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ABSTRACT 

The ability to develop physically consistent lumped-parameter models of 

compressible flow systems is a relevant and important aspect of designing control 

strategies for energy conversion systems.  Such models can lead to a better system-level 

understanding of internal combustion engines, turbomachinery, fuel cell systems, Heat 

Ventilation and Air Conditioning (HVAC) and refrigeration systems.  Furthermore, the 

models may be used for control systems development, optimization and validation 

leading to better performance and lower development costs.  While improvements in 

computing technology have made it possible to use Computational Fluid Dynamic (CFD) 

simulations in a wide range of applications, 3-D and 1-D codes are not immediately 

useful in the design of control algorithms due to their complexity and high computational 

cost.  However, the prediction of unsteady phenomena, particularly the characterization 

of pressure, temperature, velocity and flow rate at different locations of the system, is 

critical for several applications, ranging from design, and optimization, to control and 

diagnostics.  The focus of the current research is to fill the void between the high-fidelity 

numerical simulation models originating from partial differential equations, and low-

fidelity, control-oriented empirical models based on lumped parameter approximations 

such as are used today in industrial applications. The outcome of the research includes 
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two novel approaches for modeling compressible fluid systems for dynamic systems 

applications.  The two methodologies have been developed to retain a high level of 

fidelity while preserving the simple structure and limited computation time of lumped-

parameter models.  The two approaches have been validated against a combination of 

experimental, analytical and high fidelity simulation results.  The results validate that the 

two modeling techniques enable accurate, computationally efficient models suitable for 

control systems applications. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Motivation 

 Increasing demands for improved vehicle fuel economy and stringent government 

regulations provide an impetus for the development of complex engine architectures to 

meet the wide array of demands and standards.  As the number of systems and 

components increase within a vehicle’s powertrain, so does the complexity in 

coordinating system interactions, optimization of components and parameters and the 

development of the overall control system.  Such complexity yearns for the development 

of simple, computationally efficient engine models to lighten the burden of costly 

hardware iterations and intensive experimental testing.   

Specifically, the prediction of the thermodynamics and fluid dynamics in internal 

combustion engine gas flow systems under unsteady conditions is acquiring increasing 

importance for several reasons.  First, optimization of engine volumetric efficiency is 

critical to optimize torque and power performance.  In addition, the estimation of the 

trapped air mass inside the cylinder is essential to the derivation of robust air-fuel ratio 
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control laws, which in turn have significant effects on fuel economy, in-cylinder pollutant 

formation, and effectiveness of the catalytic conversion.  Furthermore, the increasing role 

of boosting (turbo- and super-charging) as an aid in reducing engine displacement, poses 

further issues to the characterization, optimization and control of the engine air path.   

 It is well understood that such gains can only be achieved if improvements in 

engine design can be matched by the ability to closely control engine breathing and 

combustion performance.  The ability to predict engine flows through low-order, 

physically based system dynamics models is therefore of critical importance to the 

development of model-based control algorithms that can be easily adapted to different 

engine platforms.  Such models can lead not only to better fuel economy and emissions 

control, but can also significantly shorten the development of new engines, as well as to 

enable model-based control and diagnostic approaches.  It is with these thoughts in mind 

that the research outlined in the following section has been carried out, with the objective 

of developing high fidelity, yet computationally efficient models to aid in coordinating, 

optimizing and controlling the increasingly complex engines that power our vehicles.  

1.2 Thesis Overview 

Within the world of modeling there are many paths.  In focusing on internal 

combustion engines for performance and control-related applications, the modeler has the 

choice of a number of approaches ranging in fidelity and computational requirement to 

describe the torque, speed and subsequent dynamics of the system.  Pertinent to these 
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applications is ability to describe the physics of the charge entering the engine’s ducting, 

its combustion and its eventual expulsion from the system.  A major underlying 

phenomenon governing these dynamics is the flow a compressible fluid through a system 

of interconnected ducts, plenums, resonators, and volumes.  

 The first step in the development of control oriented models of the gas exchange 

process within internal combustion engines is the evaluation of the state of the art.  This 

analysis begins in Chapter Two with the fundamental equations describing compressible 

fluid systems.  Different levels of fidelity are explored, ranging from three-dimensional 

models down to zero-dimensional representations.  The governing equations of the 

different levels of models are presented, along with their application to internal 

combustion engines. The one- and zero-dimensional modeling methodologies presented 

in Chapter 2 are further analyzed and evaluated in a case study in the third chapter.  The 

case study evaluates the accuracy and fidelity of the techniques as benchmarked against 

experimental data.  The results of this case study outline that the one-dimensional and 

zero-dimensional cycle-resolved modeling techniques are well suited for their respective 

applications.  However, a fundamental gap (in both fidelity and computation time) exists 

between these two methodologies.  The zero-dimensional, crank-angle-resolved modeling 

technique could fill this void, save for its inability to predict wave dynamic effects.  This 

deficiency is analyzed in Chapter Four and shown to have detrimental effects on gas 

exchange modeling.  A novel empirical approach is presented in Chapter Four to capture 

the distributed effects not inherently modeled within the zero-dimensional structure.  The 
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resulting model is suitable for control systems design applications requiring crank-angle-

resolved cylinder pressure and torque fluctuations within a computationally efficient 

architecture.   

Chapters Five and Six outline a second novel approach to fill the void between the 

one-dimensional and the zero-dimensional cycle-resolved models.  This approach begins 

from the governing partial differential equations and applies a model order reduction 

technique to reduce the system to a low order set of ordinary differential equations.  This 

modeling technique has the advantage of inherently predicting distributed effects, as 

opposed to data intensive empirical calibration.  The methodology is evaluated against 

case studies selected to mimic engine intake and exhaust systems.  The results are 

benchmarked against a combination of analytic and high fidelity numerical simulation 

results and shown to accurately model wave propagation effects within a control oriented 

model.  

This dissertation contributes to the modeling and control community through 

identifying a void between one-dimensional and zero-dimensional cycle-resolved engine 

models and proposing two novel approaches to fill this void.  The first employs empirical 

techniques to improve upon traditional zero-dimensional crank-angle-resolved models.  

The second presents a formal model order reduction approach for the development of a 

high-fidelity system dynamics approach for compressible fluid systems.  The two 

approaches allow for the development of accurate, computationally efficient crank-angle-

resolved engine models suitable for control systems design.  
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CHAPTER 2 

2 THERMODYNAMICS AND FLUID DYNAMICS OF COMPRESSIBLE FLUID 
FLOW SYSTEMS  

2.1 Introduction 

 The time evolution of a fluid flow system may be described in entirety through 

laws governing the conservation of three quantities: mass, momentum, and energy.  

These conservation laws, generally nonlinear in nature, take the form of partial 

differential equations and exemplify mathematically the following statement [16]: 

The variation of the total amount of a quantity U inside a given domain is 

equal to the balance between the amount of that quantity entering and 

leaving the considered domain, plus the contributions from the eventual 

sources generating that quantity. 

The most general form of these equations as applied to viscous fluids includes that 

of the First Law of Thermodynamics, the Continuity equation and the Navier-Stokes 

equations.  Under the approximation of an inviscid fluid, this equation set is known as the 

Euler equations.  In the sections that follow, a review of mathematical modeling of 
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compressible fluid systems is presented, with a concentration on the governing equations, 

solution methodologies and applications to internal combustion engine modeling.  

Specific focus is placed upon models suitable for controls design, optimization and 

evaluation.  However, for completeness, (while not specifically suited for controls 

design) the governing equations are presented starting from the most general three-

dimensional form and reduced to one- and zero-dimensional formulations. 

2.2 Fundamental Equations and their Application to Internal Combustion Engines 

The equations governing compressible fluid systems may be formulated based 

upon numerous approximations, depending upon the desired application.  Specifically, 

the governing equations may be cast as steady or unsteady, viscous or inviscid, multi- or 

zero-dimensional, and may describe a real or ideal gas.  The unsteady equations are 

applicable for describing time varying phenomena, while the steady equations are 

reserved for applications where only the steady state solution is desired, resulting in a 

greatly simplified model structure.  In systems where the viscosity and thermal 

conductivity of the fluid are significant, the phenomena of turbulence and shear stresses 

must be described through the viscous form of the equations.  For situations where the 

fluid is sufficiently dilute for the internal stress to be ignored, the inviscid assumption 

may be employed.  For the application of interest, gas exchange modeling within internal 

combustion engines, the equations will be presented starting from the most generally 

applicable form: unsteady, multi-dimensional, inviscid flow. 
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2.2.1 Fundamental Equations in Three Dimensions 

The most general description of fluid flow is described by the unsteady 

conservation laws in three dimensions.  For representation of these equations, an Eulerian 

approach has been chosen as shown in Figure 1. 

 

Figure 1: Eulerian Control Volume [9] 

The control volume is fixed in space with the fluid travelling through the volume.  

Derivation of these equations can be found in standard fluid dynamic textbooks [129,9,11], 

with the resulting equations reiterated here for convenience.     

2.2.1.1 Continuity Equation 

The first and most intuitive of the three conservation laws is the continuity 

equation, which is simply a mathematical representation of the principle that mass can 

neither be created nor destroyed [11,16].  Under the assumption of chemically non-reacting 
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flow, the general integral form of the conservation equation is shown in (2.1), and is 

equally applicable to all flows, compressible or incompressible, viscous or inviscid [11,16].  

 0
V S

dV u dS
t

ρ ρ∂
+ =

∂ ∫∫∫ ∫∫ i  (2.1) 

The above expression states that the time rate of change of mass within a control volume 

V

dV
t

ρ
⎛ ⎞∂
⎜ ⎟
∂⎝ ⎠
∫∫∫ is equal to the net mass flow through the surface of the control volume 

S

u dSρ
⎛ ⎞
⎜ ⎟
⎝ ⎠
∫∫ i  [11]. 

2.2.1.2 Momentum Equation 

The second conservation law describes the unsteady nature of the specific 

momentum (product of density and velocity) within a control volume and is an 

application of Newton’s second law [129,11,16]. The conservation of momentum is a 

mathematical representation of the statement that the time rate of change of momentum 

within a control volume is equal to the net forces exerted on it [11,16].   These forces may 

be categorized as body forces and surface forces.  The body forces encompass those 

forces that act on the fluid inside of the control volume, such as gravitational and 

electromagnetic forces [11]. Surface forces, on the other hand, describe forces that act on 

the boundary of the control volume, such as pressure and shear stresses [11].  In the realm 

of viscous flows, it is important to characterize the shear stress.  However, under the 
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assumption of inviscid flow, the shear stresses may be ignored, leaving only the surface 

force due to pressure.  Summing up the body forces body
V S

f dV P dSρ
⎛ ⎞

− ⋅⎜ ⎟
⎝ ⎠
∫∫∫ ∫∫ , the 

unsteady momentum within the control volume 
V

udV
t

ρ
⎛ ⎞∂
⎜ ⎟
∂⎝ ⎠
∫∫∫  and the flux of 

momentum through the surface ( )
S

u u dSρ
⎛ ⎞
⎜ ⎟
⎝ ⎠
∫∫ i , yields the unsteady momentum 

equation for inviscid flows, shown in equation (2.2) [11]. 

 ( ) body
V S V S

udV u u dS f dV P dS
t

ρ ρ ρ∂
+ = − ⋅

∂ ∫∫∫ ∫∫ ∫∫∫ ∫∫i  (2.2) 

2.2.1.3 Energy Equation 

The final conservation law describes the dynamic nature of energy within the 

control volume and is a mathematical representation of the first law of thermodynamics 

applied to a fluid flowing through a fixed control volume [11].  This law states that energy 

can neither be created nor destroyed, but can only change form [10].  This statement is 

exemplified in equation (2.3), where the time rate of change of energy within a control 

volume ( )0
V

e dV
t

ρ
⎛ ⎞∂
⎜ ⎟
∂⎝ ⎠
∫∫∫  is shown to balance the net flux of energy through the surface 

0
S

e u dSρ
⎛ ⎞
⎜ ⎟
⎝ ⎠
∫∫ i , the net rate of heat added from the surroundings 

V

q dVρ
⎛ ⎞
⎜ ⎟
⎝ ⎠
∫∫∫ and the rate 
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of work done on the fluid inside the control volume due to pressure and body forces 

( )
V S

f u dV pu dSρ
⎛ ⎞

− ⋅⎜ ⎟
⎝ ⎠
∫∫∫ ∫∫i  [11].   

 ( ) ( )0 0
V S V S V

e dV e u dS q dV Pu dS f u dV
t

ρ ρ ρ ρ∂
+ = − ⋅ +

∂ ∫∫∫ ∫∫ ∫∫∫ ∫∫ ∫∫∫i i  (2.3) 

2.2.1.4 Constitutive Relations 

A cursory analysis of the aforementioned conservation laws will show that the 

equation set constitutes five equations in six unknown quantities, and thus is an under-

determined equation set.  For closure and the existence of a unique solution, constitutive 

relations are required.  These relations are generally algebraic in nature and specific to 

the application at hand.  The first form of the constitutive relations is the equation of 

state, which specifies the type of fluid being modeled [17].  Under the temperatures and 

pressures generally encountered in compressible, inviscid flow, gas particles are widely 

separated, encouraging the intermolecular forces to be ignored [11].  Under this 

approximation, the equation of state can be taken as the ideal gas law: 

 P RTρ=  (2.4) 

Equation (2.4) introduces additional variables, and thus additional relations are 

required to define the thermodynamic states of the system.  For an equilibrium 
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chemically reacting mixture of an ideal gas, the thermodynamic states (internal energy, 

enthalpy) are a function of both the temperature and the pressure. 

 
( , )
( , )

e e T P
h h T P
=
=

 (2.5) 

Under the assumption of a non-chemically reacting perfect gas, it is sufficient for 

the thermodynamic properties to be assumed to be functions of temperature alone, and 

the system is said to be a thermally perfect gas [11]: 

 

( )
( )

v

p

e e T
h h T
de c dT
dh c dT

=
=
=
=

 (2.6) 

Furthermore, in applications where the pressure and temperature variations are 

sufficiently moderate, the specific heats may be defined as constant leading to a system 

of a calorically perfect gas [11]: 

 
v

p

e c T
h c T
=

=
 (2.7) 

The applicability of these approximations in the equation of state (real versus ideal) and 

thermodynamic properties, is very much application dependent and should be considered 

carefully prior to selection.  
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2.2.1.5 Solution Methodology and Applications 

The system of conservation laws in three dimensions, together with the equation 

of state, constitutes a fully coupled, unsteady set of partial differential equations.  The 

nonlinear nature of the equations can result in significant difficulties in generating 

numerical solutions. The dominant nonlinearity provided by the convection term within 

the momentum equation is responsible for the presence of spontaneous instabilities in 

flow, also known as turbulence [16].  Furthermore, the nonlinear products of density and 

velocity allow for the existence of discontinuities in the solutions of velocity, pressure 

and temperature, known as shock waves [16].  These difficulties, coupled with the 

significant order required to model three-dimensional flows, results in an extremely 

complex and computational intense numerical algorithm.    

Several solution methodologies have been presented to tackle these complex 

equations, ranging in complexity and computational requirement and include the 

techniques of (in decreasing computational complexity): Direct Numerical Simulation 

(DNS), Large Eddy Simulation (LES) and the Reynolds Averaged Navier-Stokes 

(RANS) approach.  The DNS algorithm targets the full time dependent conservation laws 

and aims to capture the large scale turbulent fluctuations and a portion of the small scale 

turbulent motion [16]. The next level of approximation includes the LES, where turbulent 

fluctuations are simulated directly, but restricted to larger time scales [16].  The model is 

based upon a filtered version of the conservation laws, where the equations are averaged 

over the portion not directly computed [16].  Yet one step down from this is the RANS 
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model, where only the averaged turbulent flow is calculated and remains one of the most 

widely used approaches [16].  

While not applicable for control system design applications, three-dimensional 

simulation techniques have been employed within internal combustion engine research 

activities for simulation and analysis of intake port and cylinder assemblies [34], flow 

junctions [35], as well as for the simulation of full intake-cylinder-exhaust systems [31].  

Such simulations utilize a numerical mesh in excess of 30,000 grid points, and require 

computation times on the order of days [31].  While both proprietary and commercially 

available 3-D software packages [33,31] are available, the computational requirements 

render such simulations inappropriate for control systems design applications, and thus 

attention is turned to one and zero-dimensional modeling methodologies. 

2.2.2 Fundamental Equations in One Dimension 

With the high level of complexity and computational requirement of the three-

dimensional models in mind, the advantages of simplification to a one-dimensional 

scheme are intuitive.  In true one-dimensional flow, however, the flow field variables are 

a function of the flow direction ( )x  alone, and thus true one-dimensional flow is 

restricted to constant area applications [11].  This stringent limitation may be alleviated in 

situations where the spatial area variation is gradual, permitting the assumption that the 

flow properties are uniform across any cross section.   



 14 

 

Figure 2: Control Volume for One-Dimensional Flow. Adapted from [12] 

Such flow is defined as quasi-one-dimensional [11], and often supplemented with 

empirical or semi-empirical relations to capture the inherently multi-dimensional 

phenomena (such as abrupt area changes, frictional and heat transfer losses ) within the 

quasi-one-dimensional model [12].  In the following sections, the three-dimensional 

equations described in Section 2.2.1 are reduced to the one-dimensional form through the 

assumption that the flow variables vary in only the flow direction.  Furthermore, the 

equations are converted to their conservative differential form for ease of manipulation 

and application to numerical solution techniques.  Note that the equations are presented 

for one-dimensional, inviscid flow with spatial area variation in the presence of frictional 

and heat transfer losses. 
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2.2.2.1 Continuity Equation 

An equivalent form of the three-dimensional continuity equation from (2.1) is 

shown in (2.8), where the integral form has been converted to the conservative 

differential form [16,12]. 

 
( ) ( ) ( ) 0yx zuu u

t x y z
ρρ ρρ ∂∂ ∂∂

+ + + =
∂ ∂ ∂ ∂

 (2.8) 

Assuming that the flow properties vary only in the flow direction (i.e. the partial 

derivatives with respect to x  and y  are zero), equation (2.8) reduces to the form in (2.9): 

 
( ) 0

u
t x

ρρ ∂∂
+ =

∂ ∂
 (2.9) 

In order to accurately account for gradual area variation within the one-dimensional 

context, (2.9) should be converted to the strong conservative form to yield [12,18]: 

 
( ) ( ) 0

A Au
t x
ρ ρ∂ ∂

+ =
∂ ∂

 (2.10) 

An alternative conservative representation is often presented as [12,18]: 

 
( ) 0

u u dA
t x A dx

ρρ ρ∂∂
+ + =

∂ ∂
 (2.11) 
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2.2.2.2 Momentum Equation 

The momentum equation previous shown in three-dimensional, integral 

representation in (2.2), is shown in (2.12) in the equivalent conservative differential form 

[12,16]. 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2

2

0

0

0

x x yx x w
x

yy x y y w
y

zy zw x z
z

u P u uu u u
f

t x y z

u Pu u u u u
f

t x y z

u Pu uu u u
f

t x y z

ρ ρρ ρ
ρ

ρρ ρ ρ
ρ

ρρρ ρ
ρ

∂ + ∂∂ ∂
+ + + + =

∂ ∂ ∂ ∂

∂ +∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂

∂ +∂∂ ∂
+ + + + =

∂ ∂ ∂ ∂

 (2.12) 

Equation (2.12) can be converted to the one-dimensional conservative differential form 

through again assuming that the flow properties vary only in the flow direction to yield 

equation (2.13) [12,16,18].   

 
( ) ( )2

0
u Pu

f
t x

ρρ
ρ

∂ +∂
+ + =

∂ ∂
 (2.13) 

Again, this form can be modified to include the affect of gradual area variation, to yield 

[12,18]: 

 
( ) ( )2

0
Au PAAu AP fA

t x x

ρρ
ρ

∂ +∂ ∂
+ − + =

∂ ∂ ∂
 (2.14) 
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The force f  may be defined as the shear forces acting on the control volume due to 

friction and can be modeled through (2.15), where f  denotes the wall friction 

coefficient, a parameter determined through empirical relations [12]. 

 
1 4
2bodyf u u f

D
=  (2.15) 

An alternative conservative representation of the momentum equation is sometimes 

presented as [18]: 

 
( ) ( )2

0body

AuAu PA f A
t x x

ρρ
ρ

∂∂ ∂
+ + + =

∂ ∂ ∂
 (2.16) 

2.2.2.3 Energy Equation 

The energy equation shown in (2.3) can be converted to conservative differential 

form as shown in (2.17), where the work done on the control volume due to external 

forces is assumed to be zero [12,16,18]. 

 
( ) ( ) ( ) ( )00 00 0yx zu e Pu e P u e Pe

q
t x y z

ρρ ρρ
ρ

⎡ ⎤∂ +⎡ ⎤ ⎡ ⎤∂ + ∂ +∂ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦+ + + − =
∂ ∂ ∂ ∂

 (2.17) 

Equation (2.17) can be converted to one-dimensional conservative differential form in a 

similar manner as the continuity and momentum equations, to yield [18]: 
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( ) ( )00 0

u e Pe
q

t x
ρρ

ρ
⎡ ⎤∂ +∂ ⎣ ⎦+ − =

∂ ∂
 (2.18) 

Including the effect of slight area variation, (2.18) is modified to yield [12,18]: 

 
( ) ( )00 0

uA e PAe
q A

t x
ρρ

ρ
⎡ ⎤∂ +∂ ⎣ ⎦+ − =

∂ ∂
 (2.19) 

An alternative expression can be developed through the definition of the total enthalpy 

0 0
Ph e
ρ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 to yield: 

 
( ) ( )0 0 0

Ae Auh
q A

t x
ρ ρ

ρ
∂ ∂

+ − =
∂ ∂

 (2.20) 

Additionally, the equation of state and thermodynamic properties should be specified as 

described in Section 2.2.1.4. 

2.2.2.4 Solution Methodology and Applications 

The one-dimensional conservation laws described in the previous section 

constitute a set of hyperbolic partial differential equations, requiring numerical 

techniques for solution.  Notable contributions to this end include the Method of 

Characteristics (MOC) [87], and the Mesh Method of Characteristics [80,81,13].  The MOC is 

based upon converting the governing partial differential equations to ordinary differential 

equations and solving along the characteristic and path lines [13].  The Method of 



 19 

Characteristics as applied to engine gas exchange modeling was used primarily in the 

1960s-1980s [12,13,80,81].  As the method has difficulties in modeling large pressure wave 

propagation, as well in assuring conservation of primary variables, its popularity has been 

overtaken by the finite difference and finite volume methods.  

The finite difference method begins from the differential form of the conservation 

laws and is based upon a truncation of the Taylor series expansion to approximate space 

and time derivatives [16].  The finite volume method is based upon the integral 

formulation of the conservation laws [16].  Where the finite difference method assigns 

states at mesh points, the finite volume method defines the states as cell averages within a 

volume [16].  These two methodologies have been shown to be more accurate and faster 

than the Method of Characteristics, and have the advantage of being inherently 

conservative with respect to mass and energy [12].  

The finite difference and finite volume methods are further classified with respect 

to their spatial discretization method.  Two notable approaches include the Adaptive (or 

Upwind) scheme and the Centered scheme.  In particular, adaptive or upwind schemes 

denote a scheme where the flux leaving a control volume is a function of more points in 

the upwind direction of the flux location than the downwind direction [17].  A common 

form of the adaptive schemes is the first order upwind scheme where it is assumed that 

the flux leaving the control volume is a function of the state at the center of the volume.  

In the situation of wave direction reversal, the upwind scheme must become adaptive and 

modify which states are used in the computation of the flux since the upwind and 
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downwind directions have interchanged [17].  First order upwind methods provide a 

simple spatial discretization method, but are prone to smearing and dissipation due to the 

presence of a numerical diffusion inherent to the spatial discretization [15].  

Conversely, a centered scheme employs an equal number of states upstream and 

downstream of the flux location in the computation of the flux [17].  The most popular 

form of centered schemes is the class of second order methods, which employ one state 

directly upstream and one state directly downstream of the flux location in the 

computation of the flux.  While second order methods provide more accuracy in smooth 

solutions than that of first order upwind methods, a common deficiency of second order 

methods is the presence of spurious oscillations as a result of numerical dispersion 

inherent to the spatial discretization [15]. 

The solvers most commonly implemented are the second order two-step Lax-

Wendroff method [88] or the MacCormack predictor-corrector method [89]. Due to the 

spurious oscillations present in these second order methods, flux averaging is generally 

employed [17].  Flux averaging is performed by combining first order and second order 

methods through flux liming, flux correcting or self adjusting hybrid methods [17].  The 

current trend is to employ a flux or slope limiter to allow for a shock capturing method 

and may also satisfy a nonlinear stability constraint [17].  In the presence of large 

gradients, these methods will reduce to first order [17].  An added complication in the case 

of the Euler equations is the presence of multiple wave speeds.  In the case of subsonic 

flow, two of the wave speeds will be traveling in opposite directions, rendering it difficult 
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to determine the upwind direction.  The schemes must then employ the use of either flux 

vector (or wave speed) splitting or Riemann solvers to determine the direction of 

propagation of information for the adaptive component of the flux [17]. Ultimately, these 

techniques operate a discretization of the PDEs on a pre-established grid, resulting in a 

set of nonlinear algebraic equations solved iteratively. It is worth mentioning that, even 

with numerical solvers, the Method of Characteristics is still commonly used for the 

satisfactory treatment of both simple and complex boundary conditions [12,13]. 

A critical aspect for the stability of these methods is that, at each mesh point, the 

domain of dependence of the PDEs must lie within the domain of dependence of the 

numerical scheme, which limits the choice of the discretization time step ∆t and length 

∆x. The necessary condition (but not sufficient) for stability is given by the Courant-

Friedrichs-Lewy stability criterion, where CFL  is the criterion for stability [90]: 

 ( ) ta u CFL
x
∆

+ <
∆

 (2.21) 

Both commercially available [32,38] and proprietary [83] gas dynamic models based 

upon these approaches have been used in literature for detailed engine simulation and for 

engine control applications.  A number of research studies have invoked the use of one-

dimensional codes to engine simulation studies [91,92,93,94,74,37].  Arsie et. al. [37] have 

integrated the commercially available 1-D simulation code Wave by Ricardo North 

America [38] with Matlab/Simulink to simulate the unsteady gas flow in the intake and 

exhaust systems as well as for combustion studies.  Furthermore, a number of research 
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activities have made use of the GT Power simulation software.  Stobart [93] and Bromnick 

[94] have integrated GT Power and Matlab/Simulink for the purpose of control system 

design into an environment named CPower.  In this simulation environment, GT Power 

was used for engine simulation and the outputs of the simulation were passed to Simulink 

through a “wiring harness” where Simulink was used to determine the control action [93].  

The CPower environment has been shown to be applicable for diesel engine fuel injection 

and EGR control [93], as well as for SI engine applications of model predictive control of 

idle speed [94].  

 It is clear that the fidelity of the one-dimensional simulation technique is 

sufficient for gas exchange modeling and performance based control development, 

though the main shortcomings include the complexity and computational burden. 

2.2.3 Approximations of One Dimensional Equations 

The one-dimensional Euler equations presented in the previous section are 

instrumental in engine performance and control design applications due to their balance 

between fidelity and complexity.  However, their nonlinear nature prohibits the 

derivation of a general analytic solution.  This generates complications when one tries to 

evaluate one numerical algorithm against another, as save for a few exceptions, an 

analytic benchmark cannot be employed.  For this reason, approximations to the 1-D 

Euler equations which do have known analytic solutions, yet retain a one-dimensional 

nature have been developed.  In the sections that follow, two such approximations are 
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presented which can be utilized for evaluation of numerical and model order reduction 

algorithms.  

2.2.3.1 Linear Euler Equations 

An approximation to the 1-D Euler equations can be obtained through a 

linearization process under the assumption of isentropic flow with a non-zero bulk gas 

velocity.  Such a derivation is presented in Appendix 8.1.1, with the results shown in 

(2.22) and (2.23). 

 0 0 0uu
t x x
ρ ρ ρ∂ ∂ ∂
+ + =

∂ ∂ ∂
 (2.22) 

 
2

0
0

0u u cu
t x x

ρ
ρ

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (2.23) 

The equation set can be seen to be a function of the spatial and temporally varying 

quantities of density and velocity, as well as of the space- and time-independent values of 

the mean gas velocity, density and speed of sound.  This equation set can be represented 

in vector notation as shown in (2.24) - (2.26). 

 0U F
t x

∂ ∂
+ =

∂ ∂
 (2.24) 

 U
u
ρ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (2.25) 
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0 0

2

0
0

u u
F c u u

ρ ρ

ρ
ρ

+⎡ ⎤
⎢ ⎥= ⎢ ⎥+
⎢ ⎥⎣ ⎦

 (2.26) 

An alternative vector notation is presented in (2.27) and (2.28), where the Jacobian 

matrix defined in (2.28) is employed. 

 0U UA
t x

∂ ∂
+ =

∂ ∂
 (2.27) 

 
0 0
2

0
0

u
FA c uU

ρ

ρ

⎡ ⎤
∂ ⎢ ⎥= = ⎢ ⎥∂

⎢ ⎥⎣ ⎦

 (2.28) 

The eigenvalues of the Jacobian matrix are shown in (2.29), and represent the two wave 

speeds intrinsic to the equation set.  It can be seen that the linear Euler equations permit 

the propagation of two waves in either direction with the first travelling at the speed of 

sound plus the bulk gas velocity, while the second travels at the speed of sound minus the 

bulk gas velocity. 

