Diffusion through a plane sheet
BIDINFORMATICS

» Diffusion through a plane sheet models flow through a
membrane

«— | —>

At the start: concentration in the membrane C,
 Concentration C, changes until steady-state 1s established
« Common experimental setting: ¢, = C, =0
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Diffusion through a plane sheet : CB

Boundary conditions: ¢,=¢, =0

Solution:

ty Dt 1 2 &(-1)
q®) _ Z()

12 £ 2

expl—Dn*z*t/1?
Ke, I° 6 »*45* n p( )

With t — oo;

Intercept (lag time):
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Diffusion through a plane sheet
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Permeability and lag-time
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Time dependent solutions for Fick‘s second law:

:' CBI

Diffusion from a single spot
» Point source of particles (e.g., injection, small crystal)
* t=0,all n,moleculesatr =20
» Concentration is finite at all points
» Number of particles is constant
* Flux is radial J,=-D @
or
R b oc oJ,
* Remember: =
ot or
oc 1 0 oc
ot r<or or
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Time dependent solutions for Fick‘s second law: CBI

Diffusion from a single spot
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» Point source of particles (e.g., injection, small crystal)
 Diffusion is spherically symmetric

* t=0, all ny molecules atr =10

» Concentration is finite at all points

* Number of particles is constant

* The solution is:
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Steady-state solutions
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» Sources

— create particles
» Adsorbers

— destroy particles

» Non-uniform distribution of particles

» Steady-state:
oc

» Solution for spherically symmetric diffusion processes:

Dii(r

r’ or

—=V*=0
ot

2@)20
or
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Spherical adsorber
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» Spherical adsorber of radius a
* Boundary conditions:

— concentration at surface is 0, i.e., c(a,t) =0

— concentration at infinite distance is C, = const




Spherical adsorber 2o B

» Spherical adsorber of radius a

* Boundary conditions:
— concentration at surface is 0, i.e., c(a,t) =0

— concentration at infinite distance is ¢, = const

* Solution:
c(r)= co(l —EJ
r
oC a
J =-D—=-Dc, —
r( ) 5', 0 rz
72
Diffusion current #cnl
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» Remember:

— Flux J.(a) = number of particles entering the sphere per unit area in
time 1

 Particles are adsorbed by the sphere at the rate flux * surface
area:

| =-J, (a)*4ma’
= 47Dac,

« | is called diffusion current
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Disk-like adsorber ie CB

* Cylindrically symmetric problem
* Boundary conditions:

— concentration at surface is 0

— concentration at infinite distance is ¢, = const
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| =4Dsc,
Disk-like aperture ‘e CB
gEEIJJ.'JEFIJHEI.‘MTIES
* Cylindrically symmetric problem
* Boundary conditions:
— concentration at surface is 0
— concentration at distance x = -0 1s C; = const
— concentration at distance X = oo 1s C, = const
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Disk-like adsorbers on a sphere is¢ CBI

» Nonadsorbing sphere of radius a

* N disk-like adsorbers of radius s << a
« Concentration at I = o is C,

» For small N: | oc N 4Dsc,,

« Forlarge N: | = 4nDac,
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Disk-like adsorbers on a sphere s cl
 Inanalogy to electricity: V Co
I=V/R I=¢,/R

Diffusion resistance for sphere: R, = 1/4nDa

Diffusion resistance for each disk: R, = 1/4Ds
Total resistance: R =R, + R/N = 1/4nDa + 1/4DNs

R=R,+R,/N
1 1
= +
47Da 4DNs

1 na
= 1+
47zDa( st

= R{HEJ
NS 77




Disk-like adsorbers on a sphere is¢ CBI

* Solution:

_4rbac,
1+(7a/Ns)

 The half maximum of I/l 1s at:

7a
N=—
S
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Disk-like adsorbers on a sphere is¢ CBI
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Disk-like adsorbers on a sphere
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-
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Example:
a=>5pum

N,, = za/s = 15,700

Surface fraction covered by adsorbers:
N,,75%/4ma%=1.6x 10+

Distance between neighboring adsorbers:
(472N, ,)"2=0.14 pm = 1400 A
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Diffusion through apertures in a planar barrier ‘s CBI
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Diffusion through apertures in a planar barrier
* 1,, =DA(c,¢c))/b
« R,=%Ds
. Rs =R, + R
total 2,1 N
b |
= +
DA 2DNs
b A
= 1+
DA 2Nsb
b 1
= 1+
DA 2nsb
with n = number of apertures per unit area
I 1
= 82
l,, 1+1/2nsb
Diffusion to capture: two adsorbing boundaries 22 cBl
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» Particle released at X = a
* What is the probability of being adsorbed at x =0 ?

