of a circular membrane
of radius @. According to Prob. 2.3.2, the wave equation then becomes
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We next assume that (2.3.1) has a solution of the form
{(r8,) = R(z) - Q) - T@) (2.3.2)
and find, after multiplication through by ¢,2/ROT, that
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As before, we have introduced the separation constant —w?, and again we find
the differential equation (2.1.5) for the time function. The spatial part of (2.3.3)
can now be rearranged to read
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where we have chosen to denote the second separation constant by m? Equation
(2.3.4) thus separates into the two ordinary differential equations
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The equation for ©(6) has the independent complex solutions e¥™ or the
independent real solutions cosmf and sinmf. We see that the separation con-
stant 7 must be either zero, which makes € a constant, or a (positive) integer,
which makes © a single-valued function of 8. In effect, we are making use of a
boundary condition along a radial line on the circular membrane, namely, that
the displacement and its 6 derivative be continuous functions across this hypo-
thetical boundary. For the vibrations of a sector-shaped membrane, m could
have other than integral values.

The differential equation for R(r) can be put in the standard form
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by changing to the dimensionless independent variable

w
= Kr=—r, (2.3.8)

Cm
Equation (2.3.7) is known as Bessel’s equation. Since it is of second order, it
must have two linearly independent solutions for each value of the parameter m,
which in the present instance we know to be a positive integer or zero. The two
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solutions of (2.3.7) are normally designated by J,.(#) and N.(x). They are tabu-
lated functions, just as cosf and sind are two independent tabulated functions.}

The solution Jn(#) is called the Bessel function (of the first kind) of order
m, and it remains finite over the entire range of % from 0 to . The other solu-
tion, Nn(%), is called the Neumann function (or the Bessel function of the second
kind) of order m, and it becomes infinite at # = 0 though it is finite elsewhere.
Since Nn,(#) cannot represent a possible displacement of a circular membrane,
we need only examine the properties of the functions Jn(%). Neumann func-
tions, however, are needed in discussing problems with other boundary con-
ditions, such as the vibrations of an annular membrane.

The function J, can be expressed by the infinite series
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(2.3.9)

found by assuming a series solution for (2.3.7) expanded about the origin. The
numerical coefficient 1/2mm! is purely conventional. A plot of Jn(x) for m = 0,
1, 2 is given in Fig. 2.3.1. All the Bessel functions but J, vanish at the origin,

t For a brief account of Bessel functions, see M. L. Boas, “Mathematical Methods in the
Physical Sciences,” pp. 559-577, John Wiley & Sons, Inc., New York, 1966.
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Fig. 2.3.1 Bessel functions of the first kind of order zero, one, and two.
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TABLE 2.1 The nth Roots of Jn(z) =

m 0 1 2 3

1 2.405 3.832 5.136 6.380
2 5.520 7.016 8.417 9.761
3 8.654 10.173 11.620 13.015
4 11.792 13.324 14.796 16.223

and J¢(0) = 1. Each Bessel function is seen to alternate in sign with increas-
ing #, with its amplitude slowly dropping off (ultimately as #~"/%), and with the
spacing of its zeros becoming more nearly uniform (approachlng 7). The be-
havior reminds one of a damped sine wave. A few of the roots of J.(%) = 0
are listed in Table 2.1. The roots of Bessel functions of adjacent orders interlace
each other.

The Bessel functions obey recursion relations, such as

Toials) = 22 ) = Tes) (2.3.10)
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These relations may be established directly from the infinite series (2.3.9).
They show that it is necessary to have numerical tables for only Jy and Ji1.
The values of all higher-order Bessel functions, as well as all first derivatives,
can then be calculated from the recursion relations.

Let us now see what the normal-mode vibrations of a circular membrane
are like. When m = 0, ® is independent of 6, so that

C(rt) = A Jolkr) coswt (2.3.12)

is a possible solution of the wave equation. To satisfy the boundary condition
that ¢(r,) = 0 at r = g, the value of x = w/c» must be chosen to make

Kon@ = gy n=1,2,3 ..., (2.3.13)

where #, is one of the roots of Jo(u) = 0, some of which are listed in the first
column of Table 2.1. The frequencies of these radially symmetric (0,#) modes
are therefore

oy = m, (2.3.14)
a

the lowest frequency being wer = 2.405(¢m/@).
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When m = 0 and # = 2, there is a single nodal circle at the radius
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There are evidently # — 1 nodal circles when the nth root of Jo(#) = 0 coin-
cides with the fixed boundary. They are at the radii

r==2g p=1,2...,n—1 (2.3.16)

Next suppose that m = 1 and that we choose cosf for the ® function.
A solution of the wave equation is then

t(r,8,t) = A Ji(kr) cosf coswt. (2.317)

To satisfy the boundary condition at » = ¢ we must now have
Kin@ = %1y, n=123 ..., (2.3.18)

where u1, are the roots of J1(#) = 0 appearing in the second column of Table
2.1. The frequencies of these normal modes are evidently

’
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(2.3.19)
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a
A nodal diameter exists at the angles 8§ = n/2, 37/2, as well as nodal circles at
the radii

r=-2g p=1,2,...,n— 1. (2.3.20)

We could just as well have used sinf for ©(6), or any linear combination of
cosf and sinf. That is, the nodal diameter can have any orientation, and its
orientation depends on how the vibration is set up. We thus have a type of
degeneracy which can be removed by stabilizing the orientation of the diameter
by applying a constraint to the membrane at some point other than the center.
The constraint forces the nodal diameter to pass through that point. We lose
no generality by choosing cosf so long as we are free to pick the 6 origin (polax
axis) appropriately.

Our discussion of the various normal jnodes of a circular membrane can be
readily extended to arbitrary values of m, with the outer boundary at 7 =a
such that &mn@ = %mn, Where #m, is the nth root of Jn(#) = 0. Evidently there
are m nodal diameters, and # — 1 nodal circles. Figure 2.3.2 shows some of the
possible modes of vibration of the circular membrane for small values of m and #.
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Fig. 2.3.2 Normal modes of the circular membrane.
Problems

2.3.1 Explain, in physical terms, why the method of separation of variables applied to the
wave equations that we have considered always leads to a sinusoidal time function, though
the spatial functions may take a variety of forms.

2.3.2 Use the relations x = 7 cosé, ¥ = 7 sinf connecting rectangular and polar coordinates

to transform the wave equation in cartesian coordinates (2.1.1) to that in polar coordinates
(2.3.1).

©

2.3.3 Assume a trial solution R(x) = u? Z aq1 for the Bessel equation (2.3.7) and establish
[}

the series solution (2.3.9), except for the arbitrary numerical factor 1/27m!.

2.3.4 Establish the recursion relations (2.3.10) and (2.3.11) from the series (2.3.9) or
directly from the differential equation (2.3.7). Note the special case dJy(u)/du = —.J;(u).
Can you develop a recursion relation for the second derivative, d2J (1) /du??

2.3.5 Show how to find the normal-mode frequencies of a membrane in the form of a semi-
circle with fixed boundaries along its edges.