 0

0

u c
Eigenvalues

u c
λ

−⎡ ⎤
= = ⎢ ⎥+⎣ ⎦

 (2.29) 

Utilizing the relation shown in (2.30) as presented in Appendix 8.1.1, the analytic 

solution of an initial spatial profile in terms of pressure is defined in (2.31). Since the 
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wave speeds are constant, the solution at any time, t , is simply the summation of half of 

the initial profile shifted spatially by the product of the two wave speeds and the time t . 

 2P c ρ=  (2.30) 

 ( ) ( )( ) ( )( )0 0,
2 2
P PP x t x u c t x u c t= − + + − −  (2.31) 

2.2.3.2 Linear Convection Equation 

A further simplification of the Euler equations is the Linear Convection Equation as 

derived in Appendix 8.1.2.  As shown in (2.32), this equation models captures the 

convective nature of the Euler equations in a single linear partial differential equation.  

 0u uc
t x

∂ ∂
+ =

∂ ∂
 (2.32) 

The equation models the propagation of the velocity u , with a constant speed c .  The 

analytic solution of this equation at any time, t , is simply the initial profile shifted 

spatially by the product of the wave speed and the time t . 

 ( ) ( )0,u x t u x ct= −  (2.33) 
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2.2.4 Equations in Zero Dimensions 

The zero-dimensional modeling methodology is based upon spatial lumping of a 

fluid system in to macro elements.  In the case of internal combustion engine modeling, 

the intake and exhaust systems are generally lumped into respective volumes, where a 

single pressure and temperature is computed for each system.  This approach is 

sometimes referred to as the “filling and emptying” method [1,7], and can be further 

categorized into Crank Angle Resolved (CAR) and Cycle-Resolved (CR) models.  Within 

CAR 0-D models, the resolution of the simulation is generally at about a single crank 

angle degree, allowing for the prediction of crank angle resolved pressures and 

temperatures within the intake, cylinder and exhaust systems.  Cycle resolved models, on 

the other hand, have a much lower resolution and thus predict cycle-average quantities 

for each sub-system.  A description of the equations employed within zero-dimensional 

models is presented in the next section, followed by a brief review of these zero-

dimensional modeling methodologies as applied to internal combustion engine research. 

2.2.4.1 Governing Equations 

The zero-dimensional modeling methodology aims at capturing the storage and 

release of mass and energy through the application of the continuity and energy equations 

to components of significant volume [30].  The momentum equation, along with the 

prediction of distributed effects, is neglected within this modeling methodology and 

instead flow restrictions are modeled with a quasi-steady approach [30].   
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The zero-dimensional continuity and energy equations can be derived directly 

from the one-dimensional equations, under the assumption that the flow variables have 

no spatial dependence within the control volume.  This is analogous to a spatial piecewise 

constant assumption of flow variables, and is sometimes referred to as the “well-mixed” 

assumption.  The one-dimensional continuity equation from (2.10), can be converted to 

zero-dimensional form, to yield (2.34) (see Chapter 5 for more details on this derivation). 

 
( ) ( ) ( )in out

d A
l Au Au

dt
ρ

ρ ρ= −  (2.34) 

This equation can be converted to a more well known form, through the definition of the 

density m
V

ρ⎛ ⎞=⎜ ⎟
⎝ ⎠

, the assumption that the area of the volume does not change as a 

function of time ( )( )A f t≠  and through defining the mass flux or mass flow rate as 

m Auρ= .  Applications of these relations to (2.34) yields the zero-dimensional 

continuity equation, as shown below, and again is applicable for zero-dimensional flow 

with spatial area variation. 

 in out
dm m m
dt

= −  (2.35) 

Together with the definition of mass flux, the one-dimensional energy equation 

from (2.20), can be converted to zero-dimensional form, to yield (2.36), where the total 
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internal energy is defined as 
2

0 2
ue e= +  (see Chapter 5 for more details on this 

derivation). 

 
( ) ( ) ( )0

0 0 htin out

d me
mh mh Q

dt
= − +  (2.36) 

2.2.4.2 Crank-Angle-Resolved 0-D Applications 

Zero-dimensional, crank angle resolved models have been implemented in 

internal combustion engine applications since the 1950’s and 1960’s [28].  The early 

models consisted of ideal cycle calculations and component matching models [28], while 

during the 1970’s and 1980’s full thermodynamic models developed with the advent of 

the personal computer.  Complete 0-D CAR models, such as that described by Zeleznick 

and McBride [36], include the description of the individual breathing, combustion and 

pressure profiles for each cylinder.  These models allow for the prediction of individual 

torque pulses and crankshaft fluctuations and have been developed in both the time and 

crank angle domain. Due to the simplified structure and good compromise between 

fidelity and computation time, 0-D CAR models have been utilized for control systems 

applications.  Dawson developed a 0-D CAR model capable of predicting individual 

cylinder breathing and pressure profiles, while maintaining a structure and computational 

effort amenable to controls design [29].  Arsie et. al. developed a 0-D CAR model for the 

purpose of rapid calibration of a Cycle-Resolved engine model [37].  However, as 

discussed in [1,39], this level of model is incapable of capturing wave propagation effects, 
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which become important for gas exchange applications where the ducting lengths are 

much greater than their diameter (as is the case in modern engines).  This deficiency  

leads to large inaccuracies in volumetric efficiency and torque prediction.   Thus while 

the 0-D CAR modeling approach gained popularity in the 1970’s and early 1980’s, its 

popularity was displaced with the development of 0-D Cycle-Resolved models [40-45] and 

the advent of commercially available one-dimensional engine simulation software [32, 38].   

2.2.4.3 Cycle-Resolved 0-D Applications 

The application of models to predict cycle-resolved (or “mean value”) engine 

outputs has been popular since the late 1970’s [40] and early 1980’s [41-45], with its 

popularity increasing up through the present [47,53,55,56,66,72].  The intent of 0-D CR models 

is the prediction of the mean, cycle-resolved engine outputs to a reasonable degree of 

accuracy with a computational effort commensurate with a control oriented model.  To 

this extent, 0-D CR modeling has been a success in that models have been shown to 

achieve ± 5% steady state accuracy [47,51,53] and have been used in a number of studies for 

control design [60,61,63,64].  

 The 0-D CR models are generally characterized as three state models (intake 

manifold pressure, fuel dynamics, and engine speed) with algebraic expressions to 

describe the air flow through the throttle and the torque production within the engine.  

The manifold dynamics are described through either a direct application of the zero-

dimensional continuity and energy equations, as described in Section 2.2.3.1, or through 
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a further approximation thereof (calorically perfect gas, isothermal or adiabatic).  The 

manifold dynamics equations are generally supplemented with the speed density equation 

(2.37) to describe the air flow out of the manifold and into the engine [47,51,53,56], where the 

volumetric efficiency ( )vη  is an empirical parameter implemented within the model 

through regression or neural network based approaches [47,48,37].   

 
2

d
eng v im

im

V Nm P
RT

η=  (2.37) 

The calibration of the volumetric efficiency term is typically reliant upon either a 

large quantity of experimental data or a large quantity of virtual data [76,77]. Typical 

predictor variables for fitting of the volumetric efficiency parameter may include engine 

speed, manifold pressure, an exhaust gas recirculation metric, and valve timing and 

duration [53,75].  The validity of this approach has been confirmed in steady state and 

transient operation, where the complex fluid dynamic phenomena of inertial ramming 

(acquisition and release of kinetic energy by the mass of gas in the intake) and wave 

propagation have been shown to be captured adequately [56,74]. 

2.3 Conclusions 

In the world of modeling, the application, and thus the desired balance between 

fidelity and computation time governs the appropriate model structure.  For gas exchange 

modeling in internal combustion engine applications, the modeler has a wide arsenal of 

model structures to choose from: multi-, one-, or zero-dimensional; viscous or inviscid; 
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real or ideal gas; crank-angle-resolved or cycle-resolved; etc.  For applications involving 

detailed cylinder or flow junction design, the multi-dimensional simulation approach is 

desirable.  However, for control systems design, optimization, and evaluation, the one- 

and zero-dimensional approaches are more applicable due to their simplified model 

structure and computational efficiency.  In fact, the most common choice for performance 

simulations and control applications are the one-dimensional and cycle-resolved zero-

dimensional engine models [27].  The one-dimensional models can be used for steady state 

engine mapping and static look-up table generation, while the cycle-resolved engine 

models are sufficient for large scale parameter optimizations and transient simulations.   

However, for applications such as cylinder pressure feedback control, misfire detection 

algorithms, hardware in the loop (HIL), and high fidelity transient simulations, the two 

standard modeling approaches leave something to be desired.  The one-dimensional 

models, on one hand, generate sufficient fidelity, but are computationally cumbersome.  

The cycle-resolved zero-dimensional models are sufficiently fast, but do not provide the 

bandwidth and fidelity required for these applications.  The crank-angle-resolved zero-

dimensional models provide a unique balance between fidelity and computation time, but 

lack the accuracy in gas exchange modeling.  It is with these thoughts in mind, that the 

research outlined in the following chapters has been performed to fill the void between 1-

D and 0-D CR models with novel approaches at generating a high fidelity, 

computationally efficient model structure designed for control oriented applications. 
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CHAPTER 3 

3 INTERNAL COMBUSTION ENGINE SYSTEMS MODELING: A CASE STUDY 

3.1 Introduction 

As discussed in the previous chapter, control systems engineering applications 

employ the use of engine models to aid in controls design, optimization and evaluation. 

For performance applications, the one-dimensional simulation technique has become the 

industry standard, while for large scale control studies and optimizations, the zero-

dimensional cycle resolve model is the prevalent choice.  In the sections that follow,  a 

comparative study is conducted employing these two modeling approaches to evaluate 

their respective accuracy, fidelity, and computational time.  A four cylinder, port fuel 

injected, spark ignition engine has been selected for the case study where the two 

modeling approaches are validated against a set of steady state experimental data 

collected on a engine test stand.  

3.2 Experimental Data Collection 

A steady state experimental test setup, complete with engine dynamometer, 

appropriate sensors and data acquisition equipment was employed for the collection of  a 
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large data set for the calibration and validation of the two modeling methodologies.   In 

the sections that follow, an overview is presented of the engine, sensors and data 

acquisition utilized in the collection of the pertinent data, where the reader is referred to 

Hoops [95], for further details. 

3.2.1 Experimental Setup 

The experimental testing was conducted on a General Motors four cylinder, Eco-

Tec engine, as described in Table 1.   The engine is port fuel injected, spark ignited, 

where dual independent cam phasors are utilized to optimize volumetric efficiency and 

torque production across the engine operating range. 

 

 

 

Table 1: Overview of Engine Specifications 

The engine was coupled to a 300 Hp AC dynamometer and outfitted with both 

high and low resolution sensors for the collection of temperature, pressure, mass air flow 
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and torque measurements.  An overview of the major sensors and sensor locations is 

presented in Table 2 and Figure 3. 

Sensor 
Location 

Description Resolution 

2 Upstream Catalyst Temperature Low 
3 Downstream Catalyst Temperature Low 

5-8 Exhaust Runner Temperatures Low 
9 Exhaust Manifold Temperature Low 

13-16 Intake Runner Temperatures Low 
21 Intake Manifold Temperature Low 

26-29 Cylinder Pressure High 
30 Intake Manifold Pressure High 
31 Exhaust Manifold Pressure High 
37 Crankshaft Encoder High 
38 Engine Speed Low 
39 Engine Brake Torque Low 
40 Oxygen Sensor Low 
41 Emission Measurements Low 

Table 2: Description of Engine Sensors 

 Four piezoelectric pressure transducers implemented for individual cylinder 

pressure measurements were mounted in the spark plug bore. The sensor pegging 

operation was conducting based upon reference high resolution intake and exhaust 

manifold piezeoresistive pressure sensors, as described in [95].  The exhaust pressure  

sensor included a cooling jack to avoid thermal shock.  The engine’s air-fuel ratio was 

estimated with use of a Universal Exhaust Gas Oxygen (UEGO) sensor, while the engine 

out emissions were characterized through a Horiba Five Gas Analyzer.  
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Figure 3: Overview of Engine Sensor Locations [95] 

3.2.2 Data Acquisition and Post-Processing 

The experimental setup outlined in the previous section was utilized to collect a 

data set of two-thousand steady state engine operating points for the calibration and 

validation of the model architectures.  Twelve hundred of these points were dedicated to 

calibration, while the remaining eight-hundred points were utilized for validation of the 

models.  The Design of Experiments (DoE) for the testing was done utilizing the Latin-
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hypercube space filling  method [96] in the dimensions of engine speed, load, intake and 

exhaust cam timing locations.  Additionally, spark sweeps were performed at each 

operating point.  The engine load was specified based upon the metric of the mass of air 

in the cylinder at intake valve closing and the DoE set points for load were obtained 

experimentally through throttle angle manipulation.  The details of the data collection, 

including cylinder pressure pegging and data diagnostics may be found in [95]. 

3.3 One-Dimensional Gas Dynamic Modeling 

A one-dimensional gas dynamic model representing the engine configuration 

defined in the previous section has been developed in the commercial software GT Power 

[32] for gas exchange and combustion performance analysis.  The engine model’s gas 

exchange and combustion models have been calibrated based upon the steady state 

experimental data.  In the sections that follow, the model architecture, calibration and 

validation results are outlined.  

3.3.1 Model Architecture 

A representation of the engine’s intake, cylinders and exhaust systems has 

developed utilizing the graphical interface provided in the GT Power software.  This 

representation is shown in Figure 4, and includes a one-dimensional representation of the 

intake and exhaust systems, and a zero-dimensional representation of the cylinders, 

where a single-zone thermodynamic combustion model is employed.  
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Figure 4: One-Dimensional Model Implementation 

3.3.2 Model Calibration 

The subsystems that require significant calibration include the discharge 

coefficients of the throttle and the valves, the combustion parameters for the heat-release 

model, and the frictional and heat transfer losses within the intake and exhaust systems. 

 The valve lift profiles and discharge coefficients have been found through 

experimental testing on a flow bench [1,2].  The throttle discharge coefficient has been 

identified through correlating the isentropic orifice equations to experimental data 

collected on a steady state test bench.  For optimal results, the throttle discharge 

coefficient has been modeled as a function of throttle angle and speed and implemented 

as a static look-up table, as shown in the normalized Figure 5. 
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Figure 5: Throttle Discharge Coefficient (Normalized to One) 

 The intake and exhaust system’s heat transfer and frictional parameters have been 

tuned to eliminate systematic errors in temperature and mass air flow prediction.   As a 

validation of these parameters (as well as of the intake and exhaust geometrical 

parameters), the prediction of volumetric efficiency during a speed sweep is shown to be 

predicted within +-5% error bounds in Figure 6.  
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Figure 6: Volumetric Efficiency Prediction at 50% Throttle  

The combustion model has been calibrated first by identification of the burn rate 

through an inverse thermodynamic calculation based upon the experimental cylinder 

pressure.  Next, the Wiebe function shown in (3.1) is fit to the burn rate through a least 

squares curve fit. 
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 Finally, the identified Wiebe function parameters are modeled through neural network 

approaches to extend the combustion model throughout the entire engine operating range.   

As an example of this, the surface modeling of the burn duration is shown in Figure 7, as 

a function of speed and load at parked cam timing.  

 

Figure 7: Burn Duration at Parked Cam Timing (Normalized to One) 

3.3.3 Model Validation 

The one-dimensional model was simulated over the eight-hundred steady-state 

validation points and is compared against the experimental data in the following figures.  

For performance predictions, the plot on the left of Figure 8 shows that the 1-D model 

adequately predicts the gas exchange process and wave dynamic effects leading to an 
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accurate representation of volumetric efficiency.  The plot on the right of Figure 8 

displays that the combustion parameters have been adequately modeled such that, when 

coupled to an accurate gas exchange prediction, the cylinder model captures the heat 

release and cylinder pressure profile sufficiently to model the net brake torque. 

 

Figure 8: Performance Prediction of 1-D Model; Left: Volumetric Efficiency; Right: 

Brake Torque  

In Figure 9, it is shown that the gas exchange portion of the 1-D model captures 

the mean pressures in both in the intake and the exhaust systems over the four 

dimensional operating space. 
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Figure 9: Manifold Pressure Prediction of 1-D Model; Left: Intake Manifold Pressure; 

Right: Exhaust Manifold Pressure  

 Furthermore, the crank-angle-resolved prediction capability of the one-

dimensional model is exemplified in Figure 10, where it can be seen that the model is 

capable of capturing the experimental traces of intake manifold and cylinder pressure to 

high degree of resolution. 
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Figure 10: Crank-Angle-Resolved Prediction of 1-D Model; Left: Intake Manifold 

Pressure; Right: Cylinder Pressure; 4200 RPM, 46o Throttle Opening, -26o Spark  

3.4 Cycle-Resolved Zero-Dimensional Modeling 

3.4.1 Model Architecture 

Cycle-Resolved, zero-dimensional models are often employed for low-fidelity, 

control-oriented applications [60,61,63,64].  As discussed in Chapter 2, this level of model 

results in a cycle-resolved prediction of states and is described through a combination of 

a low-order set of differential and algebraic relations.  Such a model structure is 

exemplified in Figure 11. 
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Figure 11: Cycle-Resolved, Zero-Dimensional Model Structure 

It can be seen that the model consists of states for the intake manifold, fuel dynamics and 

crankshaft, and is influenced significantly by the empiric static relations for volumetric 

efficiency and torque production.  The differential relations follow the zero-dimensional 

methodology discussed in Chapter 2, while the static relations require significant 

calibration, as discussed in the next section. 

3.4.2 Model Calibration 

The empiric relations supporting the 0-D CR model structure require a vast 

amount of data for calibration.  For this case study, this data has been generated utilizing 

a combination of experimental data and virtual engine mapping techniques [28,77,97].  The 

volumetric efficiency parameter requires dependent variables that affect the gas exchange 

process and thus is a function of the engine speed, intake manifold pressure, and intake 

and exhaust cam timing.  The brake torque relation requires dependent variables that 
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affect the combustion process, and thus is a function of the engine speed, air per cylinder, 

spark timing and intake and exhaust cam timing.  Utilizing the techniques described in 

[28,77,97], these parameters are calibrated from the 1-D model described in the previous 

section and implemented as look-up tables.  The surfaces at parked cam timing and fixed 

spark timing are shown in Figure 12.   

Figure 12: Empiric Relations within Zero-Dimensional, Cycle-Resolved Model 

(Normalized to One) 

3.4.3 Model Validation 

Analogous to the one-dimensional model validation, the 0-D CR model was 

simulated over the eight-hundred steady-state validation points and compared against the 

experimental data. The plot on the left of Figure 13 shows that the 0-D CR model with its 

low frequency intake system and empirical relations, is capable of capturing the cycle-
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resolved gas exchange process and wave dynamic effects with a similar accuracy to that 

of the 1-D model.  The plot on the right of Figure 13 displays that the empiric torque 

model has been sufficiently calibrated to model the net brake torque over the entire 

engine map. 

Figure 13: Performance Prediction of 0-D CR Model; Left Volumetric Efficiency; Right: 

Brake Torque  

In Figure 14, it can be seen that the gas exchange portion of the 0-D CR model 

captures the mean pressures in both in the intake and the exhaust systems over the four 

dimensional operating space. 
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Figure 14: Manifold Pressure Prediction of 0-D CR Model; Left: Intake Manifold 

Pressure; Right: Exhaust Manifold Pressure  

3.5 Conclusions 

The structure and accuracy of the one-dimensional and zero-dimensional cycle-

resolved modeling techniques have been explored against steady-state experimental data 

in the case study of a four cylinder spark ignited engine.   

It has been shown that the 1-D simulation model is capable of describing not only 

the cycle-resolved variables of the gas exchange and combustion process well with 

respect to experimental data, but is also capable of capturing high resolution crank angle 

resolved states of manifold and cylinder pressures.  Thus it is clear that the 1-D 

simulation approach can provide sufficient fidelity for valve timing parameter 
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optimizations, steady-state engine mapping, static look-up table generation and perhaps 

even sensor placement studies.  

The results have also shown that the 0-D CR model, when calibrated with 

sufficient data, can achieve similar accuracy in cycle-resolved prediction of gas exchange 

and torque variables as the one-dimensional approach.  Due to the simplicity and 

computational efficiency of this method, this model structure is more amenable for 

model-based control systems design, large scale parameter optimizations and for lengthy 

transient simulations. 

However, for applications requiring both a high level of fidelity (crank-angle-

degree resolution of states) and a low computational effort, these two approaches leave 

something to be desired.  Such applications may include hardware in the loop (HIL), full 

vehicle drivability simulations, or the development and evaluation of transient cylinder 

pressure feedback control or cylinder misfire detection algorithms. 
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Figure 15: Model Fidelity vs. Computation Time 

The one-dimensional approach may provide sufficient resolution in states, but as Figure 

15 displays, requires computational times on the order of one-hundred times real time.  

The 0-D CR methodology provides more than sufficient computational times, but lacks 

the desired bandwidth.  This level of model provides cycle-resolved states and thus is 

inappropriate for applications where crank angle degree resolution of states is required.  

As exemplified in Figure 15, the crank-angle-resolved zero-dimensional models would 

provide a better balance between fidelity and computation time for these applications.  

However, as discussed in the previous chapter, this level of model lacks accuracy in gas 

exchange modeling.  In the following chapter, the zero-dimensional crank-angle-resolved 

model structure is explored in detail against the same case study used in this chapter to 

highlight the strengths and weaknesses of its approach.  Furthermore, based upon this 
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analysis, a novel technique is developed for improving the accuracy of the approach such 

that it is both sufficiently fast and accurate for the aforementioned applications.  
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CHAPTER 4 

4 EMPIRICALLY BASED COMPRESSIBLE FLUID SYSTEMS MODELING  

4.1 Introduction 

 As discussed in the previous chapter, traditional modeling approaches for engine 

system simulation and control activities include that of the one-dimensional gas-dynamic 

and zero-dimensional cycle-resolved dynamic models. These modeling methodologies 

have been shown to be appropriate for their respective applications, but somewhat 

lacking for applications requiring both crank angle degree resolution and a low 

computational effort.  Research activities [29,36,37] have made use of the zero-dimensional 

crank-angle-resolved modeling methodology for such application areas, but as discussed 

in [1,39], this level of model is incapable of capturing wave propagation effects, leading to 

large inaccuracies in volumetric efficiency and torque prediction.  This deficiency has 

detracted engine researchers from utilizing this approach.  

In the following sections, this modeling methodology is explored in detail, 

beginning with the model structure, assumptions and governing equations.  The 

methodology is then applied to the case study four cylinder spark ignited engine utilized 
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in the previous chapter, with an emphasis on an analysis of the steady state simulation 

results.  Based upon this analysis, a novel technique is developed to overcome the 

deficiency of this approach by incorporating wave dynamic effects within the lumped 

parameter architecture to permit a model that not only provides accurate crank-angle-

degree resolution of states, but remains computationally efficient.   

4.2 Traditional Crank-Angle-Resolved Zero-Dimensional Models 

As discussed in Chapter 2, the 0-D CAR methodology is based upon spatial 

lumping of a system into macro elements, where the conservations of mass and energy 

are applied to characterize the storage and release of mass and energy.  Such a 

methodology neglects the inherently distributed effects of wave propagation described in 

part by the conservation of momentum, and instead applies a quasi-steady approximation 

for elements representing large flow losses.  Utilizing these assumptions, the model 

structure and equations employed within a 0-D CAR model are presented in the 

following section in detail. 

4.2.1 Model Structure and Governing Equations 

The model structure considered to characterize the engine dynamics is based on 

the input/system/output representation, which allows one to isolate the most important 

engine system components, and represent them as interconnected dynamic models. 
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Figure 16 shows the system decomposition methodology applied to a four cylinder 

engine. 

 

Figure 16: Zero-Dimensional Crank Angle Resolved Model Structure 

 With reference to Figure 16, the components comprising significant volume and 

thus lumped in to macro fluid elements include that of the cylinders and the intake and 

exhaust manifolds. The components representing significant flow losses include the 

throttle, the intake and exhaust valves, and the losses associated to the catalyst.  Within 

the volume elements, the model predicts pressure, temperature, mass, and species 

concentration states, while within the flow restriction elements, the model predicts 

velocity and mass flow rate states.  
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4.2.1.1 Flow Restriction Elements 

The flow restriction elements are characterized through a quasi-steady 

approximation, where the mass and energy conservation laws are simplified by 

eliminating the dependence on time, leading to quasi-static (purely algebraic) model.  A 

derivation of this model can be found in [1], with the result presented in (4.1).  Note the 

use of total conditions for the upstream location.  
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The maximum mass flow rate will occur when the gas velocity reaches the speed of 

sound.  This condition is referred to as choked flow and occurs when the pressure at the 

throat exceeds the critical pressure defined in (4.2). 
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When the upstream pressure exceeds the critical pressure, equation (4.1) is modified to 

the form shown in (4.3) to properly account for the chocked condition.  
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The product CdA shown in the above equations represents the effective flow area, 

an empirical function of the valve opening. Such a parameter is generally determined 

from calibration, for instance using data from a component flow bench or an engine test 

bench as described in Section 3.2.2.  

The above equations are applicable to each of the static flow restriction elements 

shown in Figure 16.  However, in order to account for reverse flow, the inlet conditions 

(pin, Tin) must be chosen so that pin is the greatest between the upstream and downstream 

pressure across the restriction. The specific heat ratio γ depends on the gas temperature 

and is calculated with respect to the inlet thermodynamic conditions. 

4.2.1.2 Volume Elements 

The components shown in Figure 16 that are characterized by mass or energy 

storage are modeled using the unsteady mass and energy equations, assuming uniform 

distribution of the thermodynamic properties within the volume, as described in Section 

2.2.3.1. The details of the equations will be presented as applied to the intake manifold 

and the cylinder, where an extension to the exhaust manifold is straight forward. The 

model of the volumes are characterized by the total mass contained in the volume, the 

bulk temperature and the composition. The composition terms accounts for the various 

species that are present in the mixture, in this case: air, residuals from the exhaust gases 

and fuel vapor. 
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Intake Manifold Mass and Concentration Dynamics:
   

 

 The zero-dimensional mass conservation law defined previously in (2.35), can be 

applied directly to the intake manifold volume shown in Figure 16, to yield (4.4). 
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Conservation equations can be defined for each of the species found in the intake 

manifold (air, residual exhaust gas, vaporized fuel) under the assumption of non-reacting 

flows through defining mass fractions for each species as shown in Appendix 8.2.2.  The 

results of this derivation are repeated here in equations (4.5), (4.6) and (4.7), where it can 

be seen that dynamic equations are defined for the mass fractions of fuel and exhaust gas, 

while a static relation is defined for the mass fraction of air.  
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The ' 'K  parameters shown in equations (4.5) and (4.6) allow for flow reversal 

conditions, and are defined in Table 3. 
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For 0thm >  For 0thm <  For 0>ivm  For 0ivm <  

, , 0th im exK =  , , ,th im ex ex imK X=  , , ,iv im ex ex imK X=  , , ,iv im ex ex cylK X=  

, , 0th im fuelK =  , , ,th im fuel fuel imK X=  , , ,iv im fuel fuel imK X=  , , ,iv im fuel fuel cylK X=  

Table 3: Parameter Definition for Intake Manifold Species Concentration Equations 

Intake Manifold Temperature and Pressure Dynamics:
   

 

 The temperature dynamics within the manifold are described as a form of the 

zero-dimensional conservation of energy equation, originally defined in (2.36).  This 

equation is modified in Appendix 8.2.1, to yield the result shown in (4.8).
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Where again the ' 'K  parameters are defined for flow reversal conditions as shown in 

Table 4. 

For 0thm >  For 0thm <  For 0>ivm  For 0ivm <  

, 0th imK h=  ,th im imK h=  ,iv im imK h=  ,iv im cylK h=  

Table 4: Parameter Definition for Intake Manifold Energy Equation 

Furthermore, it is possible to determine the pressure within the manifold by applying the 

ideal gas law: 
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Cylinder Mass and Concentration Dynamics:
     

Again, the zero-dimensional mass conservation law defined previously in (2.35), 

can be applied directly to the cylinder volume shown in Figure 16, to yield (4.10).
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The conservation equations for each of the species found in the cylinder can be 

defined in a similar fashion as the intake manifold, except that care must be taken to 

account for the conversion of fuel and air into exhaust gas during combustion, as outlined 

in Appendix 8.2.2.   The results of this derivation are repeated here in equations (4.11),  

(4.12) and (4.13).  

( ) ( ){ } ( ) ( ){ },
, , arg , ,

1 1

1 cyl cylnum num
ex cyl cylb

iv iv cyl ev ev cyl ch e IVC ex cyl
cyl

dX dmdXm i K i m i K i m X
dt m dt dt

⎧ ⎫⎪ ⎪= ⋅ − ⋅ + −⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑  (4.11) 

( ) ( ){ } ( ) ( ){ },
, , , ,

1 1

1 cyl cylnum num
fuel cyl cylb

iv ivf cyl ev evf cyl fuel IVC fuel cyl
cyl

dX dmdXm i K i m i K i m X
dt m dt dt

⎧ ⎫⎪ ⎪= ⋅ − ⋅ + −⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ (4.12) 

 , , ,1air cyl ex cyl fuel cylX X X= − −  (4.13) 

Again, the ' 'K  parameters shown in equations (4.11) and (4.12) allow for flow reversal 

conditions, and are defined in Table 5. 
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For 0ivm >  For 0ivm <  For 0evm >  For 0evm <  

, ,iv cyl ex imK X=  , ,iv cyl ex cylK X=  , ,ev cyl ex cylK X=  , ,ev cyl ex emK X=  

, ,ivf cyl fuel imK X=  , ,ivf cyl fuel cylK X=  , ,evf cyl fuel cylK X=  , ,evf cyl fuel emK X=  

Table 5: Parameter Definition for Cylinder Species Concentration Equations 

 
Cylinder Thermodynamics: 

 The temperature dynamics within the cylinder are described as a form of the zero-

dimensional conservation of energy equation, originally defined in (2.36).  This equation 

is modified in Appendix 8.2.1 to include the effects of the work done by the change in 

volume of the cylinder and to include the heat released during combustion.  The resulting 

cylinder temperature dynamics equation is shown in (4.14). 
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∑  (4.14) 

The ' 'K  parameters are defined for flow reversal conditions as shown in Table 6. 
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For 0ivm >  For 0ivm <  For 0evm >  For 0evm <  

,iv cyl imK h=  iv cylK h=  ev cylK h=  ev emK h=  

Table 6: Parameter Definition for Cylinder Energy Equation 

The term shown in (4.14) accounting for the heat released during the combustion 

process is modeled through the use of the burn rate, the lower heating value of the fuel, 

and the mass of fuel present when combustion occurs. 

