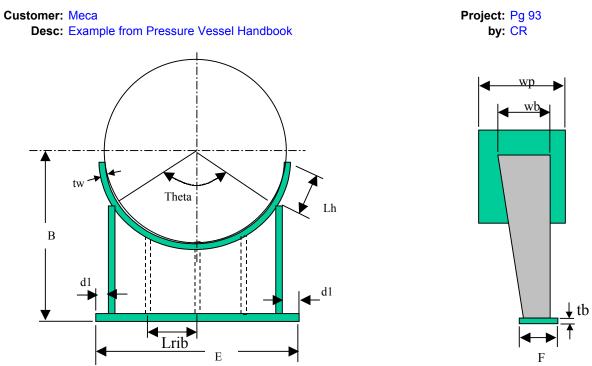
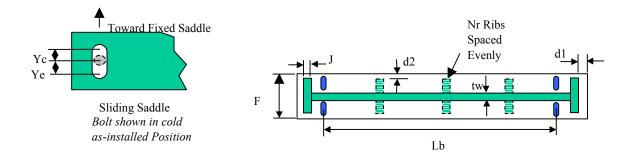

<u>Saddle</u>


Developer:	Meca Enterprises Chris Rosencutter chris@mecaconsulting.com
Description:	Perform analysis of a horizontal vessel supported on two saddles. The program performs a complete analysis of teh vessels based upon L. P. Zick's analysis procedure. The program allows the user to specify the wind load, thermal loads, liquid load, and seismic loads on the vessel. A complete analysis is also performed on the saddle, calculating stresses on bolts, base plate, web, stiffeners, and wear plate.
Platform:	Saddle is a Microsoft Excel spreadsheet. It requires MS Excel 2000 or later to run.
Units:	English or Metric (Click of the button automatically toggles all inputs and results)
Sample Output:	The following pages are the output from the Saddle spreadsheet. As an example, we have simulated an example of the Zick analysis performed in the "Pressure Vessel Handbook" by Megyesy. The example in Megyesy does not address the design of the saddle itself, so there is only a comparison of the vessel stresses.
	In the output you will see a note symbol that looks like this \rightarrow
	If you double click this note, you will receive further explanation of the output.
Purchase:	You may purchase this program at <u>www.mecaconsulting.com</u> .

per "Pressure Vessel Design Manual" by Dennis R. Moss



	Vessel Information	
OD	Outside Diameter of Vessel	120.0000 in
ts	Corroded Thickness of Shell	1.0000 in
Р	Internal Design Pressure	250.00 psig
Pe	External Design Pressure	0.00 psig
L	Tangent to Tangent Length of Vessel	960.00 in
Н	Depth of Head	21 in
A	Distance from Head Tangent to Saddle Center Line	48.00 in
В	Height from vessel centerline to bottom of saddle	69.00 in
НТуре	Head Type	Hemis
th	Corroded Thickness of Head	1 in
	Wind Design (ASCE 7-98)	
V	Design Wind Speed	0 mph
I	Importance Factor	1
Exp	Exposure	С
	Seismic Design (UBC 1997)	
Z	UBC 1997 Seismic Zone	0
I	Importance Factor	1
Sc	Soil Coefficient (SA, SB, SC, SD, or SE)	SC
	Temperature	
Tinst	Installation Temperature of Vessel	70.00 Deg. F
Tmin	Minimum Temperature of Vessel	70.00 Deg. F
Tmax	Maximum Temperture of Vessel	70.00 Deg. F
u	Coefficient of Friction between Saddle and Concrete	0.45
fc	Allowable bearing pressure on concrete	750 psi
	Material Properties	
S	Allowable Stress: Vessel Shell	17,500 psi
Fys	Yield Stress of Shell at Design Temperature	38,000 psi
Fy	Yield Stress of Saddle	36,000 psi
Emod	Modulus of Elasticity of Saddle	2.900E+07 psi
Fbolt	Allowable Tensile Stress on Bolts	20,000 psi
Fvbolt	Allowable Shear Stress on Bolts	10,000 psi
Av	Coefficient of Thermal Expansion of Vessel	7.00E-06 in/in/F
JE	Joint Efficiency	0.85
	Weight	
W	Total Weight (If zero, program will estimate)	600,000 lbs

per "Pressure Vessel Design Manual" by Dennis R. Moss

Saddle Information (Note Click "Std Dims" button to get a standard saddle)						
E	E Width of Saddle perpendicular to Longitudinal Axis Theta = 120.15 104.000 i					
F	Width of Saddle at Bottom (along Longitudinal Vessel A	xis)		9.000 in		
wb	Width of Saddle at Top of Saddle (along longitudinal Ve	essel axis)		24.000 in		
d1	d1 Distance from Outside of Baseplate to First Rib			0.000 in		
tb	b Thickness of Base Plate			1.000 in		
wp Width of wear plate				24.000 in		
Lh	Wear Plt ext. above Horn			1.000 in		
tw	Thickness of Wear Plate			0.750 in		