Lieq Liigne

X=a
C=const=C

O X
ol
oS T

O X
I
o O

m
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Diffusion to capture: two adsorbing boundaries ‘s CBI

e = DAC,/a

Iright - DACm/(b'a)

» Probability of being adsorbed at x = 0:

et _b-a
IIeft + Iright b
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Mean time to capture: two adsorbing boundaries ‘s CBI

BIOINFORMATICS

* Particle released at X =a

* What is the mean time W(a) for particles to be captured at x =0
andx=Db?

right

I
S T

X=a X 85
C

C=const=C

o X
I
o O
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Mean time to capture: two adsorbing boundaries ‘s CBI

» Particle may step left or right, so

W(x):r+%[\N(x+5)+W(x—5)]

27 +W(X+8)-W(x)+W (x=5)-W (x) =0

204 O 8)-W ()W ()W (x - 8)] =0

W _awl| | 2r

=0
dx |, dx \X_ s O
d°’wW 27
) + —2 - O
dx= o
d’w 1
+—=0
dx> D 86
Mean time to capture: two adsorbing boundaries {;{:TM‘EB'
* Boundary conditions:
— adsorbing boundary
W=0
— adsorbing boundary
dW/dx =0
» In the above example:
— adsorbing boundaries:
W(0) = W(b) = 0
1
— solution: W (X) =— (bX —Xx* )
2D
— mean time to capture particle released at random position X:
1 b’
— (X)dX = 87
b 12D




Mean time to capture: Sear
adsorbing and reflecting boundary

* Boundary conditions:
— adsorbing boundary at X =0
— reflecting boundary at x =b

« With

W(0) =0
dW/dx =0 atx="b

the solution 1s
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Mean time to capture: Sear
adsorbing and reflecting boundary

Mean time to capture particle released at random position X:
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Mean time to capture ;';NTMCHB

b’/2D

adsorbing boundary at x = 0,
| reflecting boundary at X ="Db

1 adsorbing boundaries at x=0,X =b

I I I I I I I I

I
0 b/2 b

X
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Mean time to capture 18 SRl

* In one dimension:
W
d“w

dx’ +%:0

* Intwo or three dimensions:

VW +i:0
D
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n = @
Junior Research Group
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Diffusion

1. Microscopic modelling: Molecular dynamics
2. Mesoscopic modelling: Random walk
3. Macroscopic Theory

a. Fick‘s laws of diffusion

b. exact solutions

c. numerical solutions

H.C. Berg: Random walks in biology - Princeton University Press 9

J. Crank: The mathematics of diffusion — Oxford University Press

Physical derivation 2 cBl
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Physical derivation 2o B

* Amount diffusant entering through unit area in time t:

D
g, = __T(C1 _Co)

h
* Amount diffusant leaving through unit area in time :
Dz
q, = _T(cz -c)

» Net gain of diffusant:
Dr
d,—0, :T(Co —2¢, +C2)

= h(CI’ _Cl)
, T
AC=¢| -, > (c, —2c,+¢,)
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Numerical solutions (one-dimensional) s cl
 Select two grid constants h (space) and k (time)
* Grid points are (X;, t;)) with x; = ihfori=0,1,...,mand = jk
forj=0,1, ...,n.
Wi j+1
Wi.1j Wi Wit
t
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Numerical solutions (one-dimensional): e

Forward scheme
» Explicit finite-difference formula:

2Dk k

Wijn = (1_ h2 jwi,j + DF(WiH,j +Wi—1,j)
 Error: O(k+h?) |
« Conditionally stable: D — < —
h
« Number of multiplications: Z =2n
9

Forward scheme 75 cBl
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With
A=D(k/h?)
and
(1-24) 4 0 0 |
A (1-21) A
A=| 0 A 0
: A
0 0 4 (1-24)]
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Numerical solutions (one-dimensional): 3 CI;i

Backward scheme
* Implicit method
Wi,j _Wi,j—l D Wi+1,j _2Wi,j + Wi—l,j —0
K h’
* Error: O(k+h?)
» Unconditionally stable
* Needs boundary conditions
* Values may be negative
98
Backward scheme C”?m
With
A=D(k/h?)
and
(1+24) -4 0 0 |
-4 (1+22) -2
A= 0 -1 0
; -A
0 0 -4 (1+24)]

this can be written as
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Numerical solutions (one-dimensional) ‘s CBI

* Implicit: Crank-Nicholson method

W.

i,j+l _Wi.j _B Wi+1,j _2Wi,j +Wi—1,j n Wi+1,j+1 _2Wi,j+1 +Wi—1,j+1 —0
K 2 h’ h?
« Error: O(k*+h?)
» Unconditionally stable
* Number of operations (inluding solving the tridigonal system):
Z=5n
* Needs boundary conditions

» Values may be negative

J. Crank, P. Nicolson. A practical method for numerical evaluation of solutions of parti¥}
differential equations of the heat-conduction type. Proc. Camb. Phil. Soc. 43:50-67 (1947)