 ,
com b

f cyl LHV
dQ dXm Q

dt dt
=  (4.15) 

It should be noted that the mass of fuel utilized in equation (4.15) should be limited based 

upon the quantity of available air for combustion by assuming that the excess fuel in rich 

conditions does not participate in the heat release: 

 ,
, ,min , air IVC

f cyl f IVC
s

m
m m

AFR
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (4.16) 

The burn rate is modeled through the use of a Wiebe function [1]. 

 
1

1 exp
m

sp
bx a

θ θ
θ

+⎛ ⎞−⎛ ⎞
⎜ ⎟= − − ⎜ ⎟⎜ ⎟∆⎝ ⎠⎝ ⎠

 (4.17) 

Differentiating (4.17) with respect to the crank angle ( )θ  yields: 
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( ) 11

exp
m m

sp spb a mdx a
d

θ θ θ θ
θ θ θ θ

+⎛ ⎞− −+ ⎛ ⎞ ⎛ ⎞
⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟∆ ∆ ∆⎝ ⎠ ⎝ ⎠⎝ ⎠

 (4.18) 

The derivative of the burn rate with respect to time can then be inferred to be: 

 
( ) 11

exp
m m

sp spb b b a mdx dx dxd a
dt dt d d

θ θ θ θθ ω ω
θ θ θ θ θ

+⎛ ⎞− −+ ⎛ ⎞ ⎛ ⎞
⎜ ⎟= ⋅ = = −⎜ ⎟ ⎜ ⎟⎜ ⎟∆ ∆ ∆⎝ ⎠ ⎝ ⎠⎝ ⎠

 (4.19) 

The cylinder heat transfer model calculates the heat loss due to the heat transfer 

occurring between the gas and the cylinder walls. A few well established approaches are 

available, including the Woschni [130] and the Bargende [131] correlations to estimate the 

heat transfer coefficient.  The Woschni [130] correlation is presented here.  

 ( ),
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ht cyl cyl cyl w
dQ h A T T
dt

= −  (4.20) 
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For intake and exhaust: For compression: For combustion and expansion: 
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The pressure within the cylinder is described by applying the ideal gas law: 

 cyl cyl cyl
cyl

cyl

m R T
P

V
=  (4.23) 

 
 
 

4.2.1.3 Thermodynamic Properties 

As discussed in Chapter 2, the thermodynamic properties may be defined as 

thermally or calorically perfect.  For the present application, the properties are defined as 

thermally perfect and are calculated using a six species equilibrium calculation to 

estimate the composition of the products.  The chemical species considered are O2, N2, 

CO2, CO, H2 and H2O, while the fuel used is gasoline (C8.26H15.5). The thermodynamic 

properties are fitted with the routines proposed by Gordon and McBride [98], based on the 

tabulated JANAF data [99]: 

 

2 3 4
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1 7
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a a T a T a T a T

R
a aa ah a T T T T a

RT T
a aa as a T T T T T a

R

= + + + +

= + + + + +

= + + + + +

 (4.24) 

The reactions considered in the model are the combustion balance: 

 ( ) ( )2 2 2 2 22 2 2 2 2 2 2
/ 4 3.773n m p CO CO H O H O N

n mC H O N n x CO x CO x H O x H x O x N
ϕ

+
+ + → + + + + +  (4.25) 

and the water-gas shift: 



 63 

 2 2 2CO H CO H O+ ↔ +  (4.26) 

The equilibrium of the water-gas shift reaction is determined by: 

 2

2 2

CO H O
t

CO H

x x
K

x x
=  (4.27) 

The equilibrium constant Kt (generally, a function of temperature), is assumed constant 

and equal to 3.5 [1]. 

By solving the equations above, it is possible to estimate the gas composition and 

thermodynamic properties, in relation with temperature and equivalence ratio φ.  

Examples for air and combustion products are shown in the figures below. 

  

Figure 17: Specific Heat and Enthalpy for Air. 
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Figure 18: Specific Heat and Enthalpy for Combustion Products. 

4.2.1.4 Mechanical Elements 

Additional relations are required for the engine’s mechanical and geometrical 

elements, such as the evolution of the volume within the cylinder, the torque produced by 

the force of the pressure on the piston, the engine’s frictional losses and the dynamics of 

the crankshaft.  

Cylinder Volume 

The cylinder volume model calculates the volume of the cylinder as a function of 

crank angle and the cylinder geometrical parameters.  The volume of the cylinder is 

presented in (4.28), with the inclusion of the wrist pin offset parameter ε .  

 ( ) ( ) ( )( ) ( )
2

22 2 2 sin cos
4 1cyl

c

B LV l a l a a
r

πθ ε θ ε θ
⎧ ⎫⎛ ⎞⎪ ⎪= + + − − − + −⎨ ⎬⎜ ⎟−⎪ ⎪⎝ ⎠⎩ ⎭

 (4.28) 
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For inclusion within the cylinder energy equation, the derivative of the cylinder volume is 

required as shown in (4.29), with initial condition defined in (4.30). 

 ( ) ( )( ) ( )

( )( )

2

22

sin cos
sin

4 sin

cyl cyl a adV dVd B a
dt dt d l a

θ ε θθ πω θ
θ θ ε

⎧ ⎫+⎪ ⎪= ⋅ = +⎨ ⎬
⎪ ⎪− +⎩ ⎭

 (4.29) 
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(4.30) 

It should be noted that the crank radius parameter generally described as / 2a L=  , is 

defined as shown in (4.31) to include the effect of the wrist pin offset. 

 
2 2 2

2 2

4 4
2 4
L L la

L l
ε− + −

− +
=  (4.31) 

Indicated Torque: 

 The torque produced by the force of the gas on the piston is described by the 

indicated torque relation shown in (4.32) and can be seen to be a function of the 

difference between the cylinder and crank case (ambient) pressure. 

 ( ) ( )( ) ( ) ( )
( ) ( )( )

0 22
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sin 1

tan sin
i cyl p
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l a
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θ θ ε
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+⎪ ⎪= − +⎨ ⎬

⎪ ⎪− +⎩ ⎭

 (4.32) 
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Friction Torque: 

The friction model describes the engine torque losses due to mechanical friction. 

The modeling approach followed is based upon the Chen-Flynn [100] correlation for 

estimating the friction mean effective pressure (FMEP) and is a function of the peak 

cylinder pressure, the mean piston speed and the mean piston speed squared.  The 

coefficients { }, ,PF MPSF MPSSF  are fit to experimental data. 

 { }2
max4

d
f cyl L L

VT num C PF P MPSF S MPSSF S
π

⎛ ⎞= + ⋅ + ⋅ + ⋅⎜ ⎟
⎝ ⎠

 (4.33) 

Where the mean piston speed is defined as: 

 L
LS ω
π
⋅

=  (4.34) 

Crankshaft Dynamics: 

For simplicity, the engine crankshaft dynamics is described through a single 

degree of freedom dynamic model: 
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4.2.2 Model Implementation and Calibration 

The equations described in Section 4.2.1 are implemented in Matlab / Simulink.  

The implementation employs a modular structure to allow for a flexible modeling 

environment, easily adaptable to a wide range of engine designs.  An important aspect of 

this structure is to develop a frame work with universal inputs and outputs to enable a 

‘plug-n-play’ architecture.  To this end, the equations are coded in subsystems describing 

the major engine components (throttle, intake manifold, etc) and connected such that the 

model maintains a close relation to the original system.  The universal input/output 

structure is obtained through the use of ‘bus connectors’ such that each block has only 

two inputs (upstream and downstream conditions) and a single output.  Additionally, 

within each subsystem block, goto and from blocks are used for signal management, but 

are only defined as scoped variables and are thus (except for a few exceptions) defined 

only as local variables within each subsystem. The ‘plug-n-play’ architecture is further 

developed by Masking each subsystem block (a graphical user interface masking the 

contents of each block for the user to define the parameters of the subsystem) and 

creating a Simulink Library of the engine components.  Post processing of the simulation 

results is facilitated through careful data management by saving the simulation results in 

organized fashion within structures. 

 The model calibration, simulation, validation, and post-processing of simulation 

results is facilitated through a comprehensive suite of graphical user interfaces (GUIs) 
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designed in the Matlab environment, as outlined in Appendix 8.3. To facilitate calibration 

of the model, the GUIs aid in calibrating the intake, cylinder and exhaust systems as 

described below. 

Calibration of Flow Restriction Elements 

 The flow restriction elements shown in Figure 16 are calibrated through solving 

equations (4.1) - (4.3) for the effective area of the element based upon steady-state 

calibration data.  This calibration data may contain a combination of experimental data 

and data generated from a higher fidelity model.  For the throttle and valve flow 

restriction elements, the calibration has been performed utilizing experimental data, 

exactly as described in Section 3.3.2 for the one-dimensional model.  The exhaust flow 

restriction element has been calibrated through employing a Virtual Engine Mapping 

technique [28,77,97] to calibrate the exhaust system flow losses to match that of the 

experimentally calibrated one-dimensional model described in Section 3.3.  The results of 

this exhaust flow restriction calibration procedure are shown in a normalized plot at 

parked cam timing in Figure 19.  
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Figure 19: Exhaust Flow Restriction Effective Area at Parked Cam Timing (Normalized 

to One) 

Calibration of Combustion Parameters 

 The combustion model has been calibrated in the same fashion as was done for 

the one-dimensional model described in Section 3.3.2, where an inverse thermodynamic 

model is used for calculation of the burn rate from experimentally determined cylinder 

pressure.  The burn rate is fit to the Wiebe function model described in equation (4.17), 

and the resulting Wiebe function parameters are fit through regression and neural 

network approaches for  use throughout the entire engine map.  
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Calibration of Manifold Wall Temperature and Heat Transfer Models: 

 The intake, cylinder and exhaust manifold wall temperature models, as well as the 

heat transfer models, have been calibrated to match the results of the experimentally 

calibrated one-dimensional simulation model.  Specifically, intake and cylinder wall 

temperatures have been modeled as constant values. Since the exhaust system’s wall 

temperature varies significantly with operating conditions, it has been described through 

a static look-up table as a function of engine speed and load.  The heat transfer models of 

the intake and exhaust manifolds have subsequently been calibrated to match 

experimental and simulation results through applying global heat transfer modifiers to the 

heat transfer convection coefficients.  

4.2.3 Analysis of Modeling Assumptions and Simulation Results 

As a means of analyzing the predictive capability of the 0-D CAR approach, a 

simulation study is presented in the following, where results from the experimentally 

calibrated one-dimensional model from Section 3.3 are compared against results from the 

0-D CAR modeling approach.  The two models have been simulated over an engine 

speed sweep at Wide Open Throttle (WOT) to evaluate the predictive capability of the 

lumped parameter model. The discharge coefficients of the throttle and valves and the 

parameters of the Wiebe function combustion model are the same for both the 1-D and 

the 0-D model.  In this context, it is assumed that the quasi-static phenomena that 

contribute to the determination of the engine volumetric efficiency, such as the 
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concentrated flow losses, the average heat transfer within the manifolds and the cylinder, 

and the choking of the flow through the throttle, intake and exhaust valves, should be 

equally captured by the two models.  Additionally, the two models predict the low-

frequency filling and emptying dynamics of the intake and exhaust systems. 

Figure 20 shows the volumetric efficiency and brake torque predicted by the 0-D 

CAR and the 1-D gas dynamic model.  At low engine speeds, the 0-D CAR is capable of 

accurately predicting the volumetric efficiency and thus the brake torque.  However at 

mid and high engine speeds, the resonance peaks due to wave dynamic effects seen in the 

1-D simulation results are absent from the 0-D results.  Although the quasi-steady and 

low-frequency phenomena and their effects on the engine charge and its thermodynamic 

conditions are characterized in the 0-D context, it is evident that the neglected distributed 

and high-frequency effects considerably limit the accuracy of the lumped-parameter 

model. 
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Figure 20: Volumetric Efficiency and Brake Torque Prediction at Wide Open Throttle, 0-

D CAR vs. 1-D Model 

The inaccuracies in volumetric efficiency prediction seen in Figure 20 in the 0-D 

model stem from an inaccurate prediction of the valve flows, as described by the 

isentropic flow relations (4.1) - (4.3).  These relations can be seen to be a function of the 

cylinder pressure and pressure directly upstream of the intake valve.  In the 1-D 

representation, the gas dynamic equations are solved within numerous volumes, yielding 

a distributed prediction of intake pressures.  In the 0-D approach, on the other hand, a 

single lumped intake volume is used, yielding the prediction of only a single intake 

pressure. Figure 21 displays the intake manifold and intake port (pressure directly 

upstream of the valve) pressures during one engine cycle at 4900 RPM, WOT, as 

predicted by the 1-D gas dynamic model.  Although the cycle-averaged value of the two 
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pressures are similar (since there is no major flow restriction between the intake manifold 

and the intake port), the amplitude of the fluctuations in the intake port are much greater 

than in the manifold.  This figure can serve as a simplified analysis of the deficiencies of 

the 0-D approach.   

Within the 1-D simulator, the pressure used to calculate the intake valve flow is 

the port pressure shown in Figure 21.  However, in the 0-D CAR approach, only the 

manifold pressure shown in Figure 21 is predicted, and thus is used in the valve flow 

calculation.   It is apparent that using the intake manifold pressure from Figure 21 as the 

valve upstream pressure will yield significantly different valve flows than if the port 

pressure is used.  Thus in order to accurately predict the valve flow and ultimately the 

volumetric efficiency, a better representation of in the intake port conditions is required 

within the 0-D model.  The following section describes a methodology for representing 

the intake port conditions in order to accurately model volumetric efficiency and torque 

within a lumped parameter framework. 
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Figure 21: Intake Manifold and Port Pressure (4900 RPM, WOT) 

4.3 Empirically Based Wave Dynamic Compensation 

4.3.1 Improved Model Structure and Governing Equations 

The 0-D model structure has the advantage of providing prediction of the in-

cylinder pressure, as well as the intake and exhaust manifold pressures, with a resolution 

of one (or less) crank-angle degree.  However, the prediction of intake and exhaust air 

flows is rather poor, as several phenomena (which are intrinsically high-frequency and 

spatially dependent) are not explicitly accounted for within a lumped-parameter 

framework. For control applications, such as engine torque control or air-fuel ratio 
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control, the cycle-averaged value of the engine cylinder charge and its composition (fresh 

air, fuel and residuals) is relevant.  

From the above consideration, a calibration procedure has been defined to capture 

the phenomena not explicitly accounted for in the 0-D context.  Specifically, the 

procedure takes into account the effects of charge heating, backflows and wave dynamics 

on the cycle averaged cylinder charge mass and composition, and on the mixture 

thermodynamic conditions at intake valve closing. This, in turn, allows for improving the 

prediction of the in-cylinder pressure and instantaneous engine indicated torque.   

The calibration procedure begins by defining a pseudo-volume located between 

the intake manifold and the valves, to represent the intake port, as shown in Figure 22. 

 

Figure 22: Advanced System Decomposition for Engine Dynamics Model 

The port volumes are termed pseudo-volumes since the standard mass and energy 

equations (as described above) are not applied.  Instead, states within the port are 
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modeled as cycle-averaged states (assumed to be constant within a cycle) and defined by 

the equations below: 

 ( )* 1 IVC

ip p IM
IVO IVC IVO

P K P θ dθ
θ θ

= ⋅ ⋅
− ∫  (4.36) 

 ( )* 1 IVC

ip ip
IVO IVC IVO

T T θ dθ
θ θ

= ⋅
− ∫  (4.37) 

 ( )*
, ,

1 IVC

exh ip exh ip
IVO IVC IVO

X X θ dθ
θ θ

= ⋅
− ∫  (4.38) 

where the averages are taken over the crank-angle interval where the intake valve is open. 

Note that, in the case of the intake port pressure, a multiplier parameter Kp is defined, 

hence referencing to the averaged intake manifold pressure.  

In order to account for the effects of charge heating, backflow, and wave 

dynamics, the following effects should be predicted by the 0-D model to match the 

results of the 1-D model: 

1. The cylinder temperature at intake valve closing. 

 
1, , Dcyl IVC cyl IVCT T=  (4.39) 

2. The mass fraction of exhaust in the cylinder at intake valve closing.  

 
1, , , , Dex cyl IVC ex cyl IVCX X=  (4.40) 
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3. The mass of air that flows through the intake valve over one cycle. 

 
1 1

*
D D

IVC IVC

iv air iv air
IVO IVO

m X dt m X dt=∫ ∫  (4.41) 

where *
,

* 1 ipexair XX −= .  

The constraints specified above can be used to calibrate the three states within the intake 

port pseudo-volume.  Though the above equations form a system with three equations 

and three unknowns, the equations depend on the cylinder pressure and hence the 

resulting set of equations is a set of nonlinear, differential-algebraic relations and a closed 

form solution is unable to be obtained. For this reason, the procedure to identify the three 

states involves solving the equations simultaneously by iteration. 

The three  pseudo-volume states are calibrated at each engine operating point and 

defined as constant within each engine cycle.  The intake port states may be modeled for 

each cylinder so as to describe cylinder flow imbalances.  However, for a well distributed 

intake systems (as in the present example) the intake port states may be modeled 

identically for each cylinder.  

The engine speed sweep simulation is revisited here, where the algorithm described 

above is implemented to yield intake port states shown in Figure 23. 
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Figure 23: Calibrated Values of the Port Pressure Multiplier, Port Temperature and Port 

Mass Fraction of Exhaust 

The intake port states may be implemented within the lumped parameter model through 

regression or neural network approaches as a function of the parameters affecting 

volumetric efficiency (engine speed, load, cam timing, etc.).  The results are compared to 

the one dimensional gas dynamic model in Figure 24. It can be seen that the model now 

captures the cycle averaged parameters of volumetric efficiency and torque accurately.  
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Figure 24: Volumetric efficiency and Brake Torque prediction at wide open throttle,  0-D 

CAR Model with Wave Dynamic Compensation (WDC) VS 1-D Model 

Furthermore, Figure 25 shows that the 0-D model also captures the crank angle resolved 

cylinder pressure accurately. 
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Figure 25: Cylinder Pressure Prediction [4900 RPM, WOT] 

The resulting 0-D model estimates the cycle averaged variables of volumetric efficiency 

and mean effective pressure as well as the crank angle resolved variables of cylinder 

pressure and indicated torque within the accuracy of the 1-D gas dynamic model, and 

with computation time of an order of magnitude less.  

4.3.2 Steady State Simulation Results 

The proposed methodology has been applied to the full operating range of the 

engine described in Section 3.2.  The model calibration is done by utilizing a virtual 

engine mapping approach, where the experimentally calibrated 1-D gas dynamic model is 

used in place of experiments [28,77,97]. The procedure is structure as follows: 
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1. The 1-D gas dynamic engine model is calibrated and validated against the set of 

experimental points collected on the engine; 

2. Using the 1-D simulator, a full-factorial DOE is generated in the four dimensional 

space of engine speed, intake manifold pressure, intake and exhaust cam timing, 

covering the entire engine operating range. 

3. Using the data generated from simulation, the 0-D model is calibrated at each 

point to within +-2% absolute error in volumetric efficiency.  

4. The response of the 0-D model is validated first against the 1-D simulator, and 

then on an additional set of experimental data, different from the calibration set 

used in (1). 

Following the procedure outlined above, the calibrated port parameters were then 

implemented in the model as a four dimensional look-up table, as functions of engine 

speed, intake manifold pressure, intake and exhaust cam timing. Figure 26 shows the map 

of the intake pressure parameter at parked cam timing, while Figure 27 shows the intake 

port temperature and mass fraction of exhaust.  
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Figure 26: Intake Port Pressure Multiplier at Parked Cam Timing 

 

Figure 27: Intake Port Parameters; Left: Temperature, Right: Mass Fraction of Exhaust  

For the final validation phase, the 0-D model was compared against 800 

experimental operating points obtained in steady-state conditions. The results of the 

advanced 0-D CAR model as applied to these validation points are compared against the 
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1-D gas dynamic model and experimental data in Figure 28 and Figure 29. Figure 28 

shows that the zero-dimensional, lumped-parameter model predicts volumetric efficiency 

in the entire validation range with good agreement to the one-dimensional model, within 

a 3% error.   It can be seen in Figure 29, that the zero-dimensional, lumped-parameter 

model predicts volumetric efficiency accurately with respect to the experimental data. 

The increase in error can be attributed to the modeling error of the 1-D gas dynamic 

model from which the 0-D model was calibrated against. 

 

Figure 28: Comparison of volumetric efficiency and brake Torque between 1-D 

model and 0-D Model with Wave Dynamic Compensation (WDC) 
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Figure 29: Comparison of Volumetric Efficiency and Brake Torque Between 0-D Model 

with Wave Dynamic Compensation and Experimental Data 

4.4 Conclusions 

The crank angle resolved, zero-dimensional modeling methodology has been 

described in detail and evaluated on a case study of a four cylinder, spark ignited engine.  

In comparison to simulation results from a one-dimensional gas dynamic model, it is 

clear that the 0-D methodology provides a simpler, more computationally efficient 

architecture, but is incapable of predicting wave dynamic effects within the engine’s 

intake and exhaust systems.  This deficiency can lead to errors in prediction of volumetric 

efficiency and brake torque as high as 30%, significantly reducing the attractiveness of 

the approach.  
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To compensate for the deficiency of the 0-D CAR mode, a novel empirical 

approach has been developed to allow the 0-D model to achieve cycle-resolved values of 

volumetric efficiency, manifold pressure and brake torque as well as crank angle resolved 

values of cylinder pressure and brake torque to within an accuracy level of a one-

dimensional model, while maintaining a simple and computational efficient model 

architecture.    The approach has been applied to the full operating map of an engine with 

variable valve timing and shown to match both one-dimensional simulation and 

experimental results with a high level accuracy.  
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CHAPTER 5 

5 METHODOLOGY FOR FORMAL MODEL ORDER REDUCTION OF 
COMPRESSIBLE FLUID SYSTEMS 

5.1 Introduction 

The modeling study described in the previous chapter presented a novel technique 

for modeling the gas dynamics of engine intake systems using zero-dimensional 

modeling supplemented by specific empirical calibration.  The result is a computationally 

efficient, crank angle resolved model suitable for control systems design. In the present 

chapter, similar goals are achieved through a formal model order reduction procedure, 

beginning from the full set of conservation laws.  In this approach, the compressible fluid 

flow system is modeled through the use of a low order set of ordinary differential 

equations, allowing for a high level of fidelity yet with a simple model structure and low 

computational effort. 

The chapter is structured such that the model order reduction procedure is 

presented first, followed by a description of basis functions evaluated within the context 

of the reduction procedure.  Finally, in-depth equations are presented detailing the model 
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order reduction process as applied to the equations of gas dynamics and their 

approximations.  

5.2 Model Order Reduction Procedure 

The model order reduction procedure begins from the governing, one 

dimensional, hyperbolic partial differential equations and utilizes a defined Spatial Basis 

Function (SBF) to permit a reduction from a distributed parameter model to a lumped 

volume-based model.  Such an approach (with the appropriate SBF) allows for a low 

order ODE-based description of the distributed parameter model, hence more amenable 

to control systems applications. 

 

Figure 30: Model Order Reduction Process 

Specifically, the model order reduction procedure follows the following algorithm: 

1. Beginning from the differential form of the governing partial differential 

equation, define a generic control volume encompassing a portion of the system 

and perform a spatial integration about the control volume.  



 88 

2. Through the spatial integration and definition of volume average variables, the 

partial differential equation is converted to an ordinary differential equation in 

terms of the spatial average variable and fluxes entering and leaving the control 

volume.  

3. A definition of the Spatial Basis Function closes the equation set, coupling the 

known volume average state with that of the unknown flux quantities.  

5.3 Definition of Spatial Basis Functions 

The simple procedure defined in the previous section may be applied to one-

dimensional hyperbolic partial differential equations or equation sets with a variety of 

Spatial Basis Functions.  Candidate basis functions can be defined through mathematical 

convenience, relevance to the underlying physics, or experimental or simulation-based 

techniques. Examples of such basis functions include that of a polynomial, trigonometric 

or wavelet representation.  For the purpose of the present study, the evaluation will be 

limited to polynomial-based representations due to their inherent mathematical 

convenience, with extensions to more elaborate basis functions left as future work. 

5.3.1 Piecewise Constant  

Within a polynomial representation, the simplest implementation is that of a 

piecewise constant representation. Such a representation assumes that the volume average 

states are defined to be spatially constant within a volume, with a jump discontinuity at 
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volume boundaries, where care must be taken to define the value at the boundary. This 

assumption is analogous to that of the conventional System Dynamics approach, whereby 

a “well mixed” assumption of states is employed to define that “what leaves the volume 

is that which is at the center of the volume”.  A simple analysis of this approach leads to 

the understanding that the method must be adapted to the direction of propagation, in that 

in the event of flow reversal, the flux must be defined following an upwind mentality.  

5.3.2 Piecewise Linear 

Intuitively, the next representation is that of a piecewise linear model. This 

method will result in the definition of the flux at the boundaries as the average of the 

upstream and downstream volume average states (for constant spatial discretizations).  

5.3.3 Piecewise Quadratic 

The third basis function is that of a quadratic representation.  This implementation 

requires the knowledge of three volume averages (two upstream, one down) for 

determination of a volume’s exiting flux.  Like the constant basis function, this method 

will require an adaptive implementation based upon the direction of propagation.  

5.3.4 Piecewise Cubic 

The final basis function explored in the present study is that of the cubic function.   

This representation requires the knowledge of two volume average states upstream and 
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two downstream of the flux location.   This method, like the linear representation, has the 

advantage of not requiring an adaptive representation. 

5.4 Application to Fundamental Equations and Their Approximations 

The four chosen basis functions (constant, linear, quadratic, cubic) are 

implemented in the present section on the gas dynamic equations and their 

approximations, following the model order reduction procedure defined in Section 5.2.  

Specifically, the model order reduction procedure will be applied to one-dimensional 

versions of the Linear Convection Equation, linear Euler equations and the full Euler 

equations based upon these four basis functions.  A mathematical derivation will be 

included for each of the equation sets with a constant basis function, while the remainder 

of the derivations are included in Appendix 8.4, with the final results summarized for 

convenience.   

5.4.1 Linear Convection Equation 

The Linear Convection Equation, previously defined in Chapter 2, is reiterated in 

equation (5.1) below. 

 
( ) ( ), ,

0
u x t u x t

c
t x

∂ ∂
+ ⋅ =

∂ ∂
 (5.1) 
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The model order reduction process from Section 5.2 can be applied to this equation, by 

first performing a spatial integration about (5.1) within a generic control volume of length 

L : 

 ( ) ( )
0 0

, ,
0

L Lu x t u x t
dx c dx

t x
∂ ∂

⋅ + ⋅ ⋅ =
∂ ∂∫ ∫  (5.2) 

The spatial integration eliminates the partial derivative with respect to distance, allowing 

equation (5.2) to be simplified to: 

 ( ) ( ) ( )( )
0

,
, 0 ,

L u x t
dx c u t x u t x L

t
∂

⋅ = = − =
∂∫  (5.3) 

Next, we can define the spatial average value of the state u  within the control volume i  

as shown in (5.4).  Note that the superscript asterisk denotes a spatial average variable 

assigned to the control volume denoted by the subscript  (in this case: control volume i ).   

The spatial averaging, performed through a definite integral and assigned to specific 

control volume permits the state u  to now only be a function of time. 

 ( ) ( )*

0

1 ,
L

iu t u x t dx
L

= ⋅∫  (5.4) 

Differentiating (5.4) with respect to time, yields the relation shown in (5.5). 

 ( ) ( )*

0

,1 L
idu t u x t

dx
dt L t

∂
= ⋅

∂∫  (5.5) 
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This relation can be applied to (5.3) to yield the ordinary differential equation shown 

below. 

 ( ) ( ) ( )( )
*

, 0 ,idu t c u t x u t x L
dt L

= = − =  (5.6) 

Equation (5.6) relates the spatial average state within our control volume i  to the fluxes 

entering and leaving the control volume.  Note that this equation applied to a series of 

control volumes is not sufficient for obtaining a solution; a relation has not yet been 

defined between the state calculated from (5.6) and that of the fluxes entering and leaving 

the control volume.  The definition of the basis function establishes the link between the 

spatial average state and that of the fluxes.   

Also note that the flux leaving control volume i  must, by definition, be the same as the 

flux entering the adjacent control volume in the flow direction (i.e. in the case of forward 

traveling flow: the flux leaving control volume i  is equal to the flux entering control 

volume 1i + ).  Subsequently, defining the spatial basis function and establishing a 

correlation for the flux leaving the control volume in terms of spatial average variables is 

sufficient (it is not necessary to define the relationship for the flux entering the control 

volume since it is simply the flux leaving the upstream control volume).  With this in 

mind, the following derivation will establish a link between the flux leaving the control 

volume as a function of spatial average variables.  
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In the simplest representation, we assume a piecewise constant basis function (with 

respect to the longitudinal direction x) as defined in (5.7) to establish the relationship 

between the spatial average state and that of the exiting flux.  