	Saddle Information				
d2	Distance from Outside of Baseplate to First Rib	0.000 in			
Lb	Center to Center bolt spacing in transverse direction	80.000 in			
tweb	Thickness of Web	0.75 in			
J	Thickness of Ribs	0.75 in			
Nr	Number of Ribs	2			
Nb	Number of Anchor Bolts per Saddle	2			
Dbolt	Nominal Diameter of Bolt	1.250 in			
Ww	Fillet Leg Size (Web to Baseplate)	0.750 in			

per "Pressure Vessel Design Manual" by Dennis R. Moss

Customer: Meca

Project: Pg 93

Desc	: Example from Pressure Vessel Handbook	by: CR
	Calculated Parameters	
Rm	Mean Radius of Shell	59.500 in
Rs	Radius of Shell	60.000 in
Ls	Saddle Spacing: L-2*A	864.000 in
Theta	Saddle Angle: 2*Atan((E-2*d1)/OD)	120.1 Deg
ThetaW	Angle of Wear Plate	122.1 Deg
	Calculate Weights	
Wtot	User Entered Total Weight	600,000 lbs
	Wind Loading: (Based upon ASCE 7-9	-
De	Effective Diameter based upon Table 3-24	141.6000 in
zg	Constant from table 6-4	900.0000
Alpha	Constant from table 6-4	9.5000
Kz	2.01*((B+OD/2)/zg)^(2/Alpha)	1.3353
Cf	Shape Factor	0.8
Gq	Gust Factor (Rigid Structure)	0.85
qz	Wind Pressure: 0.00256*Kz*V^2*I	0.00 psf
Afl	PI()*(De/12)^2/4	109 ft^2
Flw	Af*Cf*Gq*qz	- Ibs
Aft	De*(L+2*H)/144	985 ft^2
Ftw	(Aft*Cf*Gq*qz)*0.5	- Ibs
	Seismic Loading: (Based upon UBC)	
Са	Seismic Coefficient based upon Soil and Zone	0.0000
V	2.5*Ca*I*W / R	- Ibs
Fls	V / 1.4	- Ibs
Fts	V / (2 * 1.4)	- Ibs
	Thermal Expansion	
Ye	Maximum Expansion of Vessel	- in
Yc	Maximum Contraction of Vessel	- in
Flt	Frictional Force due to Expansion/Contraction (u*Wtot/2)	- Ibs
	Saddle Reactions	
FI	Maximum Longitudinal Force: Max(Flw, Fls, Flt, Flp)	- Ibs
Ft	Maximum Transverse Force: Max(Ftw, Fts)	- Ibs
Qo	Operating Load on Saddles: (Wtot)/2	300,000 lbs
Q1	Reaction due to Long Force: Wo/2+FI*B/Ls	300,000 lbs
Q2	Reaction due to Tran Force: Wo/2+3*Ft*B/E	300,000 lbs
Q	Maximum of Q1 or Q2	300,000 lbs