Crank-Nicholson method #2cBI

and - _
(1+4) —% 0o - 0
A 14a) -2
A=l 0 % 0
2

_4

2

0 o -2 (1+4)
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Crank-Nicholson method #2cBI
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and B .
(1-4) A 0
A A
i 1-2) =
2 (1-2) 2
B=| o 2% 0
2
4
., 2
0 0 = (1-4
} 2 ( )

this can be written as Aw) = By

/ \ 102

unknown concentrations known concentrations

The tridiagonal linear system ie C

BIOINFORMATICS

» The equation
can be written as
Ax=Db
which is basically a tridiagonal linear system:
bx +¢X, =d;;i=1
ax_  +bx +cx,, =d;i=2,...,n-1

a, X, +b.x. =d ;i=n

n‘*n-1
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Solving the tridiagonal linear system ‘e CB

» Direct methods
— Gauss‘s elimination method without pivoting
— LU decomposition / Thomas algorithm
— Crout reduction

» [terative methods
— Jacobi method
— QGauss-Seidel method

— Successive over-relaxation method

104
LU decomposition i CB
!
by =b,
!
d =d,
for k=2...n do
a
r_ _“k r__ ’ r_ A
& =-» O _bk RCAYSE dk _dk — a0y
bk—l
end
!
X %
n b,
n
for k=n-1...1 do
d, —C.X
_ 7k K *k+1
X = p +
k
end
H.R. Schwarz: Numerische Mathematik — Teubner Verlag Stuttgart 105

G.D. Smith: Numerical solution of partial differential equations — Oxford University Press




Crank-Nicolson method w/ Crout reduction CBI
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Let nx = the number of data points + 1

Let c[x] be the concentration for x = 0,...,nx with
c[O0] = c[nx] = O.

Step 1
INPUT c[Xx] = input data for x = 1,...,nx-1
Set c[0] =c[nx] =0
Set lambda = Dk/h?
Set u[0] =0

Step 2 (Initialization of C-N tridiagonal matrix)
For x = 1 to nx-1
Set I[x] = 1 + lambda + lambdas/2 * u[x-1]
Set u[x] = -lambda/(2*1[x])
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Crank-Nicolson method w/ Crout reduction CE FUCHB'
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Step 3 (lteration of C-N algorithm for nt time steps)
For t from 1 to nt

Set z[0] = O
(Solution of tridiagonal system by Crout
reduction)

For x from 1 to nx-1
Set z[x] = ( ( 1 — lambda ) c[x] +
lambdas2 * ( c[x+1] + c[x-1] +
z[x-11 ) ) 7/ 1[x]
(Back substitution)
For x from nx-1 to 1
Set psi[x] = z[x] - u[x]*psi[x+1]

Step 4
OUTPUT c[1] through c[nx-1]
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i CBI

Boundary conditions
» Dirichlet conditions:
value at the boundary is function of time, e.g., w(0,t) = b(t)
* Neumann conditions:
specify flux at the boundary
» Mixed boundary conditions
» Periodic or wraparound boundary conditions
108
Numerical solutions: CBI
Two dimensional forward scheme
» Basic equation:
oc o°c  oc
— =D 5+t
ot ox~ oy
» (Grid:
— X, Y space divided in elements of length h, k with indices a, b
— timestep of length z, index n
» Concentration at all points is known for t =0
* Solution:
Wabnit ~Wapn D
~ 12 (Wa—l,b,n - 2Wa,b,n + Wa+1,b,n)
T h
D
+ P (Wa,b—l,n - 2Wa,b,n + Wa,b+1,n )
» Stable for:
1 1 1
Dl —+— |t <— 109

h*>  k? 2




Mathematical derivation of solutions

* Approximate ac o o%c
(El CS

by Taylor series
u(x+h)=u(x)+ p ),

(), 1y 2000 1, 20
ox 2 ox* 6 o
2 3
u(x—h):u(x)—hau—(x) lhzau—(zx)—lhzau—(3)()...
OX 2 OX 6 OX

¥ cBl
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e.g.: addition

u(x+h)+u(x—h)=2u(x)+h? 821(2)() +0(h*)
_ o’c(x) _ c(x+h)—2¢c(x)+c(x—h)

ox? h?
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Miscellaneous equations ¢ CBI
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» Douglas equation

— implicit  (1—6)w_, ,,, +(10+120)w, ;,, +(1-6X)w

i+1, j+1
=(1+6M)w,_,  +(10-120)w ; +(1+ 62w, |

error: O(k?+h*)

unconditionally stable

- eXphCit Wi,j+1 = %(2 —Sh+ 6}& + i )\’(2 3}\‘)( |+1 . Wl—l,j )

_1—7\, 1 6}\4)(W|+2J W—z,j)

error: O(k>+h#)
conditionally stable: A <2/3
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Miscellaneous equations e GBI

* Du Fort and Frankel
— explicit

(1+ 22w,

ij+l T

2}\'(Vvi—l,j + Wi+1,j )+ (1 — Z}L)W

i, j-1

— unconditionally stable
— error: O(k*+h?)

» Implicit three-time level difference equation

é Wi =W _l Wi i =W _ Wit jo —2

2 Dk 2 Dk h?

+ W

wi, j+1 i-1,j+1

— unconditionally stable
— error: O(k*+h?)
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