 ( ) ( )10
,

L
u x t tα=  (5.7) 

We can then establish an analytic relationship for the spatial average state by applying 

equation (5.7) to (5.4): 

 ( ) ( ) ( ) ( )*
1 1

0 0

1 1,
L L

iu t u x t dx t dx t
L L

α α= ⋅ = ⋅ =∫ ∫  (5.8) 

Summarizing, the basis function (and thus the state u ) can be written as: 

 ( ) ( )*
0

,
L

iu x t u t=  (5.9) 

Using this relationship, the flux exiting the control volume can now be written as a 

function of the spatial average variables: 

 ( ) ( )*, iu t x L u t= =  (5.10) 

Similar derivations are presented in Appendix 8.4.1 for the linear, quadratic and cubic 

basis functions.  The results can be summarized as follows:   
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The ordinary differential equation governing the spatial average state within a control 

volume is defined as a function of the fluxes entering and leaving the control volume 

through the relationship in (5.11). 

 ( ) ( ) ( )( )
*

, 0 ,idu t c u t x u t x L
dt L

= = − =  (5.11) 

This relationship is completely defined through identifying the flux leaving the control 

volume (as discussed previously, the definition of the flux entering the control volume is 

not needed).  This relationship is summarized in Table 7 for polynomial basis functions. 

Spatial Basis Function Exiting Flux 

Constant ( ) *, iu t x L u= =  

Linear ( )
* *

1,
2

i iu uu t x L ++
= =  

Quadratic ( ) * * *
1 1

1 5 1,
6 6 3i i iu t x L u u u− += = − + +  

Cubic ( ) * * * *
1 1 2

1 7 7 1,
12 12 12 12i i i iu t x L u u u u− + += = − + + −

Table 7: Flux Exiting Control Volume i  of Linear Convection Equation with Polynomial 

Basis Functions 

5.4.2 Linear Euler Equations 

A similar derivation can be performed for the linear version of the Euler 

equations, previously introduced in Chapter 2.  The linear set is shown in differential 
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form in equations (5.12) and (5.13).  It can be seen that the equation set is a function of 

two space and time dependent states: density ( )ρ  and velocity ( )u . 

 
( ) ( ) ( )

0 0

, , ,
0

x t x t u x t
u

t x x
ρ ρ

ρ
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (5.12) 

 
( ) ( ) ( )2

0
0

, , ,
0

u x t u x t x tcu
t x x

ρ
ρ

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (5.13) 

Beginning with the linear continuity equation (5.12), we again apply the model order 

reduction process from Section 5.2, where we first perform a spatial integration within a 

generic control volume. 

 ( ) ( ) ( )
0 0

0 0 0

, , ,
0

L L Lx t x t u x t
dx u dx dx

t x x
ρ ρ

ρ
∂ ∂ ∂

⋅ + ⋅ + ⋅ =
∂ ∂ ∂∫ ∫ ∫  (5.14) 

Again, the spatial integration eliminates the partial derivative with respect to the 

coordinate x, allowing equation (5.14) to be simplified to: 

 ( ) ( ) ( )( ) ( ) ( )( )0 0
0

,
, 0 , , 0 ,

L x t
dx u t x t x L u t x u t x L

t
ρ

ρ ρ ρ
∂

⋅ = = − = + = − =
∂∫  (5.15) 

We can define the spatial average value of the density ( )ρ  within volume i  as: 

 ( ) ( )*

0

1 ,
L

i t x t dx
L

ρ ρ= ⋅∫  (5.16) 
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Differentiating (5.16) with respect to time yields: 

 ( ) ( )*

0

,1 L
id t x t

dx
dt L t
ρ ρ∂

= ⋅
∂∫  (5.17) 

Relation (5.17) can be applied to (5.15) to yield an ordinary differential equation for the 

spatial average value of the density within control volume i .   

 ( ) ( ) ( )( ) ( ) ( )( )
*

0 0, 0 , , 0 ,id t u t x t x L u t x u t x L
dt L L
ρ ρρ ρ= = − = + = − =  (5.18) 

Next, integrating the momentum equation about a control volume that is staggered with 

respect to the continuity volume yields: 

 ( ) ( ) ( )1.5 1.5 1.5 2

0
0.5 .5 .5

, , ,
0

L L L

L L L

u x t u x t x tcdx u dx dx
t x x

ρ
ρ

∂ ∂ ∂
⋅ + ⋅ + ⋅ =

∂ ∂ ∂∫ ∫ ∫  (5.19) 

This relation simplifies to: 

( )1.5 2

0
0.5

, 3 3, , , ,
2 2 2 2

L

L

u x t L L a L Ldx u u t x u t x t x t x
t

ρ ρ
ρ

∂ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⋅ = = − = + = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
∫ (5.20) 

The spatial average value of velocity ( )u  within volume j  can be defined as: 

 ( ) ( )
1.5

*

.5

1 ,
L

j
L

u t u x t dx
L

= ⋅∫  (5.21) 

Differentiating (5.21) with respect to time yields: 
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( ) ( )* 1.5

.5

,1 L
jdu t u x t

dx
dt L t

∂
= ⋅

∂∫  (5.22) 

Equation (5.22) can be applied (5.20) to yield: 

 
( )* 2

0
0

3 3, , , ,
2 2 2 2

jdu t L L c L Lu u t x u t x t x t x
dt

ρ ρ
ρ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − = + = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (5.23) 

We now have two governing ordinary differential equations for the control volumes i  

and j , but require the relationship between the spatial average variables and that of the 

fluxes.  Beginning again from the simplest representation, piecewise constant basis 

functions for the two staggered volumes can be defined within their respective control 

volumes as: 

 ( ) ( )10
,

L
x t tρ α=  (5.24) 

 ( ) ( )1.5
1.5

,
L

L
u x t tβ=  (5.25) 

Based upon these basis functions, the spatial average variables can be defined as: 

 ( ) ( ) ( )*
1 1

0

1 L

i t t dx t
L

ρ α α= ⋅ =∫  (5.26) 

 ( ) ( ) ( )
1.5

*
1 1

.5

1 L

j
L

u t t dx t
L

β β= ⋅ =∫  (5.27) 
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Thus the basis functions can be written as: 

 ( ) ( )*
0

,
L

ix t tρ ρ=  (5.28) 

 ( ) ( )1.5 *
.5

,
L

jL
u x t u t=  (5.29) 

The fluxes of density and velocity leaving control volumes i  and j  can now be found: 

 ( ) ( )*, ju t x L u t= =  (5.30) 

 ( )*3,
2 j
Lu t x u t⎛ ⎞= =⎜ ⎟

⎝ ⎠
 (5.31) 

 ( ) ( )*, it x L tρ ρ= =  (5.32) 

 ( )*
1

3,
2 i
Lt x tρ ρ +

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (5.33) 

Summarizing, the ordinary differential equations governing the spatial average states of 

density and velocity within the staggered control volumes i  and j  are defined as a 

function of the fluxes entering and leaving the control volumes through the relationships 

in (5.34) and (5.35). 

 ( ) ( ) ( )( ) ( ) ( )( )
*

0 0, 0 , , 0 ,id t u t x t x L u t x u t x L
dt L L
ρ ρρ ρ= = − = + = − =  (5.34) 
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( )* 2

0
0

3 3, , , ,
2 2 2 2

jdu t L L a L Lu u t x u t x t x t x
dt

ρ ρ
ρ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − = + = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (5.35) 

These relationships are completely defined through the definition of the flux leaving the 

control volume.  This relationship is summarized in Table 8 and Table 9 for polynomial 

basis functions. 

Basis 
Function 

Flux Exiting Mass and Energy 
Volume  

Flux Exiting Momentum 
Volume  

Constant ( ) *,
i

t x Lρ ρ= =  *
1

3,
2 i
Lt xρ ρ +

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

Linear ( )
* *

1,
2

i it x L ρ ρρ ++
= =  *

1
3,
2 i
Lt xρ ρ +

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

Quadratic ( ) * * *
1 1

1 5 1,
6 6 3i i it x Lρ ρ ρ ρ− += = − + +  * * *

1 1
3 1 1 23,
2 24 12 24i i i
Lt xρ ρ ρ ρ− +

⎛ ⎞= = − + +⎜ ⎟
⎝ ⎠

 

Cubic ( ) * * * *
1 1 2

1 7 7 1,
12 12 12 12i i i it x Lρ ρ ρ ρ ρ− + += = − + + − * * *

1 2
3 1 13 1,
2 24 12 24i i i
Lt xρ ρ ρ ρ+ +

⎛ ⎞= = − + −⎜ ⎟
⎝ ⎠

Table 8: Density Flux Exiting Control Volumes i  and j  of Linear Euler Equations with 

Polynomial Basis Functions 
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Basis 
Function 

Flux Exiting Mass and Energy 
Volume  

Flux Exiting Momentum Volume  

Constant ( ) *, ju t x L u= =  *3,
2 j
Lu t x u⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

Linear ( ) *, ju t x L u= =  
* *

13,
2 2

j ju uLu t x ++⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

Quadratic ( ) * * *
1 1

1 13 1,
24 12 24j j ju t x L u u u− += = − + − * * *

1 1
3 1 5 1,
2 6 6 3j j j
Lu t x u u u− +

⎛ ⎞= = − + +⎜ ⎟
⎝ ⎠

 

Cubic ( ) * * *
1 1

1 13 1,
24 12 24j j ju t x L u u u− += = − + − * * * *

1 1 2
3 1 7 7 1,
2 12 12 12 12j j j j
Lu t x u u u u− + +

⎛ ⎞= = − + + −⎜ ⎟
⎝ ⎠

Table 9: Velocity Flux Exiting Control Volumes i  and j  of Linear Euler Equations with 

Polynomial Basis Functions  

5.4.3 Euler Equations 

The model order reduction process is repeated here for the one-dimensional, constant 

area Euler Equations shown in differential form in equations (5.36) - (5.38) below.  This 

version of the equation set can be seen to be a function of five space and time varying 

quantities: density ( )ρ , total internal energy ( )0e , velocity ( )u , total enthalpy ( )0h  and 

pressure ( )P .  

 
( )( ) ( ) ( )( ), , ,

0
x t A x t Au x t
t x

ρ ρ∂ ∂
+ =

∂ ∂
 (5.36) 

 
( ) ( )( ) ( ) ( ) ( )( )2, , ,, ,

0
x t Au x t P x t Ax t Au x t

t x

ρρ ∂ +∂
+ =

∂ ∂
 (5.37) 
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( ) ( )( ) ( ) ( ) ( )( )0 0, , , , ,

0
x t Ae x t x t Au x t h x t

t x
ρ ρ∂ ∂

+ =
∂ ∂

 (5.38) 

For ease of analysis, these equations are modified by defining the mass flux of gas 

traveling within the components, the pressure and the enthalpy as follows : 

 ( ) ( ) ( ), , ,m x t x t Au x tρ=  (5.39) 

 ( ) ( ) ( ) ( )
( )

2

0 2 2

,
, 1 ,

2 ,

m x t
P x t x t e

x t A
γ ρ

ρ

⎛ ⎞
⎜ ⎟= − −
⎜ ⎟
⎝ ⎠

 (5.40) 

 ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

2

0 0 0 2 2

, ,
, , , 1

, 2 ,

P x t m x t
h x t e x t e x t

x t x t A
γ γ

ρ ρ
= + = + −  (5.41) 

Applying the relations in (5.39) - (5.41) to equations (5.36) - (5.38) yields a version of the 

Euler equations in three space and time varying quantities: density ( )ρ , total internal 

energy ( )0e , and mass flux ( )m . 

 
( )( ) ( ), ,

0
x t A m x t
t x

ρ∂ ∂
+ =

∂ ∂
 (5.42) 

 
( )

( ) ( ) ( ) ( ) ( )
( )

2

0

, 3
1 , ,

2 ,,
0

m x t
x t Ae x t

x t Am x t
t x

γ
γ ρ

ρ

⎛ ⎞−
⎜ ⎟∂ − +
⎜ ⎟∂ ⎝ ⎠+ =

∂ ∂
 (5.43) 
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( ) ( )( )

( ) ( ) ( ) ( )
( )

3

0 2 2
0

,
, , 1

2 ,, ,
0

m x t
m x t e x t

x t Ax t Ae x t
t x

γ γ
ρρ

⎛ ⎞
⎜ ⎟∂ + −
⎜ ⎟∂ ⎝ ⎠+ =

∂ ∂
 (5.44) 

Beginning first with the continuity equation and applying the model order reduction 

process from Section 5.2, we perform a spatial integration within the generic control 

volume: 

 
( )( ) ( )

0 0

, ,
0

L Lx t A m x t
dx dx

t x
ρ∂ ∂

⋅ + ⋅ =
∂ ∂∫ ∫  (5.45) 

The spatial integration eliminates the partial derivatives with respect to distance, 

simplifying (5.45) to: 

 
( )( ) ( ) ( )

0

,
, 0 ,

L x t A
dx m t x m t x L

t
ρ∂

⋅ = = − =
∂∫  (5.46) 

The spatial average value of the density ( )ρ  within control volume i  can be defined as: 

 ( ) ( )*

0

1 ,
L

i t x t dx
L

ρ ρ= ⋅∫  (5.47) 

Differentiating (5.47) with respect to time yields: 

 ( ) ( )*

0

,1 L
id t x t

dx
dt L t
ρ ρ∂

= ⋅
∂∫  (5.48) 
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Relation (5.48) can be applied to (5.46) to yield an ordinary differential equation for the 

spatial average variable of the density within control volume i : 

 ( ) ( ) ( )
*

, 0 ,id t
AL m t x m t x L

dt
ρ

= = − =  (5.49) 

We next turn our attention to the conservation of energy and integrate about the same 

control volume: 

( ) ( )( )
( ) ( ) ( ) ( )

( )

3

0 2 2
0

0 0

,
, , 1

2 ,, ,
0

L L

m x t
m x t e x t

x t Ax t Ae x t
dx dx

t x

γ γ
ρρ

⎛ ⎞
⎜ ⎟∂ + −
⎜ ⎟∂ ⎝ ⎠⋅ + ⋅ =

∂ ∂∫ ∫  (5.50) 

Again, the integration eliminates terms such that equation (5.50) simplifies to: 

( ) ( )( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

3
0

0 2 2
0

3

0 2 2

, , , 0
, 0 , 0 1 ...

2 , 0

,
, , 1

2 ,

L x t Ae x t m t x
dx m t x e t x

t t x A

m t x L
m t x L e t x L

t x L A

ρ
γ γ

ρ

γ γ
ρ

∂ =
⋅ = = = + − −

∂ =

=
= = − −

=

∫
 (5.51) 

The spatial average value of the product of the density and the total internal energy ( )0eρ  

within control volume i  can be defined as: 

 ( ) ( ) ( ) ( )*
0 0

0

1 , ,
L

i
e t x t e x t dx

L
ρ ρ= ⋅∫  (5.52) 

Differentiating  (5.52) with respect to time yields: 



 104 

 
( ) ( ) ( ) ( )( )*

00

0

, ,1 L
i

x t e x td e t
dx

dt L t
ρρ ∂

= ⋅
∂∫  (5.53) 

Relation (5.53) can be applied to (5.51) to yield an ordinary differential equation for the 

spatial average variable of the product of density and energy within control volume i : 

 

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

* 3
0

0 2 2

3

0 2 2

, 0
, 0 , 0 1 ...

2 , 0

,
, , 1

2 ,

i
d e t m t x

AL m t x e t x
dt t x A

m t x L
m t x L e t x L

t x L A

ρ
γ γ

ρ

γ γ
ρ

=
= = = + − −

=

=
= = − −

=

 (5.54) 

Finally, concentrating on the momentum equation, we integrate about a control volume 

that is staggered with respect to the continuity and energy volume to yield: 

 ( )
( ) ( ) ( ) ( ) ( )

( )

2

01.5 1.5

.5 .5

, 3
1 , ,

2 ,,
0

L L

L L

m x t
x t Ae x t

x t Am x t
dx dx

t x

γ
γ ρ

ρ

⎛ ⎞−
⎜ ⎟∂ − +
⎜ ⎟∂ ⎝ ⎠⋅ + ⋅ =

∂ ∂∫ ∫  (5.55) 

The integration eliminates derivatives such that equation (5.55) simplifies to: 

 

( ) ( )
( )

( )
( )

2

1.5

0
.5

2

0

, 3, 21 , , ...
2 2 2 ,

2

3, 3
3 3 21 , ,

32 2 2 ,
2

L

L

Lm t xm x t L Ldx t x Ae t x
Lt t x A

Lm t x
L Lt x Ae t x

Lt x A

γ
γ ρ

ρ

γ
γ ρ

ρ

⎛ ⎞= −⎜ ⎟∂ ⎛ ⎞ ⎛ ⎞ ⎝ ⎠⋅ = − = = + −⎜ ⎟ ⎜ ⎟∂ ⎛ ⎞⎝ ⎠ ⎝ ⎠ =⎜ ⎟
⎝ ⎠

⎛ ⎞= −⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠− = = −⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠ =⎜ ⎟
⎝ ⎠

∫

 (5.56) 
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The spatial average value of mass flux ( )m  within control volume j  can be defined as: 

 ( ) ( )
2.5

*

.5

1 ,
L

j
L

m t m x t dx
L

= ⋅∫  (5.57) 

Differentiating  (5.57) with respect to time yields: 

 
( ) ( )* 2.5

.5

,1 L
j

L

dm t m x t
dx

dt L t
∂

= ⋅
∂∫  (5.58) 

Equation (5.58) can be applied to (5.56) to yield an ordinary differential equation for the 

spatial average variable of the mass flux within control volume i : 

 

( ) ( )
( )

( )
( )

2

*

0

2

0

, 3
21 , , ...

2 2 2 ,
2

3, 3
3 3 21 , ,

32 2 2 ,
2

j

Lm t xdm t L LL t x Ae t x
Ldt t x A

Lm t x
L Lt x Ae t x

Lt x A

γ
γ ρ

ρ

γ
γ ρ

ρ

⎛ ⎞= −⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠= − = = + −⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠ =⎜ ⎟
⎝ ⎠

⎛ ⎞= −⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠− = = −⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠ =⎜ ⎟
⎝ ⎠

 (5.59) 

We now have three governing ordinary differential equations for the control volumes i  

and j  and require the relationship between the spatial average variables and that of the 

fluxes. Starting from the simplest representation, piecewise constant basis functions are 

defined within two separate sets of control volumes: the first contains a single control 
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volume where basis functions are defined for the density and for the total internal energy; 

the second, staggered from the first, contains a single control volume for the mass flux 

basis function: 

 ( ) ( )10
,

L
x t tρ α=  (5.60) 

 ( ) ( )0 10
,

L
e x t tβ=  (5.61) 

 ( ) ( )1.5
1.5

,
L

L
m x t tχ=  (5.62) 

Based upon these basis functions, the spatial average variables can be defined as: 

 ( ) ( )*
1 1

0

1 L

i t dx t
L

ρ α α= ⋅ =∫  (5.63) 

 ( ) ( ) ( )*
0 1 1

0

1 L

i
e t dx t

L
β β= ⋅ =∫  (5.64) 

 ( ) ( )
1.5

*
1 1

.5

1 L

j
L

m t dx t
L

χ χ= ⋅ =∫  (5.65) 

Thus the basis functions can be written as: 

 ( ) ( )*
0

,
L

ix t tρ ρ=  (5.66) 

 ( ) ( )*
0 0,0

,
L

ie x t e t=  (5.67) 
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 ( ) ( )1.5 *
.5

,
L

jL
m x t m t=  (5.68) 

Furthermore, we can see that spatial average quantity of the product of the density and 

the internal energy can be written as: 

 ( ) ( ) ( ) ( ) ( ) ( )*
0 1 1 1 1

0

1 L

i
e t t t dx t t

L
ρ α β α β= ⋅ ⋅ = ⋅∫  (5.69) 

Such that: 

 ( ) ( ) ( ) ( )* * *
0 0,i ii

e t e t tρ ρ= ⋅  (5.70) 

The fluxes of density, velocity, and internal energy leaving control volumes i  and j  can 

now be found: 

 ( ) ( )*, it x L tρ ρ= =  (5.71) 

 ( )*
1

3,
2 i
Lt x tρ ρ +

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (5.72) 

 ( ) ( )*
0 0,, ie t x L e t= =  (5.73) 

 ( )*
0 0, 1

3,
2 i
Le t x e t+

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (5.74) 

 ( ) ( )*, jm t x L m t= =  (5.75) 
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 ( )*3,
2 j
Lm t x m t⎛ ⎞= =⎜ ⎟

⎝ ⎠
 (5.76) 

Summarizing, the ordinary differential equations governing the spatial average states of 

density, total internal energy, and mass flux within the staggered control volumes i  and 

j  are defined as a function of the fluxes entering and leaving the control volumes 

through the relationships in (5.77) - (5.79). 

 
( ) ( ) ( )

*

, 0 ,id t
AL m t x m t x L

dt
ρ

= = − =  (5.77) 

 

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

* 3
0

0 2 2

3

0 2 2

, 0
, 0 , 0 1 ...

2 , 0

,
, , 1

2 ,

i
d e t m t x

AL m t x e t x
dt t x A

m t x L
m t x L e t x L

t x L A

ρ
γ γ

ρ

γ γ
ρ

=
= = = + − −

=

=
= = − −

=

 (5.78) 

 

( ) ( )
( )

( )
( )

2

*

0

2

0

, 3
21 , , ...

2 2 2 ,
2

3, 3
3 3 21 , ,

32 2 2 ,
2

j

Lm t xdm t L LL t x Ae t x
Ldt t x A

Lm t x
L Lt x Ae t x

Lt x A

γ
γ ρ

ρ

γ
γ ρ

ρ

⎛ ⎞= −⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠= − = = + −⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠ =⎜ ⎟
⎝ ⎠

⎛ ⎞= −⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠− = = −⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠ =⎜ ⎟
⎝ ⎠

 (5.79) 

These relationships are fully defined through the definition of the flux leaving the control 

volumes.  This relationship is summarized in Table 10 - Table 13 for polynomial basis 

functions. 
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Basis 
Function 

Flux Exiting Continuity Volume  Flux Exiting Momentum Volume 

Constant ( ) *, it x Lρ ρ= =  *
1

3,
2 i
Lt xρ ρ +

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

Linear ( )
* *

1,
2

i it x L ρ ρρ ++
= =  *

1
3,
2 i
Lt xρ ρ +

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

Quadratic ( )
* * *

1 15 2,
6

i i it x L ρ ρ ρρ − +− + +
= =  * * *

1 1
3 1 1 23,
2 24 12 24i i i
Lt xρ ρ ρ ρ− +

⎛ ⎞= = − + +⎜ ⎟
⎝ ⎠

Cubic ( )
* * * *

1 1 27 7,
12

i i i it x L ρ ρ ρ ρρ − + +− + + −
= =  * * *

1 2
3 1 13 1,
2 24 12 24i i i
Lt xρ ρ ρ ρ+ +

⎛ ⎞= = − + −⎜ ⎟
⎝ ⎠

Table 10: Density Flux Exiting Control Volumes i  and j  of  Euler Equations with 

Polynomial Basis Functions 

Basis 
Function 

Flux Exiting Continuity Volume  Flux Exiting Momentum Volume  

Constant ( ) *
0 0,, ie t x L e= =  *

0 0, 1
3,
2 i
Le t x e +

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

Linear ( )
* *
0, 0, 1

0 ,
2

i ie e
e t x L ++

= =  *
0 0, 1

3,
2 i
Le t x e +

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

Quadratic ( )
* * *
0, 1 0, 0, 1

0

5 2
,

6
i i ie e e

e t x L − +− + +
= =  * * *

0 0, 1 0, 0, 1
3 1 1 23,
2 24 12 24i i i
Le t x e e e− +

⎛ ⎞= = − + +⎜ ⎟
⎝ ⎠

 

Cubic ( )
* * * *
0, 1 0, 0, 1 0, 2

0

7 7
,

12
i i i ie e e e

e t x L − + +− + + −
= =  * * *

0 0, 0, 1 0, 2
3 1 13 1,
2 24 12 24i i i
Le t x e e e+ +

⎛ ⎞= = − + −⎜ ⎟
⎝ ⎠

Table 11: Energy Flux Exiting Control Volumes i  and j  of  Euler Equations with 

Polynomial Basis Functions 
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Basis 
Function 

Flux Exiting Continuity 
Volume  

Flux Exiting Momentum Volume  

Constant ( ) *, jm t x L m= =  *3,
2 j
Lm t x m⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

Linear ( ) *, jm t x L m= =  
* *

13,
2 2

j jm mLm t x ++⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

Quadratic ( ) * * *
1 1

1 13 1,
24 12 24j j jm t x L m m m− += = − + − * * *

1 1
3 1 5 1,
2 6 6 3j j j
Lm t x m m m− +

⎛ ⎞= = − + +⎜ ⎟
⎝ ⎠

 

Cubic ( ) * * *
1 1

1 13 1,
24 12 24j j jm t x L m m m− += = − + −  * * * *

1 1 2
3 1 7 7 1,
2 12 12 12 12j j j j
Lm t x m m m m− + +

⎛ ⎞= = − + + −⎜ ⎟
⎝ ⎠

Table 12: Mass Flux Exiting Control Volumes i  and j  of  Euler Equations with 

Polynomial Basis Functions 

Basis 
Function 

Spatial Average Product of Density and Energy  

Constant ( )* * *
0 0,i ii

e eρ ρ= ⋅  

Linear ( )* * * * * * *
0 1 0, 1 0, 1

13 1 1 1
12 12 12 12i i i i i ii

e e eρ ρ ρ ρ ρ+ + +
⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Quadratic ( )* * * * * * * * *
0 1 1 0, 1 1 1 0,

* * * *
1 1 0, 1

1 1 7 1 181 1 ...
45 360 360 360 180 360

7 1 1
360 360 45

i i i i i i i ii

i i i i

e e e

e

ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ

− + − − +

− + +

⎛ ⎞ ⎛ ⎞= − − + − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞− − +⎜ ⎟
⎝ ⎠

Cubic ( )* * * * * *
0 1 1 2 0, 1

* * * * *
1 1 2 0,

* * * * *
1 1 2 0, 1

59 59 53 73 ...
6048 5040 2016 15120

59 10391 257 17 ...
5040 10080 5040 2016

53 257 941 9 ...
2016 5040 10080 560
73

i i i i ii

i i i i i

i i i i i

e e

e

e

ρ ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

− + + −

− + +

− + + +

⎛ ⎞= + − + +⎜ ⎟
⎝ ⎠

⎛ ⎞+ − + +⎜ ⎟
⎝ ⎠
⎛ ⎞− − + − +⎜ ⎟
⎝ ⎠

* * * * *
1 1 2 0, 2

17 9 17
15120 2016 560 6048i i i i ieρ ρ ρ ρ− + + +
⎛ ⎞+ − +⎜ ⎟
⎝ ⎠

 

Table 13: Spatial Average Product of Density and Energy of Euler Equations  
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5.5 Conclusions 

A formal model order reduction procedure has been defined whereby sets of 

hyperbolic partial differential equations can be reduced to volume-based ordinary 

differential equations.  The procedure begins by defining a generic control volume and 

spatially integrating about that control volume to define ordinary differential equations in 

the spatial average variables.  The reduction process then employs the use of Spatial 

Basis Functions to establish a relationship between the spatial average quantities and that 

of the fluxes entering and leaving the control volumes.  The SBF may be defined based 

upon mathematical convenience, relevance to the underlying physics, or experimental or 

simulation-based techniques.  Within the context of the present work, polynomial-based 

representations have been evaluated due to their inherent mathematical convenience, with 

extensions to more elaborate basis functions left as future work.   

In depth derivations of this approach have been presented in this chapter and in 

the Appendix for the Linear Convection equation, linear Euler equations, and Euler 

equations based upon the polynomial basis functions of constant, linear, quadratic and 

cubic.  In the following chapter, the model order reduction approach and the 

corresponding basis functions will be evaluated against analytic and simulation results as 

to their ability to model the underlying physical processes while maintaining a low order 

ordinary differential equation structure.  
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CHAPTER 6 

6 APPLICATION OF FORMAL MODEL ORDER REDUCTION OF COMPRESSIBLE 
FLUID SYSTEMS  

6.1 Introduction 

 The model order reduction procedure introduced in the previous chapter is 

evaluated in following sections with respect to its ability to employ a low order, ordinary 

differential equation structure to adequately model the underlying distributed phenomena 

of the governing partial differential equations. The evaluation will be performed by 

identifying prototype scenarios to evaluate the gas dynamic equations and their 

approximations.  These case studies have been selected to mimic conditions of engine 

intake and exhaust systems, while having either analytic or high fidelity computational 

results to benchmark against.  Specifically, the Linear Convection and linear Euler 

equations will be evaluated on a simple traveling wave scenario against analytic 

solutions.  The four basis functions introduced in the previous chapter will be evaluated 

for these scenarios against standard numerical methods and amongst themselves to 

highlight the advantages of the model order reduction technique.  The final validation 

employs the full set of Euler equations evaluated on a simplified engine platform, 
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benchmarked against computational results from a well established, high-fidelity 

commercial software package, due to the absence of an analytic solution.   

6.2 Case Studies and Simulation Results 

6.2.1 Linear Convection Equation 

As a means to evaluate the model order reduction technique on the Linear 

Convection equation, a case study of a simple traveling wave is devised.   The case study 

is designed to model a single wave travelling at the speed of sound within a straight pipe 

of infinite length.  The speed of sound, and thus the speed of the wave, is calculated 

assuming air at ambient temperature through equation (6.1). 

 [ ]1.4 287 298 346J mc RT K
kg K s

γ
⎡ ⎤ ⎡ ⎤= = ⋅ ⋅ =⎢ ⎥ ⎢ ⎥⋅ ⎣ ⎦⎣ ⎦

 (6.1) 

For simplicity, the amplitude of the wave has been set to one, while the frequency of the 

wave has been selected to approach the upper limit of frequency relevant to a 

performance simulation for a defined engine platform.   

The fundamental frequency of an engine at a given speed is defined in equation (6.2).  It 

can be seen that the maximum fundamental frequency will be at the highest engine speed. 

 
120

cyl
fund

N Num
f

⋅
=  (6.2) 
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For a four cylinder engine, taking 6000 RPM as the upper limit of engine speed, the 

fundamental frequency can be seen to be [ ]200fundf Hz= .  For a detailed performance 

simulation, the fundamental frequency and its subsequent harmonics can be relevant.  

However, for the present case study we will use the first harmonic of the fundamental 

frequency at 6000 RPM of a four cylinder engine, [ ]400f Hz= , as the wave frequency 

to approximate the bandwidth required for an engine performance simulation.  

Additional parameters must be specified for the case study, as outlined in Table 14.  This 

includes parameters such as the distance the wave travels within the simulation, the 

Courant number, and the spatial discretization.  To mimic the travel of a wave through an 

engine’s intake and exhaust system, the distance travelled has been defined to be five 

meters.  The Courant number and the spatial discretization have been chosen to be 

consistent with that used by standard numerical methods [16]. 

Parameter Value 
Wave Speed 346 m/s 
Amplitude 1 
Frequency 400 Hz 

Wave length .865 m 
Distance travelled 5 m 

Courant (CFL) number .8 
Spatial discretization .0346 m 

Volumes per Wavelength 25 

Table 14: Linear Convection Equation Case Study Parameters 
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As discussed in Chapter 2, the Linear Convection equation has a simple analytic solution 

for a defined initial spatial profile, as shown in (6.3).  Since the wave speed is constant 

for the simulation, the solution at any time, t , is simply the initial profile shifted 

spatially by the product of the wave speed and the time t . 

 ( ) ( )0,u x t u x ct= −  (6.3) 

Utilizing the parameters and the known solution from above, the benchmark for the 

simulations is the analytic solution shown in Figure 31, for the initial and final simulation 

times.   

  

Figure 31: Linear Convection Equation Case Study Analytic Solution; Left: Initial Time; 

Right: Final Time 

For comparison purposes, results are presented first for two standard numerical methods: 

the first order upwind method and the second order Lax-Wendroff method. Derivations 
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of these two approaches as applied to the Linear Convection equation may be found in 

Appendix 8.5.1.  It should be noted that, unlike the proposed model order reduction 

technique, these two methods are derived specifically to be used with their own time 

stepping algorithms.  Thus the simulation results presented in Figure 32 and Figure 34 are 

performed using their respective time stepping algorithms, while the simulations with the 

SBFs are performed with a fourth order Runge-Kutta time stepping algorithm [132].   

Figure 32: Linear Convection Equation Case Study Numeric Solution; Left: First Order 

Upwind Numerical Method; Right: Lax-Wendroff Numerical Method  

Figure 32 exemplifies the characteristics of first and second order methods.  The first 

order upwind method on the left displays significant smearing.  The smearing is caused 

by numerical dissipation, which is a consequence of the numerical approximations 

inherent to the algorithm[15]. The second order Lax-Wendroff method on the right 

matches the analytical results better but contains dispersion with spurious oscillations.   
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Since these two methods have been devised with a specific time stepping 

algorithm in mind, they do not lend themselves to be described neither through ordinary 

differential equations, nor through conventional ODE solvers.  The methods have been 

derived through a combined space and time discretization, yielding a set of discrete 

equations (see Appendix 8.5.1).  If one then converts these equations to an equivalent 

differential equation and applies a conventional ODE solver (Fourth Order Runge-Kutta 

[132]), the dissipation and dispersion seen previously are magnified, as shown in Figure 33.   

  

Figure 33: Linear Convection Equation; Left: First Order Upwind Method with 4th Order 

Runge-Kutta; Right: Lax-Wendroff Method with 4th Order Runge-Kutta  

In conjunction with this, these two methods have been derived as a function of the 

Courant number. Thus using their intended time stepping algorithms, the accuracy of the 

simulation results will be dependent upon the Courant number.  Intuitively, for a fixed 

time step, the accuracy of the simulation results will increase for a decreasing spatial 
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discretization (assuming the Courant condition is satisfied).  This also means that for a 

fixed spatial discretization, the simulation results will change based upon the time step.  

This yields the unintuitive results shown in Figure 34, where the accuracy of the 

simulation results for both the first order upwind and the Lax-Wendroff method worsen 

as the time step is decreased.   

Figure 34: Linear Convection Equation Case Study Numeric Solution; Left: First Order 

Upwind Method with Varying CFL; Right: Lax-Wendroff Method with Varying CFL 

The unintuitive results shown in Figure 33 and Figure 34 stem from the fact that these 

methods have been developed with a combined space and time discretization and with an 

intended (fixed) Courant number.  These stipulations do not lend themselves to an 

ordinary differential equation structure, and thus run contrary to the system dynamics 

approach.  
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The next set of simulation results have been performed using the proposed model 

order reduction technique with the basis functions of constant, linear, quadratic and 

cubic.  These simulations have been performed with a Fourth Order Runge-Kutta [132] 

time stepping algorithm. The results are presented in Figure 35, for the constant and 

linear basis functions.  

  

Figure 35: Linear Convection Equation Case Study Numeric Solution; Left: Constant 

Basis Function; Right: Linear Basis Function 

Figure 35 shows that the constant and linear basis functions perform analogously to that 

of the first order upwind and the Lax-Wendroff method with the higher order time 

stepping algorithm.  The constant basis function method contains significant dissipation, 

while the linear method contains spurious oscillations.   

Figure 36, however, displays the benefits of the model order reduction technique 

and the sensitivity to the basis functions.  The results in Figure 36 with the quadratic and 
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cubic basis functions can be seen to be a great improvement over the constant and linear 

basis functions.  Both the quadratic and the cubic methods match the analytic results well, 

with the cubic method showing slightly less dissipation.  

  

Figure 36: Linear Convection Equation Case Study Numeric Solution; Left: Quadratic 

Basis Function; Right: Cubic Basis Function 

Furthermore, the results in Figure 37 show that since the model order reduction technique 

is based upon ordinary differential equations and conventional ODE solvers, the 

simulation results are insensitive to changes in the time step, assuming that the Courant 

criterion is satisfied.  
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Figure 37: Linear Convection Equation Case Study Numeric Solution; Left: Quadratic 

Basis Function with Varying CFL; Right: Cubic Basis Function with Varying CFL 

The above results have been presented showing the effect of varying the time step and the 

time stepping algorithm for the methods of interest with a defined simulation time (and 

thus a defined distance that the wave has travelled).  The next case study evaluates the 

methods for varying distance travelled by the wave, as well as for varying spatial 

discretizations.  

After some consideration, it is clear that the further the wave travels, the more 

error will accumulate in the numerical solution.  Also intuitive, is that as the spatial 

discretization is decreased, the accuracy of the numerical simulation increases.  These 

hypotheses are explored in the following case study for each of the basis function 

methods and the two standard numerical methods. 
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The previous case study is modified such that the simulation time is lengthened to 

permit the wave to travel 50 meters and the simulation is repeated for different spatial 

discretizations.  The details of the second case study are shown in Table 15. 

Parameter Value 
Wave Speed 346 m/s 
Amplitude 1 
Frequency 400 Hz 

Wave length .865 m 
Distance travelled 50 m 

Courant (CFL) number .8 
Spatial discretization [.0346, .0432 .0721 .0692] m 

Volumes per Wavelength [25, 20, 15, 12.5] 

Table 15: Linear Convection Equation Case Study II Parameters 

The results of the second case study are shown in the following figures, where the Root 

Mean Square of the percent error, as defined in (6.4), is plotted as a function of the 

distance travelled by the wave and the spatial discretization. The RMS percent error has 

been chosen as a metric to evaluate how closely the numerical results match the analytic 

results at a given distance the wave has travelled.  

 
( )

2

100
max
analytical numerical

analytical

PE

u u

u
RMS

N

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦=

∑
 (6.4) 

In Figure 38, the results are plotted for the first order upwind and the Lax-Wendroff 

methods.  It can be seen that the RMS error decreases for decreasing spatial 
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discretization, the error accumulates as the wave travels.  The first order upwind method, 

even with a smaller discretization, only yields low RMS error for a very short period of 

wave travel.  The Lax-Wendroff method can be seen to be an improvement upon this 

method in that the error grows more slowly with wave travel.   

Figure 38: Linear Convection Equation Case Study II: RMS Percent Error vs. Distance 

Travelled; Left: First Order Upwind Method; Right: Lax-Wendroff Method 

The results for the constant and linear basis functions are shown in Figure 39.  These two 

methods perform slightly worse than the first order upwind and Lax-Wendroff methods, 

though if a 4th order Runge-Kutta time stepping algorithm were used for the two 

numerical methods, the results would be identical.  
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Figure 39: Linear Convection Equation Case Study II: RMS Percent Error vs. Distance 

Travelled; Left: Constant Basis Function; Right: Linear Basis Function 

The results for the quadratic and cubic basis functions are shown in Figure 40.  These 

results validate the superiority of these two basis functions over the constant and linear 

basis functions, as well as over the first order upwind and Lax-Wendroff methods.  It can 

be seen that, particularly for the smaller spatial discretizations, the error accumulates 

much slower with these two basis functions, than was seen in the previous results.  An 

alternative way of looking at these results is that for a system of defined length (and thus 

defined wave travel)  the quadratic or cubic basis functions can be used with a larger 

spatial discretization to yield the same error level as the previous methods.  
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Figure 40: Linear Convection Equation Case Study II: RMS Percent Error vs. Distance 

Travelled; Left: Quadratic Basis Function; Right: Cubic Basis Function 

6.2.2 Linear Euler Equations 

Similar case studies are repeated here for the linear Euler equations.  The linear 

Euler equations, as discussed in Chapter 2, model a pair of waves travelling in opposite 

directions.  The first wave travels at the bulk gas velocity plus the speed of sound, while 

the second travels at the bulk gas velocity minus the speed of sound.  For the first case 

study, again a straight pipe of infinite length is envisioned, where the gas initially has the 

mean pressure, density and velocity as defined in Table 16, with a single pressure wave 

superimposed on the mean pressure.  The speed of sound, frequency, wavelength, 

Courant number, and spatial discretization are the same as in the Linear Convection case 

study.  The amplitude of the pressure wave has been chosen as 200 Pa (in correspondence 

with the assumptions in the linearization process).  The simulation time is the same as in 
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the Linear Convection case study, though the distance travelled by the waves is different 

due to the non-zero bulk gas velocity.  

Parameter Value 
Speed of Sound 346 m/s 
Mean Pressure 1 bar 
Mean Density 1.1692 kg/m3 
Mean Velocity 100 m/s 

Amplitude 200 Pa 
Frequency 400 Hz 

Wave length .865 m 
Distance travelled 6.47 m, -3.57 m 

Courant (CFL) number .8 
Spatial discretization .0346 m 

Volumes per Wavelength 25 

Table 16: Linear Euler Equations Case Study Parameters 

As discussed in Chapter 2, the linear Euler equations have a simple analytic solution for a 

defined initial spatial profile, as shown in (6.5). Since the wave speed is constant for the 

simulation, the solution at any time, t , is simply the summation of half of the initial 

profile shifted spatially by the product of the two wave speeds and the time t . 

 ( ) ( )( ) ( )( )0 0,
2 2
P PP x t x u c t x u c t= − + + − −  (6.5) 

Utilizing the parameters and the known solution from above, the benchmark for the linear 

Euler equation simulations is the analytic solution shown in Figure 41, for the initial and 

final simulation times.   
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Figure 41: Linear Euler Equations Case Study Analytic Solution; Left: Initial Time; 

Right: Final Time 

Again, results are presented first for the numerical methods of the first order upwind 

method and the Lax-Wendroff method.  These results are presented in Figure 42 and 

Figure 43 where the methods’ respective intended time stepping algorithms are used.  

 

 



 128 

Figure 42: Linear Euler Equations Numeric Solution with First Order Upwind with Flux 

Vector Splitting; Left: Leftward Travelling Wave; Right: Rightward Travelling Wave 

As described in Appendix 8.5.2, the first order upwind method for the linear Euler 

equations requires Flux Vector Splitting to fully distinguish between the leftward and 

rightward travelling fluxes.  Figure 42 shows the results for this method.  It can be seen 

that, like the results for the Linear Convection equation, the first order upwind method 

results in significant smearing and dissipation.  
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Figure 43: Linear Euler Equations Numeric Solution with Lax-Wendroff Method; Left: 

Leftward Travelling Wave; Right: Rightward Travelling Wave 

The results for the linear Euler equations with the Lax-Wendroff method are shown in 

Figure 43.  Again similar to the Linear Convection equation, these results show the 

presence of dispersion and spurious oscillations.  

If we again replace the time stepping algorithms designed for the first order upwind and 

Lax-Wendroff methods with that of a 4th Order Runge-Kutta [132], the deficiencies are 

again magnified.  Figure 44 shows that for the first order upwind method, the dissipation 

and smearing are more significant than in Figure 42.  Furthermore, the spurious 

oscillations are magnified in Figure 45 in comparison to Figure 43. 
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Figure 44: Linear Euler Equations; First Order Upwind, Flux Vector Splitting with 4th 

Order Runge-Kutta; Left: Leftward Travelling Wave; Right: Rightward Travelling Wave 

Figure 45: Linear Euler Equations with Lax-Wendroff Method with 4th Order Runge-

Kutta; Left: Leftward Travelling Wave; Right: Rightward Travelling Wave 

The Courant number study is repeated in Figure 46 and Figure 47 for the linear Euler 

equations with the two numerical methods.  The spatial discretization is fixed, but the 
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time step is varied to see the effect of varying the Courant number on the accuracy of the 

numerical simulation.  Again we find that for the upwind and Lax-Wendroff methods, as 

the time step is decreased, the accuracy of the simulation decreases.  In the case of the 

upwind method, Figure 46 shows that the dissipation increases as the time step is 

decreased.   Figure 47 shows that as the time step is decreased, the magnitude of the 

numerical oscillations increases for the Lax-Wendroff method.  

Figure 46: Linear Euler Equations; First Order Upwind, Flux Vector Splitting with 

Varying CFL; Left: Leftward Travelling Wave; Right: Rightward Travelling Wave 

 



 132 

Figure 47: Linear Euler Equations with Lax-Wendroff Method with Varying CFL; Left: 

Leftward Travelling Wave; Right: Rightward Travelling Wave 

Figure 48 - Figure 51 show the results of the proposed model order reduction process as 

applied to the linear Euler equations. Figure 48 shows the results for the leftward and 

rightward travelling wave for the constant basis function.  As with the Linear Convection 

equation, the constant basis function contains smearing and dissipation.  However, unlike 

the Linear Convection equation, the constant basis function performs better than the first 

order upwind method with the higher time stepping algorithm.  
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Figure 48: Linear Euler Equations Case Study Numeric Solution with Constant Basis 

Function; Left: Leftward Travelling Wave; Right: Rightward Travelling Wave 

Figure 49 shows the results for the linear basis function.  Again we find the presence of 

some dispersion and spurious oscillations, but these deficiencies are less prevalent then 

with the Lax-Wendroff method with the higher order time stepping algorithm.  
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Figure 49: Linear Euler Equations Case Study Numeric Solution with Linear Basis 

Function; Left: Leftward Travelling Wave; Right: Rightward Travelling Wave 

The results shown in Figure 50 and Figure 51 with the quadratic and cubic basis 

functions again show the benefits of the model order reduction process and the 

importance of selecting a proper basis function.  The results show a significant 

improvement over the constant and linear methods, as well as over the first order upwind 

and second order Lax-Wendroff methods.  The numerical solution in these figures tracks 

the analytic solution with only a hint of dissipation and dispersion.  
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Figure 50: Linear Euler Equations Case Study Numeric Solution with Quadratic Basis 

Function; Left: Leftward Travelling Wave; Right: Rightward Travelling Wave 

Figure 51: Linear Euler Equations Case Study Numeric Solution with Cubic Basis 

Function; Left: Leftward Travelling Wave; Right: Rightward Travelling Wave 

Figure 52 again shows that the model order reduction process is insensitive to the time 

step, and thus the Courant number for a fixed spatial discretization.  
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Figure 52: Linear Euler Equations Numeric Solution with Cubic Basis Function with 

Varying CFL; Left: Leftward Travelling Wave; Right: Rightward Travelling Wave 

The second case study detailing the effect of distance travelled by the wave and the 

spatial discretization is repeated here for the linear Euler equations.  The details of the 

case study are shown in Table 17. 
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Parameter Value 
Speed of Sound 346 m/s 
Mean Pressure 1 bar 
Mean Density 1.1692 kg/m3 
Mean Velocity 100 m/s 

Amplitude 200 Pa 
Frequency 400 Hz 

Wave length .865 m 
Distance travelled 65 m, -36 m 

Courant (CFL) number .8 
Spatial discretization [.0346, .0432 .0721 .0692] m 

Volumes per Wavelength [25, 20, 15, 12.5] 

Table 17: Linear Euler Equations Case Study II Parameters 

The results of the study are shown in the following figures, where again the Root Mean 

Square of the percent error, as defined in (6.4), is plotted as a function of the distance 

travelled by the wave and the spatial discretization.  

Figure 53 shows the results with the first order upwind and the Lax-Wendroff methods.  

The results are similar to those seen in the Linear Convection equation, where the Lax-

Wendroff method out-performs the first order upwind method.  
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Figure 53: Linear Euler Equations Case Study II: RMS Percent Error vs. Distance 

Travelled; Left: First Order Upwind Method; Right: Lax-Wendroff Method 

Figure 54 and Figure 55 show the results for with the four basis functions. Again, we see 

that the constant and linear basis function methods perform similar to that of the first 

order upwind and Lax-Wendroff methods.  The quadratic and cubic methods, however, 

show a much slower accumulation in error as the wave travels, particularly for the 

smaller spatial discretizations.  
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Figure 54: Linear Euler Equations Case Study II: RMS Percent Error vs. Distance 

Travelled; Left: Constant Basis Function; Right: Linear Basis Function 

Figure 55: Linear Euler Equations Case Study II: RMS Percent Error vs. Distance 

Travelled; Left: Quadratic Basis Function; Right: Cubic Basis Function 
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6.2.3 Euler Equations 

As a final validation of the model order reduction technique, the full set of Euler 

equations are evaluated on a simplified engine platform.  A schematic of the engine is 

portrayed in Figure 56, where it can be seen that the engine’s intake and exhaust system’s 

geometry have been simplified to a straight pipe of constant area.  The valves have been 

modeled in a similar fashion as described in Chapter 4, albeit with fixed cam timing. 

 

Figure 56: Single Cylinder Engine Schematic 

The engine’s geometrical parameters are outlined in Table 18, where it can be seen that 

the intake and exhaust systems have been modeled identically.  Furthermore, for 

simplicity and ease of validation, the only losses modeled in the system are those 

associated with flow losses through the intake and exhaust valves.  The intake and 

exhaust pipes, as well as the cylinder,  have been assumed to be frictionless and adiabatic.  

Being that the focus of the case study is on the gas dynamics, fuel, and thus the 

combustion process, has been neglected. 
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Parameter Value 
Intake, exhaust pipe length 1.52 m 

Intake, exhaust pipe diameter .04 m 
Cylinder bore .088 m 

Cylinder stroke .098 m 

Table 18: Single Cylinder Engine Model Parameters 

Even with the broad assumptions and approximations described above, the single 

cylinder engine model comprises a complex physical system.  The gas exchange process 

between the ambient environment, intake, cylinder and exhaust systems in reality is a 

three-dimensional phenomenon.  However, due to the simplified geometry, an 

assumption of one-dimensional flow in the intake and exhaust systems is reasonable, with 

some sacrifices in accuracy at the pipe boundaries.  It is reasonable, then for the intake 

and exhaust systems to be modeled through the one-dimensional Euler equations 

described in Section 2.2.2.  As discussed previously, this set of equations is nonlinear and 

thus for the present case study does not have known analytical solution.  The model order 

reduction technique can then only be evaluated against a high fidelity numerical solution. 

 The commercial software GT Power [32] has been selected as a means of 

evaluating the model order reduction technique.  A representation of the engine described 

above as developed in GT Power is shown in Figure 57.  The engine’s intake and exhaust 

system have been discretized into a user-defined number of pipe volumes, while the 

valves and cylinder are modeled through standard GT Power components [32].   
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Figure 57:  GT Power Representation of Single Cylinder Engine 

In order to establish a high fidelity numerical benchmark, the GT Power model’s intake 

and exhaust systems have been discretized into 80 pipe volumes, respectively.  The 

model is then simulated over an engine speed sweep covering the range of 1000 – 6000 

RPM in increments of 250 RPM.   As discussed in Chapter 4, a pertinent metric for the 

gas exchange process of an internal combustion engine is the engine’s volumetric 

efficiency (VE). This parameter has been selected for evaluation of the model order 

reduction technique, with the benchmark results shown in Figure 58. 
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Figure 58: Volumetric Efficiency vs. Engine Speed: GT Power Simulation with 80 

Volumes 

As discussed previously, a pertinent objective of this case study is the ability to describe 

the engine’s gas exchange process through a low order set of ordinary differential 

equations.  The order of the system is directly proportional to the number of pipe volumes 

comprised in the intake and exhaust systems.  As a means of comparison, a traditional 

zero-dimensional, crank angle resolved representation of the single cylinder engine 

(following the description in Section 4.2.1) was simulated over the speed sweep, with the 

results presented in Figure 59.  The results are compared to the benchmark GT Power 

simulation with 80 volumes, where the error in volumetric efficiency is defined in (6.6).   

 ,80VE simulation GTPower VolumesError VE VE= −  (6.6) 
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The poor accuracy in volumetric efficiency prediction exemplifies the zero-dimensional 

representation’s inability to model the gas dynamic effects. 

  

Figure 59: Zero-Dimensional Crank Angle Resolved with One Volume; Left: Volumetric 

Efficiency vs. Engine Speed; Right: Error in Volumetric Efficiency 

With these results in mind, a case study of six volumes (per intake and exhaust system) 

has been selected to evaluate the model order reduction technique’s ability to model the 

underlying physics through a low order set of ordinary differential equations.  For 

comparison purposes, the GT Power model was modified to include six pipe volumes per 

the intake and exhaust system, with the results shown in Figure 60.  These results 

represent conventional numerical methods’ ability to model the gas exchange portion of 

an internal combustion engine with a low number of volumes.   It can be seen that a 

conventional numerical method with six volumes captures the general trend of the 

volumetric efficiency, with accuracy decreasing for higher engine speeds. 
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Figure 60: GT Power Simulation with Six Volumes; Left: Volumetric Efficiency vs. 

Engine Speed; Right: Error in Volumetric Efficiency 

The same set of simulations is repeated for the model order reduction technique with the 

constant basis function with six volumes.  The results are compared to the GT Power 

simulations with 6 and 80 volumes in Figure 61.  The results indicate that the model 

order reduction technique with a constant basis function and six volumes achieves 

accuracy comparable to that of the computational fluid dynamics model with six 

volumes.  In comparison to the GT Power simulation with 80 volumes, it can be seen that 

the low order method is capable of describing the gas exchange process well at low 

engine speeds, but as engine speed is increased some errors are introduced in the 

prediction of volumetric efficiency. 
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Figure 61: Constant Basis Function Simulation with Six Volumes; Left: Volumetric 

Efficiency vs. Engine Speed; Right: Error in Volumetric Efficiency 

The crank angle domain plots shown in Figure 62 - Figure 65 exemplify how well the 

constant basis function method matches the results of the GT Power simulation with six 

volumes. Figure 62 and Figure 63 show the intake and exhaust port pressures and valve 

flows at 1000 RPM.  It can be seen that the model order reduction technique with a 

constant basis function is capable of describing the gas dynamics within an ordinary 

differential equation structure to a high degree of accuracy with respect to the 

computational fluid dynamics results.  Figure 64 and Figure 65 show that the results also 

match well at 6000 RPM. 
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Figure 62: Crank Angle Domain Simulation Results with Six Volumes at 1000 RPM; 

Left: Intake Port Pressure; Right: Intake Valve Mass Flow Rate 

  

Figure 63: Crank Angle Domain Simulation Results with Six Volumes at 1000 RPM; 

Left: Exhaust Port Pressure; Right: Exhaust Valve Mass Flow Rate 
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Figure 64: Crank Angle Domain Simulation Results with Six Volumes at 6000 RPM; 

Left: Intake Port Pressure; Right: Intake Valve Mass Flow Rate  

  

Figure 65: Crank Angle Domain Simulation Results with Six Volumes at 6000 RPM; 

Left: Exhaust Port Pressure; Right: Exhaust Valve Mass Flow Rate 

The results above show that the model order reduction technique with a constant basis 

function can achieve accuracy comparable to that of a commercial computational fluid 

dynamics software.  Furthermore, the model order reduction technique is capable of 
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achieving such accuracy through an ordinary differential equation structure and within a 

standard dynamic systems simulation package.  

The effect of employing a more sophisticated basis function is explored in Figure 

66.  These simulation results again utilize six volumes for the intake and exhaust systems, 

but the constant basis function has been replaced by the quadratic basis function.  The 

results show that quadratic basis function is capable of describing the volumetric 

efficiency accurately across the speed range.  In particular, it can be seen that the 

quadratic basis function achieves a higher degree of accuracy at high engine speeds than 

the computational fluid dynamics algorithm with the same number of volumes.   

  

Figure 66: Quadratic Basis Function Simulation with Six Volumes; Left: Volumetric 

Efficiency vs. Engine Speed; Right: Error in Volumetric Efficiency 
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The results of the single cylinder engine case study are summarized in Table 19 

employing the metric of the mean absolute error in volumetric efficiency as defined in 

(6.7). 

 ( ),80VE x GTPower VolumesMeanAbsoluteError mean VE VE= −  (6.7) 

The results show that with respect to the 80 volume GT Power simulation results, the 

model order reduction technique with a constant basis function and six volumes achieves 

a mean absolute error in volumetric efficiency on the order of 3 percent (a value slightly 

larger than that achieved by the computational fluid dynamics simulation with the same 

number of volumes).   The model order reduction technique with the quadratic basis 

function, on the other hand, achieves a mean absolute error in volumetric efficiency on 

the order of 1.7 %.  The commercial computational fluid dynamics software would 

require nine volumes to achieve this level of accuracy. 

Simulation Number of Volumes Mean Absolute Error in VE 
GT Power 9 1.68 
SBF: Quadratic 6 1.70 
GT Power 6 2.57 
SBF: Constant 6 3.20 
0-D CAR 1 11.41 

Table 19: Mean Absolute Error in Volumetric Efficiency Prediction with Respect to 80 

Volume GT Power Simulation 
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Table 20 displays a comparison of the number of states and the corresponding simulation 

time for the model order reduction technique.   The results are compared against the 0-D 

CAR results, since these models have been coded in the same software package.  The 

results indicate that the significant increase in accuracy and fidelity associated with the 

model order reduction technique is offset by only a small increase in computation time. 

Simulation Number of Volumes per 
intake \ exhaust system 

Number of 
States 

Computation Time 
(normalized to 0-D CAR) 

0-D CAR 1 13 1 
SBF: Constant 6 43 1.6 
SBF: Quadratic 6 43 1.6 

Table 20: Simulation Time Comparison 

6.3 Conclusions 

The model order reduction procedure has been evaluated with respect to its ability 

to employ a low order, ordinary differential equation structure to model distributed 

parameter systems.   The evaluation has been performed through case studies carefully 

selected to mimic engine intake and exhaust systems.  The Linear Convection and linear 

Euler equations have been evaluated on traveling wave scenarios where the wave speeds 

and amplitudes have been chosen to resemble engine intake and exhaust conditions.  The 

four basis functions were evaluated within the model order reduction technique against 

these two sets of equations by comparing the results against analytic and standard 

numerical methods solutions.  The results show that the piecewise constant and linear 

methods achieve results comparable to the standard numerical methods.  The piecewise 
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quadratic and cubic basis functions, however, match the analytic simulation results to 

high degree of accuracy and outperform the standard numerical methods.  Furthermore, it 

has been shown that model order reduction technique (unlike the numerical methods) is 

insensitive to changes in time step, assuming that the Courant condition is satisfied.  This 

quality is advantageous for engine simulations were engine speed varies over a wide 

range.   

As a final evaluation, the piecewise constant and piecewise quadratic basis 

functions were chosen for evaluation against the full set of Euler equations.  A case study 

of a single cylinder engine model was developed, where the results are compared against 

a high fidelity commercial computational fluid dynamics software package.  The results 

indicate that the piecewise constant basis function achieves accuracy comparable to the 

computational fluid dynamics software, with respect to its ability to model crank angle 

resolved pressures and mass flow rates, as well as the cycle average quantity of 

volumetric efficiency.  Furthermore, the piecewise quadratic method has been shown to 

yield an improvement over computational fluid dynamics software in that a fewer number 

of volumes is required to achieve a defined level of accuracy in volumetric efficiency 

prediction. 
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CHAPTER 7 

7 CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

 Methodologies for the development of computationally efficient, crank angle 

resolved system dynamics models of internal combustion engine systems have been 

evaluated.  Specifically, focusing on the engine intake and exhaust gas exchange process, 

two novel parallel paths to achieve similar ends have been developed.   

The first path improves upon the traditional zero-dimensional filling and 

emptying model to incorporate the inherently distributed phenomena of wave dynamic 

and charge heating effects within a 0-D context.  The method involves the identification 

and calibration of a set of empirical parameters and has been shown to be applicable 

across the entire engine operating map.  Simulation and experimental results validate that 

the improved 0-D CAR model with Wave Dynamic Compensation is capable of 

predicting both cycle-resolved and crank angle resolved states to a high degree of 

accuracy, while maintaining a computationally efficient architecture.  
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A second path has been devised to achieve similar ends without the heavy 

reliance upon empirical parameters.  This approach has been developed beginning from 

the fundamental equations governing compressible fluid systems and applies an 

innovative model order reduction method to project the governing partial differential 

equations onto ordinary differential equations.  The approach has been evaluated on 

linear equations approximating the underlying physics and, with the proper choice in 

basis function, has been shown to yield results better than some computational fluid 

dynamics algorithms.  The methodology has been validated through a case study of a 

single cylinder engine model, where the results have been shown to be an improvement 

over the industry standard commercial one-dimensional simulation package.   

7.2 Recommendations and Future Work 

The two paths for system dynamic modeling of crank angle resolved engine 

models have great potential for aiding controls and performance engineers in developing, 

optimizing and evaluating control systems.   

The first path, based upon an empirical approach, has great potential for high 

fidelity transient simulation applications.  The simple, compact architecture can provide 

extremely efficient simulations with crank angle resolved accuracy.   This architecture 

can permit the inclusion of a high fidelity engine model within a full vehicle model to 

analyze engine-drivetrain-vehicle interactions and can help evaluate the “drivability” 

aspect of the control system.  Furthermore, as computer processor and hardware 
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technology continues to improve, this level of model may serve in Software in the Loop 

(SIL) and Hardware in the Loop (HIL) applications to debug and properly evaluate 

control algorithms. 

Applications for the second path overlap with the first, with the addition of a 

number of analytical benefits.  The model order reduction path provides a complete 

model of the engine’s distributed intake and exhaust systems as a set of ordinary 

differential equations.  Such an equation set can be used to help identify the sensitivity of 

geometrical parameters, as well as for developing lower fidelity, input-output 

relationships.  Additionally, the ODE structure can be employed for the creation of 

estimators in place of physical sensors.  Furthermore, future developments in this 

methodology will most certainly be obtained through the evaluation of different classes 

of basis functions. 
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8 APPENDIX: MATHEMATICAL DERIVATIONS 
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8.1 Derivation of Approximations to 1-D Equations 

8.1.1 Linear Euler Equations 

In the following sections, the one-dimensional Euler equations are reduced to a 

linear form under an assumption of small perturbations.  A distinction is presented 

between the linear Euler equations with and without bulk flow. The first section derives 

the equations under the assumption that the gas has a mean flow of velocity, while the 

second section assumes that the bulk gas velocity is zero, leading to the well known 

Acoustic Equations.  

8.1.1.1 With Bulk Flow 

We begin with the constant-area, one-dimensional, differential form of the conservations 

of mass and momentum and assume an isentropic process in liu of the energy equation: 

 ( ) 0
u

t x
ρρ ∂∂

+ =
∂ ∂

 (8.1) 

 ( ) ( )2

0
uu P

t x x

ρρ ∂∂ ∂
+ + =
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 (8.2) 

 2P cρ=  (8.3) 
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The first and second derivatives within the momentum equation can be expanded as 

follows: 

 ( ) 0
uu u Pu u u

t t x x x
ρρρ ρ

∂∂ ∂ ∂ ∂
+ + + + =
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 (8.4) 

The terms in (8.4) can be collected as follows: 

 ( )
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ρρρ
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 (8.5) 

The conservation of mass can be applied to (8.5) to yield the reduced form: 

 0u u Pu
t x x

ρ ∂ ∂ ∂⎧ ⎫+ + =⎨ ⎬∂ ∂ ∂⎩ ⎭
 (8.6) 

The conservation equations shown in (8.7) and (8.8) are ready for the linearization 

process. 

 ( ) 0
u

t x
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+ =
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 (8.7) 
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+ + =
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We now begin the linearization process by defining that the states are comprised of a 

summation of a mean component (denoted with the subscript 0) and a fluctuating 

component.  The mean component is assumed to be independent of time and space. 
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 ( ) ( )0
ˆ, ,P x t P P x t= +  (8.9) 

 ( ) ( )0 ˆ, ,x t x tρ ρ ρ= +  (8.10) 

 ( ) ( )0 ˆ, ,u x t u u x t= +  (8.11) 

We assume that the fluctuating components are much less than their mean value: 
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Applying equations (8.9) - (8.11) to the conservation of mass in (8.7) yields: 
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(8.13) 

This equation can be reduced through the assumption that the mean values are 

independent of space and time and by assuming the product of two small quantities is 

negligible: 
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t x x
ρ ρ ρ∂ ∂ ∂
+ + =

∂ ∂ ∂
 (8.14) 

Applying equations (8.9) - (8.11) to the conservation of momentum in (8.8) yields: 
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Again, this can be reduced through the assumptions defined above: 

 0
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ˆˆ ˆ 1 0
ˆ
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 (8.16) 

Multiplying through by the denominator and applying the same logic as above yields: 
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 (8.17) 

Equation (8.3) can be applied to (8.17); the resulting linear Euler equations (with bulk 

flow) are shown below. [Note: the notation for the fluctuating component has been 

dropped]. 
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8.1.1.2 Without Bulk Flow (Acoustic Equations) 

The linear Euler equations can be further simplified under the assumption that there is no 

bulk fluid velocity ( )0 0u = .  Applying this assumption to (8.18) and (8.19) yields the 

equation set shown below: 
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These equations can be combined for an alternative presentation as follows: 

First, differentiate the conservation of mass with respect to time: 
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Next, differentiate the conservation of momentum with respect to distance: 
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Now combine these two equations: 
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Finally, applying the relation from (8.3) to (8.24) yields the well known wave equation: 
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8.1.2 Linear Convection Equation 

The derivation of the Linear Convection Equation is presented below, beginning from the 

Euler equations.  Along the way, the Nonlinear Burger’s Equation is derived as an 

intermediate step. 

We begin with the constant-area, one-dimensional, differential form of the conservations 

of mass and momentum and assume an isentropic process in liu of the energy equation: 
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 2P cρ=  (8.28) 

Applying equation (8.28) to (8.27) yields: 
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The first and second derivatives within this equation can be expanded as follows: 
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The terms in (8.30) can be collected as follows: 
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The conservation of mass can be applied to (8.31) to yield the reduced form: 
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 (8.32) 

Under the assumption of constant density, (8.32) can be reduced to: 
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The second term in (8.33) can be re-written as: 
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Substituting (8.34) into (8.33) yields the Nonlinear Inviscid Burger’s Equation: 
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We now begin the linearization process by defining that the state is comprised of a 

summation of a mean component (denoted with the subscript 0) and a fluctuating 

component.  The mean component is assumed to be independent of time and space. 

 ( ) ( )0 ˆ, ,u x t u u x t= +  (8.36) 
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We assume that the fluctuating component is much less than the mean value: 

 
0

1u
u

<<  (8.37) 

Applying (8.36) to (8.35) yields: 

 
( ) ( ) ( ) ( )2

0 0 0 0 0 0ˆ ˆ ˆ ˆ ˆ ˆ21 1 0
2 2

u u u u u u u u u u uu
t x t x

∂ + ∂ + ∂ + ∂ + +
+ = + =

∂ ∂ ∂ ∂
 (8.38) 

This equation can be reduced through the assumption that the mean values are 

independent of space and time and by assuming the product of two small quantities is 

negligible: 

 0
ˆ ˆ

0u uu
t x

∂ ∂
+ =

∂ ∂
 (8.39) 

This equation can be generalized to the Linear Convection Equation through setting the 

mean component equal to an arbitrary constant ( )0u c= . [Note: the notation for the 

fluctuating component has been dropped]. 

 0u uc
t x

∂ ∂
+ =

∂ ∂
 (8.40) 
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8.2 Zero-Dimensional Crank Angle Resolved Model Derivations 

8.2.1 Temperature Dynamics 

The zero-dimensional conservation of energy can be applied to a generic control volume 

to yield: 

 ( )
in in out out

d m e
Q W m h m h

dt
⋅

= − + −  (8.41) 

Expanding the left hand side of the equation via the chain rule and knowing that the heat 

energy entering the control volume is the difference between the energy from combustion 

and the energy lost due to heat transfer, as well as knowing that the work done by the 

change in volume is equal to the integral of the pressure times the change in volume 

yields: 

 com ht in in out out
dm du dVe m Q Q P m h m h
dt dt dt

+ = − − + −  (8.42) 

The gas can be assumed to be composed of three species: air, fuel and exhaust.  Based 

upon this assumption, the internal energy of the gas can be defined as: 

 air air ex ex fuel fuele e X e X e X= + +  (8.43) 

Differentiating equation (8.43) with respect to time yields: 
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 fuel fuelair air ex ex
air air ex ex fuel fuel

de dXde dX de dXde X e X e X e
dt dt dt dt dt dt dt

= + + + + +  (8.44) 

The internal energy of the respective three mixtures can be defined as: 

 ,
air

v air
de dTc
dt dt

=  (8.45) 

 ,
,

ex cyl
v ex

de dTc
dt dt

=  (8.46) 

 ,
,

fuel cyl
v fuel

de dTc
dt dt

=  (8.47) 

Applying equations (8.45)-(8.47) to (8.44) yields: 

 { }, , ,
fuelair ex

air v air ex v ex fuel v fuel air ex fuel

dXdX dXde dT X c X c X c e e e
dt dt dt dt dt

= + + + + +  (8.48) 

The definition of the specific heat at constant volume within the cylinder is known to be: 

 { }, , ,v air v air ex v ex fuel v fuelc X c X c X c= + +  (8.49) 

Equations (8.48) and (8.49) can be applied to equation (8.42) to yield: 

fuelair ex
v com ht in in out out air ex fuel

dXdX dXdT dm dVmc e Q Q P m h m h me me me
dt dt dt dt dt dt

+ = − − + − − − −  (8.50) 

The conservation of mass about control volume can be seen to be: 
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 in in out out
dm m h m h
dt

= −  (8.51) 

Applying equation (8.51) to (8.50) yields: 

( ) ( )1 fuelair ex
com ht in in out out air ex fuel

v

dXdX dXdT dVQ Q P m h e m h e me me me
dt mc dt dt dt dt

⎧ ⎫
= − − + − − − − − −⎨ ⎬

⎩ ⎭
 (8.52) 

The following relationship is known for the mass fractions: 

 1ex fuel airX X X+ + =  (8.53) 

Differentiating equation (8.53) with respect to time yields: 

 0fuelair ex dXdX dX
dt dt dt

+ + =  (8.54) 

Equation (8.54) can be applied to equation (8.52) to eliminate the airdX
dt

 term: 

( ) ( ) ( ) ( )1 fuelex
com ht in in out out air ex air fuel

v

dXdXdT dVQ Q P m h e m h e e e m e e m
dt mc dt dt dt

⎧ ⎫
= − − + − − − + − + −⎨ ⎬

⎩ ⎭
 (8.55) 

8.2.1.1 Intake and Exhaust Manifolds 

As a representative derivation for the engine manifolds, (8.55) can be applied to the  

intake manifold to yield (8.56).  Note that the assumption of constant volume and absence 

of combustion eliminates terms.  
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( ) ( ) ( )( ){ }

( ) ( )

, , ,
1

, ,,
, , , ,

...
1

cylnum

th th im im iv iv im im ht im
im

im v im fuel imex im
air im ex im im air im fuel im im

m K e m i K i e Q
dT
dt m c dXdX

e e m e e m
dt dt

⎧ ⎫
− − ⋅ − − +⎪ ⎪⎪ ⎪= ⎨ ⎬

⎪ ⎪− + −⎪ ⎪⎩ ⎭

∑
 (8.56) 

Where: 

For 0thm >  For 0thm <  For 0>ivm  For 0ivm <  

, 0th imK h=  ,th im imK h=  ,iv im imK h=  ,iv im cylK h=  

 

8.2.1.2 Cylinders 

Equation (8.55) can be applied to the cylinder volumes to yield: 

( ) ( )( ){ }

( ) ( )( ){ } ( )

( )

, ,
1

,
, , ,

1,

,
, ,

...

1 ...

cyl

cyl

num
cylcom

ht cyl cyl iv iv cyl cyl

num
cyl ex cyl

ev ev cyl cyl air cyl ex cyl cyl
cyl v cyl

fuel cyl
air cyl fuel cyl cyl

dVdQ Q P m i K i e
dt dt

dT dX
m i K i e e e m

dt m c dt
dX

e e m
dt

⎧ ⎫
− − + − −⎪ ⎪

⎪ ⎪
⎪ ⎪⎪ ⎪= − + − +⎨ ⎬
⎪ ⎪
⎪ ⎪

−⎪ ⎪
⎪ ⎪⎩ ⎭

∑

∑  (8.57) 

Where: 

For 0ivm >  For 0ivm <  For 0evm >  For 0evm <  

,iv cyl imK h=  iv cylK h=  ev cylK h=  ev emK h=  
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8.2.2 Species Concentration  

Within the zero-dimensional, crank angle resolved model structure, three species 

concentrations are tracked: air, fuel and residual exhaust gases.  These concentrations are 

tracked through differential equations governing their respective mass fractions.  A 

generic derivation of the fictitious concentration Z presented below, followed by an 

application of the derivation to the three concentrations in the engine manifolds and 

cylinders.  

Considering a generic zero-dimensional control volume (be it a manifold or a cylinder) 

the mass fraction of a species Z  in the volume can be defined as: 

 Z
Z

mX
m

=  (8.58) 

Rearranging equation (8.58) and differentiating with respect to time yields: 

 Z Z
Z

dm dX dmm X
dt dt dt

= +  (8.59) 

Additionally, a conservation of the quantity of Z  in the volume can be defined in (8.60) 

as a function of the flux of Z  entering and leaving the control volume. 

 , ,
Z

Z in in Z out out
dm X m X m
dt

= −  (8.60) 

Equations (8.60) and (8.59) can be combined to yield: 
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 ,
1Z

Z in in Z out Z
dX dmX m X m X
dt m dt

⎧ ⎫= − −⎨ ⎬
⎩ ⎭

 (8.61) 

8.2.2.1 Intake and Exhaust Manifolds 

As a representative derivation of the engine manifolds, (8.61) can be applied to the 

species of exhaust and fuel within the intake manifold to yield: 

 ( ) ( ){ },
, , , , ,

1

1 cylnum
ex im im

th th im ex iv iv im ex ex im
im

dX dmm K m i K i X
dt m dt

⎧ ⎫⎪ ⎪= − ⋅ −⎨ ⎬
⎪ ⎪⎩ ⎭

∑  (8.62) 

 ( ) ( ){ },
, , , , ,

1

1 cylnum
fuel im im

th th im fuel fi iv iv im fuel fuel im
im

dX dmm K m m i K i X
dt m dt

⎧ ⎫⎪ ⎪= + − ⋅ −⎨ ⎬
⎪ ⎪⎩ ⎭

∑  (8.63) 

Where the ' 'K  parameters shown in equations (4.5) and (4.6) allow for flow reversal 

conditions, and are defined as: 

For 0thm >  For 0thm <  For 0>ivm  For 0ivm <  

, , 0th im exK =  , , ,th im ex ex imK X=  , , ,iv im ex ex imK X=  , , ,iv im ex ex cylK X=  

, , 0th im fuelK =  , , ,th im fuel fuel imK X=  , , ,iv im fuel fuel imK X=  , , ,iv im fuel fuel cylK X=  

 

A differential equation is not required for the composition of air, since the three mass 

fractions must sum to one.  Thus the mass fraction of air can be described through the 

algebraic relation shown in (8.64).   

 , , ,1air im ex im fuel imX X X= − −  (8.64) 
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8.2.2.2 Cylinders 

The relations shown in (8.62) - (8.63) can be applied directly to the cylinder volume to 

yield: 

 ( ) ( ){ } ( ) ( ){ },
, , ,

1 1

1 cyl cylnum num
ex cyl cyl

iv iv cyl ev ev cyl ex cyl
cyl

dX dm
m i K i m i K i X

dt m dt
⎧ ⎫⎪ ⎪= ⋅ − ⋅ −⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑  (8.65) 

 ( ) ( ){ } ( ) ( ){ },
, , ,

1 1

1 cyl cylnum num
fuel cyl cyl

iv ivf cyl ev evf cyl fuel cyl
cyl

dX dm
m i K i m i K i X

dt m dt
⎧ ⎫⎪ ⎪= ⋅ − ⋅ −⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ (8.66) 

However, the conversion of fuel and air to exhaust products must be taken into account, 

through knowing that the conversion process follows the burn rate correlation to yield: 

( ) ( ){ } ( ) ( ){ },
, , arg , ,

1 1

1 cyl cylnum num
ex cyl cylb

iv iv cyl ev ev cyl ch e IVC ex cyl
cyl

dX dmdXm i K i m i K i m X
dt m dt dt

⎧ ⎫⎪ ⎪= ⋅ − ⋅ + −⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑  (8.67) 

( ) ( ){ } ( ) ( ){ },
, , , ,

1 1

1 cyl cylnum num
fuel cyl cylb

iv ivf cyl ev evf cyl fuel IVC fuel cyl
cyl

dX dmdXm i K i m i K i m X
dt m dt dt

⎧ ⎫⎪ ⎪= ⋅ − ⋅ + −⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ (8.68) 

Where: 

For 0ivm >  For 0ivm <  For 0evm >  For 0evm <  

, ,iv cyl ex imK X=  , ,iv cyl ex cylK X=  , ,ev cyl ex cylK X=  , ,ev cyl ex emK X=  

, ,ivf cyl fuel imK X=  , ,ivf cyl fuel cylK X=  , ,evf cyl fuel cylK X=  , ,evf cyl fuel emK X=  

 

Again, the mass fraction of air can be found from the algebraic relation in (8.69): 
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 , , ,1air cyl ex cyl fuel cylX X X= − −  (8.69) 
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8.3 Buckeye Suite of Engineering Simulation Solutions  

A collection of tools, interfaces and models have developed for the calibration, 

simulation and evaluation of different levels of engine models.  These tools and models 

comprise an automated, standardized model development architecture complete with 

Graphical User Interfaces (GUIs).  The software package has been designed to be 

universal and adaptable to different engine platforms and configurations with the intent of 

rapid, semi-automated model development to aid in control systems design applications.   

 

 

Figure 67: Buckeye Suite of Engineering Simulation Solutions 
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8.4 Model Order Reduction Derivations 

8.4.1 Linear Convection Equation 

The Linear Convection Equation, is shown in differential form in equation (8.70) below. 

 
( ) ( ), ,

0
u x t u x t

c
t x

∂ ∂
+ ⋅ =

∂ ∂
 (8.70) 

Applying the model order reduction process from Section 5.2, we perform a spatial 

integration about (8.70) within a generic control volume: 

 ( ) ( )
0 0

, ,
0

L Lu x t u x t
dx c dx

t x
∂ ∂

⋅ + ⋅ ⋅ =
∂ ∂∫ ∫  (8.71) 

Equation (8.71) simplifies to: 

 ( ) ( ) ( )( )
0

,
, 0 ,

L u x t
dx c u t x u t x L

t
∂

⋅ = = − =
∂∫  (8.72) 

Next, the spatial average value of u  within control volume i  can be defined as: 

 ( ) ( )*

0

1 ,
L

iu t u x t dx
L

= ⋅∫  (8.73) 

Thus:  
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 ( ) ( )*

0

,1 L
idu t u x t

dx
dt L t

∂
= ⋅

∂∫  (8.74) 

Applying (8.74) to  (8.72) yields: 

 
( ) ( ) ( )( )

*

, 0 ,idu t c u t x u t x L
dt L

= = − =  (8.75) 

The form of (8.75) can be closed through the definition of the spatial basis function, as 

defined in the following sections for polynomial representations. 

8.4.1.1 Piecewise Constant Spatial Basis Function 

The piecewise constant basis function is defined within a control volume as: 

 ( ) ( )10
,

L
u x t tα=  (8.76) 

Based upon this basis function, the spatial average variable can be defined as: 

 ( ) ( ) ( ) ( )*
1 1

0 0

1 1,
L L

iu t u x t dx t dx t
L L

α α= ⋅ = ⋅ =∫ ∫  (8.77) 

Thus the basis function can be written as: 

 ( ) ( )*
0

,
L

iu x t u t=  (8.78) 

The value at the end of volume can be found from the basis function to be: 
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 ( ) ( )*, iu t x L u t= =  (8.79) 

8.4.1.2 Piecewise Linear Spatial Basis Function 

The piecewise linear basis function is defined within two adjacent control volumes as: 

 ( ) ( ) ( )2
1 20

,
L

u x t t t xα α= +  (8.80) 

Based upon this basis function, the spatial average variables for the two adjacent control 

volumes can be defined as: 

 ( ) ( ) ( ) ( ) ( ) ( )*
1 2 1 2

0 0

1 1 L,
2

L L

iu t u x t dx t t x dx t t
L L

α α α α= ⋅ = + ⋅ = +∫ ∫  (8.81) 

 ( ) ( ) ( ) ( ) ( ) ( )
2 2

*
1 1 2 1 2

1 1 3L,
2

L L

i
L L

u t u x t dx t t x dx t t
L L

α α α α+ = ⋅ = + ⋅ = +∫ ∫  (8.82) 

Solving equations (8.81) and (8.82) for the unknown constants: 

 ( ) ( ) ( )* *
1 1

3 1
2 2i it u t u tα += −  (8.83) 

 ( ) ( ) ( )* *
1

2
i iu t u t

t
L

α + −
=  (8.84) 

Substituting the unknown constants into the basis function, yields: 
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 ( ) ( ) ( )2 * *
10

3 1,
2 2

L
i i

x xu x t u t u t
L L +

⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (8.85) 

The value at the exit of volume can be found from the basis function to be: 

 ( ) ( ) ( )* *
1,

2
i iu t u t

u t x L ++
= =  (8.86) 

8.4.1.3 Piecewise Quadratic Spatial Basis Function 

The piecewise quadratic basis function is defined within three adjacent control volumes 

as: 

 ( ) ( ) ( ) ( )2 2
1 2 3,

L

L
u x t t t x t xα α α

−
= + +  (8.87) 

Based upon this basis function, the spatial average variables for the three adjacent control 

volumes can be defined as: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 2

* 2
1 1 2 3 1 2 3

1 L L
2 3i

L

u t t t x t x dx t t t
L

α α α α α α−
−

= + + ⋅ = − +∫  (8.88) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

* 2
1 2 3 1 2 3

0

1 L L
2 3

L

iu t t t x t x dx t t t
L

α α α α α α= + + ⋅ = + +∫  (8.89) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

* 2
1 1 2 3 1 2 3

1 3L 7L
2 3

L

i
L

u t t t x t x dx t t t
L

α α α α α α+ = + + ⋅ = + +∫  (8.90) 

Solving equations (8.88) - (8.90) for the unknown constants: 
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 ( ) ( ) ( ) ( )* * *
1 1 1

1 5 1
3 6 6i i it u t u t u tα − += + −  (8.91) 

 ( ) ( ) ( )* *
1

2
i iu t u t

t
L

α −− +
=  (8.92) 

 ( ) ( ) ( ) ( )* * *
1 1

3 2

2
2

i i iu t u t u t
t

L
α − +− +

=  (8.93) 

Substituting the unknown constants into the basis function, yields: 

 ( ) ( ) ( ) ( )
2 2 2

2 * * *
1 12 2 2

1 5 1,
3 2 6 6 2

L
i i iL

x x x x xu x t u t u t u t
L L L L L− +−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + + + − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (8.94) 

The value at the exit of volume can be found from the basis function to be: 

 ( ) ( ) ( ) ( )* * *
1 1

1 5 1,
6 6 3i i iu t x L u t u t u t− += = − + +  (8.95) 

8.4.1.4 Piecewise Cubic Spatial Basis Function 

The piecewise cubic basis function is defined within four adjacent control volumes as: 

 ( ) ( ) ( ) ( ) ( )3 2 3
1 2 3 4,

L

L
u x t t t x t x t xα α α α

−
= + + +  (8.96) 

Based upon this basis function, the spatial average variables for the four adjacent control 

volumes can be defined as: 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 2 3

* 2 3
1 1 2 3 4 1 2 3 4

1 L L L
2 3 4i

L

u t t t x t x t x dx t t t t
L

α α α α α α α α−
−

= + + + ⋅ = − + −∫  (8.97) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 3

* 2 3
1 2 3 4 1 2 3 4

0

1 L L L
2 3 4

L

iu t t t x t x t x dx t t t t
L

α α α α α α α α= + + + ⋅ = + + +∫ (8.98) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 3

* 2 3
1 1 2 3 4 1 2 3 4

1 3L 7L 15L
2 3 4

L

i
L

u t t t x t x t x dx t t t t
L

α α α α α α α α+ = + + + ⋅ = + + +∫  (8.99) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 2 3

* 2 3
2 1 2 3 4 1 2 3 4

2

1 5L 19L 65L
2 3 4

L

i
L

u t t t x t x t x dx t t t t
L

α α α α α α α α+ = + + + ⋅ = + + +∫ (8.100) 

Solving equations (8.97) - (8.100) for the unknown constants: 

 ( ) ( ) ( ) ( ) ( )* * * *
1 1 1 2

1 13 5 1
4 12 12 12i i i it u t u t u t u tα − + += + − +  (8.101) 

 ( ) ( ) ( ) ( ) ( )* * * *
1 1 2

2

11 9 3
12

i i i iu t u t u t u t
t

L
α − + +− + + −

=  (8.102) 

 ( ) ( ) ( ) ( ) ( )* * * *
1 1 2

3 2

3 7 5
4

i i i iu t u t u t u t
t

L
α − + +− + −

=  (8.103) 

 ( ) ( ) ( ) ( ) ( )* * * *
1 1 2

4 3

3 3
6

i i i iu t u t u t u t
t

L
α − + +− + − +

=  (8.104) 

Substituting the unknown constants into the basis function, yields: 

( ) ( ) ( ) ( ) ( )
2 3 2 3 2 3 2 3

3 * * * *
1 1 22 3 2 3 2 3 2 3

1 11 3 13 3 7 5 5 1,
4 12 4 6 12 4 4 2 12 4 4 2 12 12 4 6

L
i i i iL

x x x x x x x x x x x xu x t u t u t u t u t
L L L L L L L L L L L L− + +−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + − + + − + + − + + − + − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(8.105) 
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The value at the exit of volume can be found from the basis function to be: 

 ( ) ( ) ( ) ( ) ( )* * * *
1 1 2

1 7 7 1,
12 12 12 12i i i iu t x L u t u t u t u t− + += = − + + −  (8.106) 

8.4.2 Linear Euler Equations 

The linear Euler Equations, are shown in differential form in equations (8.107) and 

(8.108) below. 

 
( ) ( ) ( )

0 0

, , ,
0

x t x t u x t
u

t x x
ρ ρ

ρ
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (8.107) 

 
( ) ( ) ( )2

0
0

, , ,
0

u x t u x t x tcu
t x x

ρ
ρ

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (8.108) 

Beginning with the continuity equation, applying the model order reduction process from 

Section 5.2, we perform a spatial integration within the generic control volume: 

 ( ) ( ) ( )
0 0

0 0 0

, , ,
0

L L Lx t x t u x t
dx u dx dx

t x x
ρ ρ

ρ
∂ ∂ ∂

⋅ + ⋅ + ⋅ =
∂ ∂ ∂∫ ∫ ∫  (8.109) 

Equation (8.109) simplifies to: 

 ( ) ( ) ( )( ) ( ) ( )( )0 0
0

,
, 0 , , 0 ,

L x t
dx u t x t x L u t x u t x L

t
ρ

ρ ρ ρ
∂

⋅ = = − = + = − =
∂∫  (8.110) 
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Next, integrating the momentum equation about a control volume that is staggered with 

respect to the continuity volume yields: 

 ( ) ( ) ( )1.5 1.5 1.5 2

0
0.5 .5 .5

, , ,
0

L L L

L L L

u x t u x t x tcdx u dx dx
t x x

ρ
ρ

∂ ∂ ∂
⋅ + ⋅ + ⋅ =

∂ ∂ ∂∫ ∫ ∫  (8.111) 

Equation (8.111) simplifies to: 

( )1.5 2

0
0.5

, 3 3, , , ,
2 2 2 2

L

L

u x t L L c L Ldx u u t x u t x t x t x
t

ρ ρ
ρ

∂ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⋅ = = − = + = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
∫ (8.112) 

The spatial average values of ρ  and u  within volumes i  and j  can be defined as: 

 ( ) ( )*

0

1 ,
L

i t x t dx
L

ρ ρ= ⋅∫  (8.113) 

 ( ) ( )
1.5

*

.5

1 ,
L

j
L

u t u x t dx
L

= ⋅∫  (8.114) 

Thus: 

 ( ) ( )*

0

,1 L
id t x t

dx
dt L t
ρ ρ∂

= ⋅
∂∫  (8.115) 

 
( ) ( )* 1.5

.5

,1 L
jdu t u x t

dx
dt L t

∂
= ⋅

∂∫  (8.116) 

Applying (8.115) and (8.116) to (8.110) and (8.112) yields: 
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 ( ) ( ) ( )( ) ( ) ( )( )
*

0 0, 0 , , 0 ,id t u t x t x L u t x u t x L
dt L L
ρ ρρ ρ= = − = + = − =  (8.117) 

 
( )* 2

0
0

3 3, , , ,
2 2 2 2

jdu t L L c L Lu u t x u t x t x t x
dt

ρ ρ
ρ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − = + = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

(8.118) 

The form of (8.117) and (8.118) can be closed through the definition of the spatial basis 

function, as defined in the following sections for polynomial representations. 

8.4.2.1 Piecewise Constant Spatial Basis Function 

The piecewise constant basis functions are defined within two separate sets of control 

volumes: the first contains a single control volume where a basis function is defined for 

the density; the second, staggered from the first, contains a single control volume for the 

velocity basis function: 

 ( ) ( )10
,

L
x t tρ α=  (8.119) 

 ( ) ( )1.5
1.5

,
L

L
u x t tβ=  (8.120) 

Based upon these basis functions, the spatial average variables can be defined as: 

 ( ) ( ) ( )*
1 1

0

1 L

i t t dx t
L

ρ α α= ⋅ =∫  (8.121) 
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 ( ) ( ) ( )
1.5

*
1 1

.5

1 L

j
L

u t t dx t
L

β β= ⋅ =∫  (8.122) 

Thus the basis functions can be written as: 

 ( ) ( )*
0

,
L

ix t tρ ρ=  (8.123) 

 ( ) ( )1.5 *
.5

,
L

jL
u x t u t=  (8.124) 

The fluxes leaving control volumes i  and j  can now be found: 

 ( ) ( )*, ju t x L u t= =  (8.125) 

 ( )*3,
2 j
Lu t x u t⎛ ⎞= =⎜ ⎟

⎝ ⎠
 (8.126) 

 ( ) ( )*, it x L tρ ρ= =  (8.127) 

 ( )*
1

3,
2 i
Lt x tρ ρ +

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (8.128) 

8.4.2.2 Piecewise Linear Spatial Basis Function 

The piecewise linear basis functions are defined within two separate sets of control 

volumes: the first contains two adjacent control volumes where a basis function is 
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defined for the density; the second, staggered from the first, contains two adjacent control 

volumes for the velocity basis function: 

 ( ) ( ) ( )2
1 20

,
L

x t t t xρ α α= +  (8.129) 

 ( ) ( ) ( )2.5
1 2.5

,
L

L
u x t t t xβ β= +  (8.130) 

Based upon these basis functions, the spatial average variables can be defined as: 

 ( ) ( ) ( ) ( ) ( )*
1 2 1 2

0

1
2

L

i
Lt t t x dx t t

L
ρ α α α α= + ⋅ = +∫  (8.131) 

 ( ) ( ) ( ) ( ) ( )
2

*
1 1 2 1 2

1 3
2

L

i
L

Lt t t x dx t t
L

ρ α α α α+ = + ⋅ = +∫  (8.132) 

 ( ) ( ) ( ) ( ) ( )
1.5

*
1 2 1 2

.5

1 L

j
L

u t t t x dx t L t
L

β β β β= + ⋅ = +∫  (8.133) 

 ( ) ( ) ( ) ( ) ( )
2.5

*
1 1 2 1 2

1.5

1 2
L

j
L

u t t t x dx t L t
L

β β β β+ = + ⋅ = +∫  (8.134) 

Equations (8.131) - (8.134) can be solved for the unknown variables: 

 ( ) ( ) ( )* *
1 1

3 1
2 2i it t tα ρ ρ += −  (8.135) 

 ( ) ( ) ( )* *
1

2
i it t

t
L

ρ ρ
α +− +

=  (8.136) 
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 ( ) ( ) ( )* *
1 12 j jt u t u tβ += −  (8.137) 

 ( ) ( ) ( )* *
1

2
j ju t u t

t
L

β +− +
=  (8.138) 

Substituting the unknown parameters into the basis functions yields: 

 ( ) ( ) ( )2 * *
10

3 1,
2 2

L
i i

x xx t t t
L L

ρ ρ ρ +
⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (8.139) 

 ( ) ( ) ( )2.5 * *
1.5

, 2 1
L

j jL

x xu x t u t u t
L L +

⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (8.140) 

The fluxes leaving control volumes i  and j  can now be found: 

 ( ) ( ) ( )* *
1,

2
i it t

t x L
ρ ρ

ρ ++
= =  (8.141) 

 ( )*
1

3,
2 i
Lt x tρ ρ +

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (8.142) 

 ( ) ( )*, ju t x L u t= =  (8.143) 

 
( ) ( )* *

13,
2 2

j ju t u tLu t x ++⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (8.144) 
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8.4.2.3 Piecewise Quadratic Spatial Basis Function 

The piecewise quadratic basis functions are defined within two separate sets of control 

volumes: the first contains three adjacent control volumes where a basis function is 

defined for the density; the second, staggered from the first, contains three adjacent 

control volumes for the velocity basis function: 

 ( ) ( ) ( ) ( )2 2
1 2 3,

L

L
x t t t x t xρ α α α

−
= + +  (8.145) 

 ( ) ( ) ( ) ( )2.5 2
1 2 3.5

,
L

L
u x t t t x t xβ β β

−
= + +  (8.146) 

Based upon these basis functions, the spatial average variables can be defined as: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 2

* 2
1 1 2 3 1 2 3

1
2 3i

L

L Lt t t x t x dx t t t
L

ρ α α α α α α−
−

= + + ⋅ = − +∫  (8.147) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

* 2
1 2 3 1 2 3

0

1
2 3

L

i
L Lt t t x t x dx t t t

L
ρ α α α α α α= + + ⋅ = + +∫  (8.148) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

* 2
1 1 2 3 1 2 3

1 3 7
2 2

L

i
L

L Lt t t x t x dx t t t
L

ρ α α α α α α+ = + + ⋅ = + +∫  (8.149) 

 ( ) ( ) ( ) ( ) ( ) ( )
.5 2

* 2
1 1 2 3 1 3

.5

1
12

L

j
L

Lu t t t x t x dx t t
L

β β β β β−
−

= + + ⋅ = +∫  (8.150) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1.5 2

* 2
1 2 3 1 2 3

.5

1 13
12

L

j
L

Lu t t t x t x dx t L t t
L

β β β β β β= + + ⋅ = + +∫  (8.151) 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2.5 2

* 2
1 1 2 3 1 2 3

1.5

1 492
12

L

j
L

Lu t t t x t x dx t L t t
L

β β β β β β+ = + + ⋅ = + +∫ (8.152) 

Equations (8.147) - (8.152) can be solved for the unknown variables: 

 ( ) ( ) ( ) ( )* * *
1 1 1

1 5 1
3 6 6i i it t t tα ρ ρ ρ− += + −  (8.153) 

 ( ) ( ) ( )* *
1

2
i it t

t
L

ρ ρ
α −− +

=  (8.154) 

 ( ) ( ) ( ) ( )* * *
1 1

3 2

2
2

i i it t t
t

L
ρ ρ ρ

α − +− +
=  (8.155) 

 ( ) ( ) ( ) ( )* * *
1 1 1

23 2 1
24 24 24j j jt u t u t u tβ − += + −  (8.156) 

 ( ) ( ) ( ) ( )* * *
1 1

2

3 4
2

j j ju t u t u t
t

L
β − +− + −

=  (8.157) 

 ( ) ( ) ( ) ( )* * *
1 1

3 2

2
2

j j ju t u t u t
t

L
β − +− +

=  (8.158) 

Substituting the unknown parameters into the basis functions yields: 

 ( ) ( ) ( ) ( )
2 2 2

2 * * *
1 12 2 2

1 5 1,
3 2 6 6 2

L
i i iL

x x x x xx t t t t
L L L L L

ρ ρ ρ ρ− +−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + + + − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(8.159) 

( ) ( ) ( ) ( )
2 2 2

2.5 * * *
1 12 2 2.5

23 3 1 2 1,
24 2 2 12 24 2 2

L
j j jL

x x x x x xu x t u t u t u t
L L L L L L− +−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + + + − + − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(8.160) 
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The fluxes leaving control volumes i  and j  can now be found: 

 ( ) ( ) ( ) ( )* * *
1 1

1 5 1,
6 6 3i i it x L t t tρ ρ ρ ρ− += = − + +  (8.161) 

 ( ) ( ) ( )* * *
1 1

3 1 1 23,
2 24 12 24i i i
Lt x t t tρ ρ ρ ρ− +

⎛ ⎞= = − + +⎜ ⎟
⎝ ⎠

 (8.162) 

 ( ) ( ) ( ) ( )* * *
1 1

1 13 1,
24 12 24j j ju t x L u t u t u t− += = − + −  (8.163) 

 ( ) ( ) ( )* * *
1 1

3 1 5 1,
2 6 6 3j j j
Lu t x u t u t u t− +

⎛ ⎞= = − + +⎜ ⎟
⎝ ⎠

 (8.164) 

8.4.2.4 Piecewise Cubic Spatial Basis Function 

The piecewise cubic basis functions are defined within two separate sets of control 

volumes: the first contains four adjacent control volumes where a basis function is 

defined for the density; the second, staggered from the first, contains four adjacent 

control volumes for the velocity basis function: 

 ( ) ( ) ( ) ( ) ( )3 2 3
1 2 3 4,

L

L
x t t t x t x t xρ α α α α

−
= + + +  (8.165) 

 ( ) ( ) ( ) ( ) ( )3.5 2 3
1 2 3 4.5

,
L

L
u x t t t x t x t xβ β β β

−
= + + +  (8.166) 

Based upon these basis functions, the spatial average variables can be defined as: 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 2 3

* 2 3
1 1 2 3 4 1 2 3 4

1
2 3 4i

L

L L Lt t t x t x t x dx t t t t
L

ρ α α α α α α α α−
−

= + + + ⋅ = − + −∫  (8.167) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 3

* 2 3
1 2 3 4 1 2 3 4

0

1
2 3 4

L

i
L L Lt t t x t x t x dx t t t

L
ρ α α α α α α α α= + + + ⋅ = + + +∫  (8.168) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 3

* 2 3
1 1 2 3 4 1 2 3 4

1 3 7 15
2 3 4

L

i
L

L L Lt t t x t x t x dx t t t t
L

ρ α α α α α α α α+ = + + + ⋅ = + + +∫  (8.169) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 2 3

* 2 3
2 1 2 3 4 1 2 3 4

2

1 5 19 64
2 3 4

L

i
L

L L Lt t t x t x t x dx t t t t
L

ρ α α α α α α α α+ = + + + ⋅ = + + +∫  (8.170) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
.5 2

* 2 3
1 1 2 3 4 1 3

.5

1
12

L

j
L

Lu t t t x t x t x dx t t
L

β β β β β β−
−

= + + + ⋅ = +∫  (8.171) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1.5 2 3

* 2 3
1 2 3 4 1 2 3 4

.5

1 13 5
12 4

L

j
L

L Lu t t t x t x t x dx t L t t t
L

β β β β β β β β= + + + ⋅ = + + +∫  (8.172) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2.5 2 3

* 2 3
1 1 2 3 4 1 2 3 4

1.5

1 49 172
12 2

L

j
L

L Lu t t t x t x t x dx t L t t t
L

β β β β β β β β+ = + + + ⋅ = + + +∫  (8.173) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3.5 2 3

* 2 3
2 1 2 3 4 1 2 3 4

2.5

1 109 1113
12 4

L

j
L

L Lu t t t x t x t x dx t L t t t
L

β β β β β β β β+ = + + + ⋅ = + + +∫ (8.174) 

Equations (8.167) - (8.174) can be solved for the unknown variables: 

 ( ) ( ) ( ) ( ) ( )* * * *
1 1 1 2

1 13 5 1
4 12 12 12i i i it t t t tα ρ ρ ρ ρ− + += + − +  (8.175) 
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 ( ) ( ) ( ) ( ) ( )* * * *
1 1 2

2

11 9 3
12

i i i it t t t
t

L
ρ ρ ρ ρ

α − + +− + + −
=  (8.176) 

 ( ) ( ) ( ) ( ) ( )* * * *
1 1 2

3 2

3 7 5
4

i i i it t t t
t

L
ρ ρ ρ ρ

α − + +− + −
=  (8.177) 

 ( ) ( ) ( ) ( ) ( )* * * *
1 1 2

4 3

3 3
6

i i i it t t t
t

L
ρ ρ ρ ρ

α − + +− + − +
=  (8.178) 

 ( ) ( ) ( ) ( ) ( )* * * *
1 1 1 2

11 5 1 1
12 24 6 24j j j jt u t u t u t u tβ − + += + − +  (8.179) 

 ( ) ( ) ( ) ( ) ( )* * * *
1 1 2

2

43 69 33 7
24

j j j ju t u t u t u t
t

L
β − + +− + − +

=  (8.180) 

 ( ) ( ) ( ) ( ) ( )* * * *
1 1 2

3 2

2 5 4
2

j j j ju t u t u t u t
t

L
β − + +− + −

=  (8.181) 

 ( ) ( ) ( ) ( ) ( )* * * *
1 1 2

4 3

3 3
6

j j j ju t u t u t u t
t

L
β − + +− + − +

=  (8.182) 

Substituting the unknown parameters into the basis functions yields: 

( ) ( ) ( ) ( ) ( )
2 3 2 3 2 3 2 3

3 * * * *
1 1 22 3 2 3 2 3 2 3

1 11 3 13 3 7 5 5 1,
4 12 4 6 12 4 4 2 12 4 4 2 12 12 4 6

L
i i i iL

x x x x x x x x x x x xx t t t t t
L L L L L L L L L L L L

ρ ρ ρ ρ ρ− + +−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + − + + − + + − + + − + − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(8.183) 

( ) ( ) ( ) ( ) ( )
2 3 2 3 2 3 2 33.5 * * * *

1 1 22 3 2 3 2 3 2 3.5

11 43 5 23 5 1 11 2 1 7,
12 24 6 24 8 2 2 6 8 2 24 24 2 6

L
j j j jL

x x x x x x x x x x x xu x t u t u t u t u t
L L L L L L L L L L L L− + +−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + − + + − + + − − + − + + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (8.184) 

The fluxes leaving control volumes i  and j  can now be found: 
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 ( ) ( ) ( ) ( ) ( )* * * *
1 1 2

1 7 7 1,
12 12 12 12i i i it x L t t t tρ ρ ρ ρ ρ− + += = − + + −  (8.185) 

 ( ) ( ) ( )* * *
1 2

3 1 13 1,
2 24 12 24i i i
Lt x t t tρ ρ ρ ρ+ +

⎛ ⎞= = − + −⎜ ⎟
⎝ ⎠

 (8.186) 

 ( ) ( ) ( ) ( )* * *
1 1

1 13 1,
24 12 24j j ju t x L u t u t u t− += = − + −  (8.187) 

 ( ) ( ) ( ) ( )* * * *
1 1 2

3 1 7 7 1,
2 12 12 12 12j j j j
Lu t x u t u t u t u t− + +

⎛ ⎞= = − + + −⎜ ⎟
⎝ ⎠

 (8.188) 

8.4.3 Euler Equations 

The one-dimensional, constant area Euler Equations are shown in differential form in 

equations (8.189) - (8.191) below. 

 
( )( ) ( ) ( )( ), , ,

0
x t A x t Au x t
t x

ρ ρ∂ ∂
+ =

∂ ∂
 (8.189) 

 
( ) ( )( ) ( ) ( ) ( )( )2, , ,, ,

0
x t Au x t P x t Ax t Au x t

t x

ρρ ∂ +∂
+ =

∂ ∂
 (8.190) 

 
( ) ( )( ) ( ) ( ) ( )( )0 0, , , , ,

0
x t Ae x t x t Au x t h x t

t x
ρ ρ∂ ∂

+ =
∂ ∂

 (8.191) 

These equations are modified by defining the mass flux of gas traveling within the 

components, the pressure and the enthalpy as follows : 
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 ( ) ( ) ( ), , ,m x t x t Au x tρ=  (8.192) 

 ( ) ( ) ( ) ( )
( )

2

0 2 2

,
, 1 ,

2 ,

m x t
P x t x t e

x t A
γ ρ

ρ

⎛ ⎞
⎜ ⎟= − −
⎜ ⎟
⎝ ⎠

 (8.193) 

 ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

2

0 0 0 2 2

, ,
, , , 1

, 2 ,

P x t m x t
h x t e x t e x t

x t x t A
γ γ

ρ ρ
= + = + −  (8.194) 

Applying (8.192) - (8.194) to equations (8.189) - (8.191) yields: 

 
( )( ) ( ), ,

0
x t A m x t
t x

ρ∂ ∂
+ =

∂ ∂
 (8.195) 

 
( )

( ) ( ) ( ) ( ) ( )
( )

2

0

, 3
1 , ,

2 ,,
0

m x t
x t Ae x t

x t Am x t
t x

γ
γ ρ

ρ

⎛ ⎞−
⎜ ⎟∂ − +
⎜ ⎟∂ ⎝ ⎠+ =

∂ ∂
 (8.196) 

 
( ) ( )( )

( ) ( ) ( ) ( )
( )

3

0 2 2
0

,
, , 1

2 ,, ,
0

m x t
m x t e x t

x t Ax t Ae x t
t x

γ γ
ρρ

⎛ ⎞
⎜ ⎟∂ + −
⎜ ⎟∂ ⎝ ⎠+ =

∂ ∂
 (8.197) 

Beginning with the continuity equation, applying the model order reduction process from 

Section 5.2, we perform a spatial integration within the generic control volume: 

 
( )( ) ( )

0 0

, ,
0

L Lx t A m x t
dx dx

t x
ρ∂ ∂

⋅ + ⋅ =
∂ ∂∫ ∫  (8.198) 

Equation (8.198) simplifies to: 
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( )( ) ( ) ( )

0

,
, 0 ,

L x t A
dx m t x m t x L

t
ρ∂

⋅ = = − =
∂∫  (8.199) 

The spatial average value of ρ  within control volume i  can be defined as: 

 ( ) ( )*

0

1 ,
L

i t x t dx
L

ρ ρ= ⋅∫  (8.200) 

Thus: 

 ( ) ( )*

0

,1 L
id t x t

dx
dt L t
ρ ρ∂

= ⋅
∂∫  (8.201) 

Applying (8.201) to (8.199) yields: 

 ( ) ( ) ( )
*

, 0 ,id t
AL m t x m t x L

dt
ρ

= = − =  (8.202) 

Next, integrating the conservation of energy about the same control volume yields: 

( ) ( )( )
( ) ( ) ( ) ( )

( )

3

0 2 2
0

0 0

,
, , 1

2 ,, ,
0

L L

m x t
m x t e x t

x t Ax t Ae x t
dx dx

t x

γ γ
ρρ

⎛ ⎞
⎜ ⎟∂ + −
⎜ ⎟∂ ⎝ ⎠⋅ + ⋅ =

∂ ∂∫ ∫  (8.203) 

Equation (8.203) simplifies to: 
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( ) ( )( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

3
0

0 2 2
0

3

0 2 2

, , , 0
, 0 , 0 1 ...

2 , 0

,
, , 1

2 ,

L x t Ae x t m t x
dx m t x e t x

t t x A

m t x L
m t x L e t x L

t x L A

ρ
γ γ

ρ

γ γ
ρ

∂ =
⋅ = = = + − −

∂ =

=
= = − −

=

∫
 (8.204) 

The spatial average value of the product ( )0eρ  within control volume i  can be defined 

as: 

 ( ) ( ) ( ) ( )*
0 0

0

1 , ,
L

i
e t x t e x t dx

L
ρ ρ= ⋅∫  (8.205) 

Thus: 

 
( ) ( ) ( ) ( )( )*

00

0

, ,1 L
i

x t e x td e t
dx

dt L t
ρρ ∂

= ⋅
∂∫  (8.206) 

Applying (8.206) to (8.204) yields: 

 

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

* 3
0

0 2 2

3

0 2 2

, 0
, 0 , 0 1 ...

2 , 0

,
, , 1

2 ,

i
d e t m t x

AL m t x e t x
dt t x A

m t x L
m t x L e t x L

t x L A

ρ
γ γ

ρ

γ γ
ρ

=
= = = + − −

=

=
= = − −

=

 (8.207) 

Finally, integrating the momentum equation about a control volume that is staggered with 

respect to the continuity and energy volume yields: 
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 ( )
( ) ( ) ( ) ( ) ( )

( )

2

01.5 1.5

.5 .5

, 3
1 , ,

2 ,,
0

L L

L L

m x t
x t Ae x t

x t Am x t
dx dx

t x

γ
γ ρ

ρ

⎛ ⎞−
⎜ ⎟∂ − +
⎜ ⎟∂ ⎝ ⎠⋅ + ⋅ =

∂ ∂∫ ∫  (8.208) 

Equation (8.208) simplifies to: 

 

( ) ( )
( )

( )
( )

2

1.5

0
.5

2

0

, 3, 21 , , ...
2 2 2 ,

2

3, 3
3 3 21 , ,

32 2 2 ,
2

L

L

Lm t xm x t L Ldx t x Ae t x
Lt t x A

Lm t x
L Lt x Ae t x

Lt x A

γ
γ ρ

ρ

γ
γ ρ

ρ

⎛ ⎞= −⎜ ⎟∂ ⎛ ⎞ ⎛ ⎞ ⎝ ⎠⋅ = − = = + −⎜ ⎟ ⎜ ⎟∂ ⎛ ⎞⎝ ⎠ ⎝ ⎠ =⎜ ⎟
⎝ ⎠

⎛ ⎞= −⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠− = = −⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠ =⎜ ⎟
⎝ ⎠

∫

(8.209) 

The spatial average value of m  within control volume j  can be defined as: 

 ( ) ( )
2.5

*

.5

1 ,
L

j
L

m t m x t dx
L

= ⋅∫  (8.210) 

Thus: 

 
( ) ( )* 2.5

.5

,1 L
j

L

dm t m x t
dx

dt L t
∂

= ⋅
∂∫  (8.211) 

Applying (8.211) to (8.209) yields: 
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( ) ( )
( )

( )
( )

2

*

0

2

0

, 3
21 , , ...

2 2 2 ,
2

3, 3
3 3 21 , ,

32 2 2 ,
2

j

Lm t xdm t L LL t x Ae t x
Ldt t x A

Lm t x
L Lt x Ae t x

Lt x A

γ
γ ρ

ρ

γ
γ ρ

ρ

⎛ ⎞= −⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠= − = = + −⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠ =⎜ ⎟
⎝ ⎠

⎛ ⎞= −⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠− = = −⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠ =⎜ ⎟
⎝ ⎠

 (8.212) 

Summarizing, we have the following three equations which can be closed through the 

definition of the Spatial Basis Functions. 

 ( ) ( ) ( )
*

, 0 ,id t
AL m t x m t x L

dt
ρ

= = − =  (8.213) 

 

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

* 3
0

0 2 2

3

0 2 2

, 0
, 0 , 0 1 ...

2 , 0

,
, , 1

2 ,

i
d e t m t x

AL m t x e t x
dt t x A

m t x L
m t x L e t x L

t x L A

ρ
γ γ

ρ

γ γ
ρ

=
= = = + − −

=

=
= = − −

=

 (8.214) 

 

( ) ( )
( )

( )
( )

2

*

0

2

0

, 3
21 , , ...

2 2 2 ,
2

3, 3
3 3 21 , ,

32 2 2 ,
2

j

Lm t xdm t L LL t x Ae t x
Ldt t x A

Lm t x
L Lt x Ae t x

Lt x A

γ
γ ρ

ρ

γ
γ ρ

ρ

⎛ ⎞= −⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠= − = = + −⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠ =⎜ ⎟
⎝ ⎠

⎛ ⎞= −⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠− = = −⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠ =⎜ ⎟
⎝ ⎠

 (8.215) 
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8.4.3.1 Piecewise Constant Spatial Basis Function 

The piecewise constant basis functions are defined within two separate sets of control 

volumes: the first contains a single control volume where basis functions are defined for 

the density and for the total internal energy; the second, staggered from the first, contains 

a single control volume for the mass flux basis function: 

 ( ) ( )10
,

L
x t tρ α=  (8.216) 

 ( ) ( )0 10
,

L
e x t tβ=  (8.217) 

 ( ) ( )1.5
1.5

,
L

L
m x t tχ=  (8.218) 

Based upon these basis functions, the spatial average variables can be defined as: 

 ( ) ( )*
1 1

0

1 L

i t dx t
L

ρ α α= ⋅ =∫  (8.219) 

 ( ) ( ) ( )*
0 1 1

0

1 L

i
e t dx t

L
β β= ⋅ =∫  (8.220) 

 ( ) ( )
1.5

*
1 1

.5

1 L

j
L

m t dx t
L

χ χ= ⋅ =∫  (8.221) 

Thus the basis functions can be written as: 
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 ( ) ( )*
0

,
L

ix t tρ ρ=  (8.222) 

 ( ) ( )*
0 0,0

,
L

ie x t e t=  (8.223) 

 ( ) ( )1.5 *
.5

,
L

jL
m x t m t=  (8.224) 

Furthermore, we can see that 

 ( ) ( ) ( ) ( ) ( ) ( )*
0 1 1 1 1

0

1 L

i
e t t t dx t t

L
ρ α β α β= ⋅ ⋅ = ⋅∫  (8.225) 

Such that: 

 ( ) ( ) ( ) ( )* * *
0 0,i ii

e t e t tρ ρ= ⋅  (8.226) 

The fluxes leaving control volumes i  and j  can now be found: 

 ( ) ( )*, it x L tρ ρ= =  (8.227) 

 ( )*
1

3,
2 i
Lt x tρ ρ +

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (8.228) 

 ( ) ( )*
0 0,, ie t x L e t= =  (8.229) 

 ( )*
0 0, 1

3,
2 i
Le t x e t+

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (8.230) 
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 ( ) ( )*, jm t x L m t= =  (8.231) 

 ( )*3,
2 j
Lm t x m t⎛ ⎞= =⎜ ⎟

⎝ ⎠
 (8.232) 

8.4.3.2 Piecewise Linear Spatial Basis Function 

The piecewise linear basis functions are defined within two separate sets of control 

volumes: the first contains two adjacent control volumes where basis functions are 

defined for the density and for the total internal energy; the second, staggered from the 

first, contains two adjacent control volumes for the mass flux basis function: 

 ( ) ( ) ( )2
1 20

,
L

x t t t xρ α α= +  (8.233) 

 ( ) ( ) ( )2
0 1 20

,
L

e x t t t xβ β= +  (8.234) 

 ( ) ( ) ( )2.5
1 2.5

,
L

L
m x t t t xχ χ= +  (8.235) 

Based upon these basis functions, the spatial average variables can be defined as: 

 ( ) ( ) ( ) ( ) ( )*
1 2 1 2

0

1
2

L

i
Lt t t x dx t t

L
ρ α α α α= + ⋅ = +∫  (8.236) 

 ( ) ( ) ( ) ( ) ( )
2

*
1 1 2 1 2

1 3
2

L

i
L

Lt t t x dx t t
L

ρ α α α α+ = + ⋅ = +∫  (8.237) 
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 ( ) ( ) ( ) ( ) ( )*
0, 1 2 1 2

0

1
2

L

i
Le t t t x dx t t

L
β β β β= + ⋅ = +∫  (8.238) 

 ( ) ( ) ( ) ( ) ( )
2

*
0, 1 1 2 1 2

1 3
2

L

i
L

Le t t t x dx t t
L

β β β β+ = + ⋅ = +∫  (8.239) 

 ( ) ( ) ( ) ( ) ( )
1.5

*
1 2 1 2

.5

1 L

j
L

m t t t x dx t L t
L

χ χ χ χ= + ⋅ = +∫  (8.240) 

 ( ) ( ) ( ) ( ) ( )
2.5

*
1 1 2 1 2

1.5

1 2
L

j
L

m t t t x dx t L t
L

χ χ χ χ+ = + ⋅ = +∫  (8.241) 

Furthermore, we can see that 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )*
0 1 2 1 2

0

1 L

i
e t t t x t t x dx

L
ρ α α β β= + ⋅ + ⋅∫  (8.242) 

Such that: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* * * * * * *
0 1 0, 1 0, 1

13 1 1 1
12 12 12 12i i i i i ii

e t t t e t t t e tρ ρ ρ ρ ρ+ + +
⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(8.243) 

Equations (8.236) - (8.241) can be solved for the unknown variables: 

 ( ) ( ) ( )* *
1 1

3 1
2 2i it t tα ρ ρ += −  (8.244) 

 ( ) ( ) ( )* *
1

2
i it t

t
L

ρ ρ
α +− +

=  (8.245) 
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 ( ) ( ) ( )* *
1 0, 0, 1

3 1
2 2i it e t e tβ += −  (8.246) 

 ( ) ( ) ( )* *
0, 0, 1

2
i ie t e t

t
L

β +− +
=  (8.247) 

 ( ) ( ) ( )* *
1 12 j jt m t m tχ += −  (8.248) 

 ( ) ( ) ( )* *
1

2
j jm t m t

t
L

χ +− +
=  (8.249) 

Substituting the unknown parameters into the basis functions yields: 

 ( ) ( ) ( )2 * *
10

3 1,
2 2

L
i i

x xx t t t
L L

ρ ρ ρ +
⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (8.250) 

 ( ) ( ) ( )2 * *
0 0, 0, 10

3 1,
2 2

L
i i

x xe x t e t e t
L L +

⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (8.251) 

 ( ) ( ) ( )2.5 * *
1.5

, 2 1
L

j jL

x xm x t m t m t
L L +

⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (8.252) 

The fluxes leaving control volumes i  and j  can now be found: 

 ( ) ( ) ( )* *
1,

2
i it t

t x L
ρ ρ

ρ ++
= =  (8.253) 

 ( )*
1

3,
2 i
Lt x tρ ρ +

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (8.254) 
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 ( ) ( ) ( )* *
0, 0, 1

0 ,
2

i ie t e t
e t x L ++

= =  (8.255) 

 ( )*
0 0, 1

3,
2 i
Le t x e t+

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (8.256) 

 ( ) ( )*, jm t x L m t= =  (8.257) 

 
( ) ( )* *

13,
2 2

j jm t m tLm t x ++⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (8.258) 

8.4.3.3 Piecewise Quadratic Spatial Basis Function 

The piecewise quadratic basis functions are defined within two separate sets of control 

volumes: the first contains three adjacent control volumes where basis functions are 

defined for the density and for the total internal energy; the second, staggered from the 

first, contains three adjacent control volumes for the mass flux basis function: 

 ( ) ( ) ( ) ( )2 2
1 2 3,

L

L
x t t t x t xρ α α α

−
= + +  (8.259) 

 ( ) ( ) ( ) ( )2 2
0 1 2 3,

L

L
e x t t t x t xβ β β

−
= + +  (8.260) 

 ( ) ( ) ( ) ( )2.5 2
1 2 3.5

,
L

L
m x t t t x t xχ χ χ

−
= + +  (8.261) 

Based upon these basis functions, the spatial average variables can be defined as: 



 203 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 2

* 2
1 1 2 3 1 2 3

1
2 3i

L

L Lt t t x t x dx t t t
L

ρ α α α α α α−
−

= + + ⋅ = − +∫  (8.262) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

* 2
1 2 3 1 2 3

0

1
2 3

L

i
L Lt t t x t x dx t t t

L
ρ α α α α α α= + + ⋅ = + +∫  (8.263) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

* 2
1 1 2 3 1 2 3

1 3 7
2 3

L

i
L

L Lt t t x t x dx t t t
L

ρ α α α α α α+ = + + ⋅ = + +∫  (8.264) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 2

* 2
0, 1 1 2 3 1 2 3

1
2 3i

L

L Le t t t x t x dx t t t
L

β β β β β β−
−

= + + ⋅ = − +∫  (8.265) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

* 2
0, 1 2 3 1 2 3

0

1
2 3

L

i
L Le t t t x t x dx t t t

L
β β β β β β= + + ⋅ = + +∫  (8.266) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

* 2
0, 1 1 2 3 1 2 3

1 3 7
2 3

L

i
L

L Le t t t x t x dx t t t
L

β β β β β β+ = + + ⋅ = + +∫  (8.267) 

 ( ) ( ) ( ) ( ) ( ) ( )
.5

* 2 2
1 1 2 3 1 3

.5

1 L

j
L

m t t t x t x dx t L t
L

χ χ χ χ χ−
−

= + + ⋅ = +∫  (8.268) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1.5

* 2 2
1 2 3 1 2 3

.5

1 13
12

L

j
L

m t t t x t x dx t L t L t
L

χ χ χ χ χ χ= + + ⋅ = + +∫  (8.269) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2.5

* 2 2
1 1 2 3 1 2 3

1.5

1 492
12

L

j
L

m t t t x t x dx t L t L t
L

χ χ χ χ χ χ+ = + + ⋅ = + +∫ (8.270) 

Furthermore, we can see that 
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 ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )* 2 2
0 1 2 3 1 2 3

0

1 L

i
e t t t x t x t t x t x dx

L
ρ α α α β β β= + + ⋅ + + ⋅∫  (8.271) 

Such that: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

* * * * *
0 1 1 0, 1

* * * *
1 1 0,

* * * *
1 1 0, 1

1 1 7 ...
45 360 360

1 181 1 ...
360 180 360
7 1 1

360 360 45

i i i ii

i i i i

i i i i

e t t t t e t

t t t e t

t t t e t

ρ ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

− + −

− +

− + +

⎛ ⎞= − − +⎜ ⎟
⎝ ⎠

⎛ ⎞− + − +⎜ ⎟
⎝ ⎠
⎛ ⎞− − +⎜ ⎟
⎝ ⎠

 (8.272) 

Equations (8.262) - (8.270) can be solved for the unknown variables: 

 ( ) ( ) ( ) ( )* * *
1 1 1

1 5 1
3 6 6i i it t t tα ρ ρ ρ− += + −  (8.273) 

 ( ) ( ) ( )* *
1

2
i it t

t
L

ρ ρ
α −− +

=  (8.274) 

 ( ) ( ) ( ) ( )* * *
1 1

3 2

2
2

i i it t t
t

L
ρ ρ ρ

α − +− +
=  (8.275) 

 ( ) ( ) ( ) ( )* * *
1 0, 1 0, 0, 1

1 5 1
3 6 6i i it e t e t e tβ − += + −  (8.276) 

 ( ) ( ) ( )* *
0, 1 0,

2
i ie t e t

t
L

β −− +
=  (8.277) 
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 ( ) ( ) ( ) ( )* * *
0, 1 0, 0, 1

3 2

2
2

i i ie t e t e t
t

L
β − +− +

=  (8.278) 

 ( ) ( ) ( ) ( )* * *
1 1 1

23 1 1
24 12 24j j jt m t m t m tχ − += + −  (8.279) 

 ( ) ( ) ( ) ( )* * *
1 1

2

3 4
2

j j jm t m t m t
t

L
χ − +− + −

=  (8.280) 

 ( ) ( ) ( ) ( )* * *
1 1

3 2

2
2

j j jm t m t m t
t

L
χ − +− +

=  (8.281) 

Substituting the unknown parameters into the basis functions yields: 

( ) ( ) ( ) ( )
2 2 2

2 * * *
1 12 2 2

1 5 1,
3 2 6 6 2

L
i i iL

x x x x xx t t t t
L L L L L

ρ ρ ρ ρ− +−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + + + − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (8.282) 

( ) ( ) ( ) ( )
2 2 2

2 * * *
0 0, 1 0, 0, 12 2 2

1 5 1,
3 2 6 6 2

L
i i iL

x x x x xe x t e t e t e t
L L L L L− +−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + + + − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (8.283) 

( ) ( ) ( ) ( )
2 2 2

2.5 * * *
1 12 2 2.5

23 3 1 2 1,
24 2 2 12 24 2 2

L
j j jL

x x x x x xm x t m t m t m t
L L L L L L− +−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + + + − + − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (8.284) 

The fluxes leaving control volumes i  and j  can now be found: 

 ( ) ( ) ( ) ( )* * *
1 15 2

,
6

i i it t t
t x L

ρ ρ ρ
ρ − +− + +

= =  (8.285) 
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 ( ) ( ) ( )* * *
1 1

3 1 1 23,
2 24 12 24i i i
Lt x t t tρ ρ ρ ρ− +

⎛ ⎞= = − + +⎜ ⎟
⎝ ⎠

 (8.286) 

 ( ) ( ) ( ) ( )* * *
0, 1 0, 0, 1

0

5 2
,

6
i i ie t e t e t

e t x L − +− + +
= =  (8.287) 

 ( ) ( ) ( )* * *
0 0, 1 0, 0, 1

3 1 1 23,
2 24 12 24i i i
Le t x e t e t e t− +

⎛ ⎞= = − + +⎜ ⎟
⎝ ⎠

 (8.288) 

 ( ) ( ) ( ) ( )* * *
1 1

1 13 1,
24 12 24j j jm t x L m t m t m t− += = − + −  (8.289) 

 ( ) ( ) ( )* * *
1 1

3 1 5 1,
2 6 6 3j j j
Lm t x m t m t m t− +

⎛ ⎞= = − + +⎜ ⎟
⎝ ⎠

 (8.290) 

8.4.3.4 Piecewise Cubic Spatial Basis Function 

The piecewise cubic basis functions are defined within two separate sets of control 

volumes: the first contains four adjacent control volumes where basis functions are 

defined for the density and for the total internal energy; the second, staggered from the 

first, contains four adjacent control volumes for the mass flux basis function: 

 ( ) ( ) ( ) ( ) ( )3 2 3
1 2 3 4,

L

L
x t t t x t x t xρ α α α α

−
= + + +  (8.291) 

 ( ) ( ) ( ) ( ) ( )3 2 3
0 1 2 3 4,

L

L
e x t t t x t x t xβ β β β

−
= + + +  (8.292) 

 ( ) ( ) ( ) ( ) ( )3.5 2 3
1 2 3 4.5

,
L

L
m x t t t x t x t xχ χ χ χ

−
= + + +  (8.293) 
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Based upon these basis functions, the spatial average variables can be defined as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 2 3

* 2 3
1 1 2 3 4 1 2 3 4

1
2 3 4i

L

L L Lt t t x t x t x dx t t t t
L

ρ α α α α α α α α−
−

= + + + ⋅ = − + −∫  (8.294) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 3

* 2 3
1 2 3 4 1 2 3 4

0

1
2 3 4

L

i
L L Lt t t x t x t x dx t t t t

L
ρ α α α α α α α α= + + + ⋅ = + + +∫  (8.295) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 3

* 2 3
1 1 2 3 4 1 2 3 4

1 3 7 15
2 3 4

L

i
L

L L Lt t t x t x t x dx t t t t
L

ρ α α α α α α α α+ = + + + ⋅ = + + +∫  (8.296) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 2 3

* 2 3
2 1 2 3 4 1 2 3 4

2

1 5 19 65
2 3 4

L

i
L

L L Lt t t x t x t x dx t t t t
L

ρ α α α α α α α α+ = + + + ⋅ = + + +∫  (8.297) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 2 3

* 2 3
0, 1 1 2 3 4 1 2 3 4

1
2 3 4i

L

L L Le t t t x t x t x dx t t t t
L

β β β β β β β β−
−

= + + + ⋅ = − + −∫  (8.298) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 3

* 2 3
0, 1 2 3 4 1 2 3 4

0

1
2 3 4

L

i
L L Le t t t x t x t x dx t t t t

L
β β β β β β β β= + + + ⋅ = + + +∫  (8.299) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 3

* 2 3
0, 1 1 2 3 4 1 2 3 4

1 3 7 15
2 3 4

L

i
L

L L Le t t t x t x t x dx t t t t
L

β β β β β β β β+ = + + + ⋅ = + + +∫  (8.300) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 2 3

* 2 3
0, 2 1 2 3 4 1 2 3 4

2

1 5 19 65
2 3 4

L

i
L

L L Le t t t x t x t x dx t t t t
L

β β β β β β β β+ = + + + ⋅ = + + +∫  (8.301) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
.5 2

* 2 3
1 1 2 3 4 1 3

.5

1
12

L

j
L

Lm t t t x t x t x dx t t
L

χ χ χ χ χ χ−
−

= + + + ⋅ = +∫  (8.302) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1.5

* 2 3 2 3
1 2 3 4 1 2 3 4

.5

1 13 5
12 4

L

j
L

m t t t x t x t x dx t L t L t L t
L

χ χ χ χ χ χ χ χ= + + + ⋅ = + + +∫ (8.303) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2.5

* 2 3 2 3
1 1 2 3 4 1 2 3 4

1.5

1 49 172
12 2

L

j
L

m t t t x t x t x dx t L t L t L t
L

χ χ χ χ χ χ χ χ+ = + + + ⋅ = + + +∫ (8.304) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3.5

* 2 3 2 3
2 1 2 3 4 1 2 3 4

2.5

1 109 1113
12 4

L

j
L

m t t t x t x t x dx t L t L t L t
L

χ χ χ χ χ χ χ χ+ = + + + ⋅ = + + +∫  (8.305) 

Furthermore, we can see that 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )* 2 3 2 3
0 1 2 3 4 1 2 3 4

0

1 L

i
e t t t x t x t x t t x t x t x dx

L
ρ α α α α β β β β= + + + + + + ⋅∫  (8.306) 

Such that: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

* * * * * *
0 1 1 2 0, 1

* * * * *
1 1 2 0,

* * * *
1 1 2

59 59 53 73 ...
6048 5040 2016 15120

59 10391 257 17 ...
5040 10080 5040 2016

53 257 941 9
2016 5040 10080 560

i i i i ii

i i i i i

i i i i

e t t t t t e

t t t t e

t t t t

ρ ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

− + + −

− + +

− + +

⎛ ⎞= + − + +⎜ ⎟
⎝ ⎠

⎛ ⎞+ − + +⎜ ⎟
⎝ ⎠
⎛ ⎞− − + −⎜ ⎟
⎝ ⎠

( )

( ) ( ) ( ) ( ) ( )

*
0, 1

* * * * *
1 1 2 0, 2

...

73 17 9 17
15120 2016 560 6048

i

i i i i i

e t

t t t t e tρ ρ ρ ρ

+

− + + +

+

⎛ ⎞+ − +⎜ ⎟
⎝ ⎠

(8.307) 

 

Equations (8.294) - (8.305) can be solved for the unknown variables: 

 ( ) ( ) ( ) ( ) ( )* * * *
1 1 1 2

1 13 5 1
4 12 12 12i i i it t t t tα ρ ρ ρ ρ− + += + − +  (8.308) 
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 ( ) ( ) ( ) ( ) ( )* * * *
1 1 2

2

11 9 3
12

i i i it t t t
t

L
ρ ρ ρ ρ

α − + +− + + −
=  (8.309) 

 ( ) ( ) ( ) ( ) ( )* * * *
1 1 2

3 2

3 7 5
4

i i i it t t t
t

L
ρ ρ ρ ρ

α − + +− + −
=  (8.310) 

 ( ) ( ) ( ) ( ) ( )* * * *
1 1 2

4 3

3 3
6

i i i it t t t
t

L
ρ ρ ρ ρ

α − + +− + − +
=  (8.311) 

 ( ) ( ) ( ) ( ) ( )* * * *
1 0, 1 0, 0, 1 0, 2

1 13 5 1
4 12 12 12i i i it e t e t e t e tβ − + += + − +  (8.312) 

 ( ) ( ) ( ) ( ) ( )* * * *
0, 1 0, 0, 1 0, 2

2

11 9 3
12

i i i ie t e t e t e t
t

L
β − + +− + + −

=  (8.313) 

 ( ) ( ) ( ) ( ) ( )* * * *
0, 1 0, 0, 1 0, 2

3 2

3 7 5
4

i i i ie t e t e t e t
t

L
β − + +− + −

=  (8.314) 

 ( ) ( ) ( ) ( ) ( )* * * *
0, 1 0, 0, 1 0, 2

4 3

3 3
6

i i i ie t e t e t e t
t

L
β − + +− + − +

=  (8.315) 

 ( ) ( ) ( ) ( ) ( )* * * *
1 1 1 2

11 5 1 1
12 24 6 24j j j jt m t m t m t m tχ − + += + − +  (8.316) 

 ( ) ( ) ( ) ( ) ( )* * * *
1 1 2

2

43 69 33 7
24

j j j jm t m t m t m t
t

L
χ − + +− + − +

=  (8.317) 

 ( ) ( ) ( ) ( ) ( )* * * *
1 1 2

3 2

2 5 4
2

j j j jm t m t m t m t
t

L
χ − + +− + −

=  (8.318) 
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 ( ) ( ) ( ) ( ) ( )* * * *
1 1 2

4 3

3 3
6

j j j jm t m t m t m t
t

L
χ − + +− + − +

=  (8.319) 

Substituting the unknown parameters into the basis functions yields: 

 
( ) ( ) ( )

( ) ( )

2 3 2 3
3 * *

12 3 2 3

2 3 2 3
* *

1 22 3 2 3

1 11 3 13 3 7, ...
4 12 4 6 12 4 4 2

5 5 1
12 4 4 2 12 12 4 6

L
i iL

i i

x x x x x xx t t t
L L L L L L

x x x x x xt t
L L L L L L

ρ ρ ρ

ρ ρ

−−

+ +

⎛ ⎞ ⎛ ⎞
= − + − + + − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
− + + − + − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(8.320) 

 
( ) ( ) ( )

( ) ( )

2 3 2 3
3 * *

0 0, 1 0,2 3 2 3

2 3 2 3
* *
0, 1 0, 22 3 2 3

1 11 3 13 3 7, ...
4 12 4 6 12 4 4 2

5 5 1
12 4 4 2 12 12 4 6

L
i iL

i i

x x x x x xe x t e t e t
L L L L L L

x x x x x xe t e t
L L L L L L

−−

+ +

⎛ ⎞ ⎛ ⎞
= − + − + + − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
− + + − + − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(8.321) 

 
( ) ( ) ( )

( ) ( )

2 3 2 3
3.5 * *

12 3 2 3.5

2 3 2 3
* *

1 22 3 2 3

11 43 5 23 5, ...
12 24 6 24 8 2 2

1 11 2 1 7
6 8 2 24 24 2 6

L
j jL

j j

x x x x x xm x t m t m t
L L L L L L

x x x x x xm t m t
L L L L L L

−−

+ +

⎛ ⎞ ⎛ ⎞
= − + − + + − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
− − + − + + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(8.322) 

The fluxes leaving control volumes i  and j  can now be found: 

 ( ) ( ) ( ) ( ) ( )* * * *
1 1 27 7

,
12

i i i it t t t
t x L

ρ ρ ρ ρ
ρ − + +− + + −

= =  (8.323) 

 ( ) ( ) ( )* * *
1 2

3 1 13 1,
2 24 12 24i i i
Lt x t t tρ ρ ρ ρ+ +

⎛ ⎞= = − + −⎜ ⎟
⎝ ⎠

 (8.324) 
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 ( ) ( ) ( ) ( ) ( )* * * *
0, 1 0, 0, 1 0, 2

0

7 7
,

12
i i i ie t e t e t e t

e t x L − + +− + + −
= =  (8.325) 

 ( ) ( ) ( )* * *
0 0, 0, 1 0, 2

3 1 13 1,
2 24 12 24i i i
Le t x e t e t e t+ +

⎛ ⎞= = − + −⎜ ⎟
⎝ ⎠

 (8.326) 

 ( ) ( ) ( ) ( )* * *
1 1

1 13 1,
24 12 24j j jm t x L m t m t m t− += = − + −  (8.327) 

 ( ) ( ) ( ) ( )* * * *
1 1 2

3 1 7 7 1,
2 12 12 12 12j j j j
Lm t x m t m t m t m t− + +

⎛ ⎞= = − + + −⎜ ⎟
⎝ ⎠

 (8.328) 

8.5 Numerical Methods Derivations 

8.5.1 Linear Convection Equation 

Derivations are presented for the first order upwind method and the Lax-Wendroff 

method as applied to the Linear Convection Equation [16,17]. 

8.5.1.1 First Order Upwind 

The Linear Convection Equation, is shown in differential form in equation (8.329) below. 

 0u uc
t x

∂ ∂
+ ⋅ =

∂ ∂
 (8.329) 

The spatial derivative is replaced by a first order upwind approximation, while the time 

derivative is replaced by the forward Euler approximation. 
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 1
n n
i iu uu

x x
−−∂

=
∂ ∆

 (8.330) 

 
1n n

i iu uu
t t

+ −∂
=

∂ ∆
 (8.331) 

Applying (8.330) and (8.331) to (8.329) and rearranging yields the first order upwind 

method for the Linear Convection equation in (8.332). Note that the equation has been 

derived with a combined space and time discretization and thus is shown in a fully  

discrete form. 

 ( )1
1

n n n n
i i i i

tu u c u u
x

+
−

∆
= + −

∆
 (8.332) 

8.5.1.2 Lax-Wendroff 

The Linear Convection Equation, is shown in differential form in equation (8.333) below. 

 0u uc
t x

∂ ∂
+ ⋅ =

∂ ∂
 (8.333) 

Differentiating equation (8.333) with respect to time yields:  

 
2 2

2 0u uc
t t x

∂ ∂
+ ⋅ =

∂ ∂ ∂
 (8.334) 

Differentiating equation (8.333) with respect to distance yields:  
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2 2

2 0u uc
x t x
∂ ∂

+ ⋅ =
∂ ∂ ∂

 (8.335) 

Combining (8.334) and (8.335) yields: 

 
2 2

2
2 2

u uc
t x

∂ ∂
=

∂ ∂
 (8.336) 

The Taylor series expansion of u  at position x , at time 1n +  can be shown to be: 

 ( )
2 2

1 3
22

n n
i i

i i

u t uu u t O t
t t

+ ⎛ ⎞∂ ∆ ∂⎛ ⎞= + ∆ + + ∆⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (8.337) 

Neglecting terms higher than second order and applying (8.333) and (8.336) to (8.337) 

yields: 

 
2 2 2

1
22

n n
i i

i i

u c t uu u c t
x x

+ ⎛ ⎞∂ ∆ ∂⎛ ⎞= − ∆ + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (8.338) 

The central difference approximations for the first and second order spatial derivatives 

can be defined as: 

 1 1

2

n n
i iu uu

x x
+ −−∂

=
∂ ∆

 (8.339) 

 
2

1 1
2 2

2n n n
i i iu u uu

x x
+ −− +∂

=
∂ ∆

 (8.340) 
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Applying (8.339) and (8.340) to (8.338) and rearranging yields the Lax-Wendroff method 

for the Linear Convection equation in (8.341).  Note that this method includes a 

combined space and time discretization, yielding fully discrete equations.  The time 

discretization is known as the Cauchy-Kowalewski time discretization [17]. 

 
2 2 2

1
22

n n
i i

i i

u c t uu u c t
x x

+ ⎛ ⎞∂ ∆ ∂⎛ ⎞= − ∆ + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (8.341) 

8.5.2 Linear Euler Equations 

Derivations are presented for the first order upwind method and the Lax-Wendroff 

method as applied to the linear Euler Equations.  The upwind method must be 

supplemented with Flux Vector Splitting in order to properly distinguish between the 

leftward and rightward traveling waves. 

8.5.2.1 First Order Upwind with Flux Vector Splitting 

The linear Euler equations are presented in (8.342) and (8.343) below. 

 0 0 0uu
t x x
ρ ρ ρ∂ ∂ ∂
+ + =

∂ ∂ ∂
 (8.342) 

 
2

0
0

0u u cu
t x x

ρ
ρ

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (8.343) 

Arranging (8.342) and (8.343) into matrix notation: 
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 0U UA
t x

∂ ∂
+ =

∂ ∂
 (8.344) 

 U
u
ρ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (8.345) 

 
0 0
2

0
0

u
A c u

ρ

ρ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (8.346) 

The eigenvalues and eigenvectors of the Jacobian matrix A can be seen to be: 

 0

0

u c
Eigenvalues

u c
λ

−⎡ ⎤
= = ⎢ ⎥+⎣ ⎦

 (8.347) 

 0 0,Eigenvectors
c c
ρ ρ⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
 (8.348) 

As detailed in [17], the Flux Vector Splitting method divides the eigenvalues into positive 

and negative values and enters them into diagonal matrices. Thus: 

 
0

0 0
0 u c

λ+ ⎡ ⎤
= ⎢ ⎥+⎣ ⎦

 (8.349) 

 0 0
0 0

u c
λ− −⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (8.350) 

Next, define a matrix K containing the eigenvectors: 
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 0 0K
c c
ρ ρ⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 (8.351) 

The split form of the Jacobian Matrices can then be defined as: 

 

( )

( )

0 00

1

0 0

0

2 2

2 2

u cu c
aA K K

c u c u c

ρ

λ

ρ

+ + −

⎡ ⎤++
⎢ ⎥
⎢ ⎥= =
⎢ ⎥+ +
⎢ ⎥
⎣ ⎦

 (8.352) 

 

( )

( )

0 00

1

0 0

0

2 2

2 2

c uu c
cA K K

c c u u c

ρ

λ

ρ

− − −

⎡ ⎤−−
⎢ ⎥
⎢ ⎥= =
⎢ ⎥− −
⎢ ⎥
⎣ ⎦

 (8.353) 

The positive and negative fluxes can thus be defined as: 

 

( )( )

( )( )

0 0

0 0

0

2

2

u c c u
cF A U

u c c u

ρ ρ

ρ ρ
ρ

+ +

⎡ ⎤+ +
⎢ ⎥
⎢ ⎥= =
⎢ ⎥+ +
⎢ ⎥
⎣ ⎦

 (8.354) 

 

( )( )

( )( )

0 0

0 0

0

2

2

u c c u
cF A U

c u c u

ρ ρ

ρ ρ
ρ

− −

⎡ ⎤− −
⎢ ⎥
⎢ ⎥= =
⎢ ⎥− −
⎢ ⎥
⎣ ⎦

 (8.355) 

Using the relations defined above, the governing partial differential equations can be re-

written as: 
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( ) ( )0 0 0 00 0 0
2 2 2 2

u c c uu c u cu u
t x c x x c x

ρ ρρ ρ ρ

+ + − −

⎧ ⎫ ⎧ ⎫+ −+ −∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + + =⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭
 (8.356) 

( ) ( )0 00 0

0 0

0
2 2 2 2

c u c c c uu c u cu u u
t x x x x

ρ ρ
ρ ρ+ + − −

⎧ ⎫ ⎧ ⎫+ −+ −∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + + =⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭
 (8.357) 

The spatial partial derivatives with a subscript + can now be discretized using a first order 

upwind approximation, while those with a – subscript can be discretized using a first 

order downwind approximation.  The time derivative is discretized using a first order 

Euler time discretization.  These steps are left to the reader. 

8.5.2.2 Lax-Wendroff 

The linear Euler equations are presented in (8.358) and (8.359) below. 

 0 0 0uu
t x x
ρ ρ ρ∂ ∂ ∂
+ + =

∂ ∂ ∂
 (8.358) 

 
2

0
0

0u u cu
t x x

ρ
ρ

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (8.359) 

Differentiating (8.358) and (8.359) with respect to time yields: 

 
2 2 2

0 02 0uu
t t x t x
ρ ρ ρ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂ ∂
 (8.360) 

 
2 2 2 2

02
0

0u u cu
t t x t x

ρ
ρ

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂ ∂
 (8.361) 
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Differentiating (8.358) and (8.359) with respect to distance yields: 

 
2 2 2

0 02 2 0uu
x t x x
ρ ρ ρ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
 (8.362) 

 
2 2 2 2

0 2 2
0

0u u cu
x t x x

ρ
ρ

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
 (8.363) 

Combining (8.360) and (8.362) together and (8.361) and (8.363) together yields: 

 
2 2 2 2 2 2

0 0 0 0 02 2 2 2 2
0

u u cu u u
t x x x x
ρ ρ ρρ ρ

ρ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂

= + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (8.364) 

 
2 2 2 2 2 2 2

0 0 0 02 2 2 2 2
0 0

u u c c uu u u
t x x x x

ρ ρ ρ
ρ ρ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
= + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

 (8.365) 

The Taylor series expansion of ρ  and u  at position x , at time 1n +  can be shown to be: 

 ( )
2 2

1 3
22

n n
i i

i i

tt O t
t t
ρ ρρ ρ+ ⎛ ⎞∂ ∆ ∂⎛ ⎞= + ∆ + + ∆⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (8.366) 

 ( )
2 2

1 3
22

n n
i i

i i

u t uu u t O t
t t

+ ⎛ ⎞∂ ∆ ∂⎛ ⎞= + ∆ + + ∆⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (8.367) 

Neglecting terms higher than second order and applying (8.364), (8.365), (8.358) and 

(8.359) to (8.366) and (8.367) yields: 



 219 

 ( )
2 2 2

1 2 2
0 0 0 0 02 22

2
n n
i i

u t ut u u c u
x x x x
ρ ρρ ρ ρ ρ+ ⎛ ⎞∂ ∂ ∆ ∂ ∂⎛ ⎞= − ∆ + + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (8.368) 

 ( )
22 2 2 2

1 2 2 0
0 0 2 2

0 0

2
2

n n
i i

u cu c t uu u t u u c
x x x x

ρ ρ
ρ ρ

+ ⎛ ⎞ ⎛ ⎞∂ ∂ ∆ ∂ ∂
= −∆ + + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (8.369) 

The central difference approximations for the first and second order spatial derivatives 

can be defined as: 

 1 1

2

n n
i i

x x
ρ ρρ + −−∂

=
∂ ∆

 (8.370) 

 
2

1 1
2 2

2n n n
i i i

x x
ρ ρ ρρ + −− +∂

=
∂ ∆

 (8.371) 

 1 1

2

n n
i iu uu

x x
+ −−∂

=
∂ ∆

 (8.372) 

 
2

1 1
2 2

2n n n
i i iu u uu

x x
+ −− +∂

=
∂ ∆

 (8.373) 

Applying these relations to (8.368) and (8.369) yields the Lax-Wendroff method for the 

linear Euler equations. Note that this method includes a combined space and time 

discretization, yielding fully discrete equations.  The time discretization is known as the 

Cauchy-Kowalewski time discretization [17]. 
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( ) ( )( )

( )( ) ( )( )

1
0 1 1 0 1 1

2
2 2

0 1 1 0 0 1 12

...
2

2 2 2
2

n n n n n n
i i i i i i

n n n n n n
i i i i i i

t u u u
x

t u c u u u u
x

ρ ρ ρ ρ ρ

ρ ρ ρ ρ

+
+ − + −

+ − + −

∆
= − − + − +

∆
∆

+ − + + − +
∆

 (8.374) 

 
( ) ( )

( )( ) ( )

2
1 0

1 1 1 1
0

22
2 2 0

0 1 1 1 12
0

...
2 2

22 2
2

n n n n n n
i i i i i i

n n n n n n
i i i i i i

u cu u t u u
x x

u ct u c u u u
x

ρ ρ
ρ

ρ ρ ρ
ρ

+
+ − + −

+ − + −

⎛ ⎞
= − ∆ − + − +⎜ ⎟∆ ∆⎝ ⎠
⎛ ⎞∆

+ − + + − +⎜ ⎟∆ ⎝ ⎠

 (8.375) 
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