per "Pressure Vessel Design Manual" by Dennis R. Moss

Customer:						Project: F	-	
Desc:	Example from Pr	essure Vess	el Handbook			by: C	R	
			"K" Cons	tants from Fig	jure 3-46			
A./Rs	=	0.8000		K	5	=	0.7595	
K1	=	0.3357			6	=	0.0369	
K2	=	1.1686		К		=	0.6041	
K3	=	0.8775		К	8	=	0.3399	
K4	=	0.4004		К	9	=	0.0529	
			Lon	gitudinal Bend	ling			
M1	6*Q*(8*A*H+6*A	^2-3*Rm^2+3			<u> </u>		6.372E+05	in-lbs
M2	3*Q*((3*L^2+6*R		/ \	,			5.603E+07	
S1	Long. Bending @			, , , , , , , , , , , , , , , , , , , ,	(1*Rm^2*ts)			psi 🚍
S2	Long. Bending @ Saddle w/o Stiffeners - Compression: -M1/(K7*Rm^2*ts)					-298		
S4	Long. Bending @				,	/		psi <mark>=</mark>
	<u> </u>	<u> </u>		angential Shea	ar		,	╧┨╧┛══
S6	Tang. Shear - sh	ell not stiffen				4*H/3))	5,153	nsi —
				mferential Ber			5,100	
Check # 1	Lh >= Rm/10:		Jircu	1.00	<=	5.95	FALSE	
Check # 1 Check # 2	Is A <= 0.5*Rm:			48.00	>=	29.75	FALSE	
Check # 2	Wp >= wb+1.56*	(Rm*ts)^0 5		24.00	<=	36.03	FALSE	
tes	Check # 1 & # 2	· /	pass: ts	27.00		00.00	1.0000	in
tes1	Check # 3 did no						1.0000	
tes2	Check # 1 & # 2						1.0000	
S9	Bend @ horn L>:			Rm*ts)^0.5))-3*	KK6*Q/(2*te	s2)	-18,694	
S10	Bend @ horn L<8						-10,385	
S11	Since A>0.5*Rs -					/		psi
S12	Circ Compression: -KK5*Q/(tes1*(wb+1.56*(Rm*tes1)^0.5))					psi 😑		
	•	, , , , , , , , , , , , , , , , , , ,		essure Stress	11			— _
fx	Longitudinal Pres	ssure Stress		P*Rm/(2*ts)			7.438	psi 😑
fp	Circumferential P			P*Rm/ts			14,875	
•			Sad	dle Design - V	Veb			•
Element	b	h	Area	U	d	A*d	A*d^2	ltot
	in	in	in^2	in^4	in	in^3	in^4	in^4
Shell	48.167	1.000	48.2	4.01.E+00	0.50	2.408E+01	1.204E+01	1.606E+01
Wear Plt	36.084	0.750	27.1	1.27.E+00	1.38	3.721E+01	5.117E+01	5.243E+01
Web	0.750	37.250	27.9	3.23.E+03	20.38	5.692E+02	1.160E+04	1.483E+04
Baseplt	9.000	1.000	9.0	7.50.E-01	39.50	3.555E+02	1.404E+04	1.404E+04
		Area =	112.2		A*Y =	9.860E+02	=	2.894E+04
c1	Dist from Id of Sh	nell to Center	of Gravity fo	r Saddle (A*Y/	Area)		8.79	in
c2	Dist from Center			-			0.21	in
ls	Moment of Inertia						2.894E+04	in^4
As	Area of Saddle						112.2	in^2
Beta	Pi() - Theta/2						2.093	rads
K1	(1+COS(Beta)-0.	5*(SIN(Beta)))^2)/(PI()-Be	ta+(SIN(Beta)) ³	*(COS(Beta)))	0.2038	
fh	Saddle Splitting F						61,137	
ft	Tensile Stress in		S				545	psi
d	B-Rs*Sin(Theta)/	Theta					49	in
М	fh * d						3.005E+06	
fb	Bending Stress in	n Saddle: M*	C1/I				913	psi
			Saddle	Design - Wea	r Plate			
fb	Bending Stress ir	n Wear Plate	: 6*Q*K5*wb	/(8*tw^2*Rs)			17,624	psi
	-			Design - Bas	eplate			
	Bearing Area: E	* F					936	in^2
Ab								
Ab Bp	Bearing Pressure						321	psi

per "Pressure Vessel Design Manual" by Dennis R. Moss

Customer: Meca Desc: Example from Pressure Vessel Handbook Project: Pg 93 by: CR

	Saddle Design - Anchor Bolts					
	Longitudinal Load					
Tension?	ls Qo > Q1?	300,000	<	300,000	FALSE	
Pb	Since Q0>Q1 then Tensile Loa	ad will exist Ea	ach Bolt: ((Q1-Q0)/(Nb))	-	lbs
Abolt	(Pi()/4) * Dbolt^2				1.23	in^2
fal	Bolt Tensile Stress: Pb/Abolt				-	psi
	Shear L	oad (Assume	Fixed Sad	ldle takes entire load)		
fv	Shear Stress: FI / Abolt				-	psi
		Tra	nsverse L	oad		
Μ	Transverse Moment: Ft * B				-	in-lbs
е	M / Q0				-	in
E/6	E / 6				17.333	in
		Since e < E /	′ 6> The	re is No Uplift		

per "Pressure Vessel Design Manual" by Dennis R. Moss

Customer: Meca

Desc: Example from Pressure Vessel Handbook

Project: Pg 93 by: CR

	Saddle Design - Ribs					
	Outside Ribs					
Lrib	Rib Spacing: (E-2*d1)/(Nr-1)	104.0000	in			
Lotrib	Tributary Length: Min (e, 0.5*Lrib)	52.0000	in			
Pr	Axial Load on Ribs: Bp * F * Lotrib	150,000	lbs			
Ar	Area of Web and Rib: J*(F-2*d2-tweb) + tweb*(Lotrib-d1)	45.19	in^2			
fa	Compressive Stress: Pr / Ar	3,320	psi			
11	(J/12) * ((wb + F) / 2)^3	2.808E+02	in^4			
C1	(wb + F) / 4	8.250	in			
r	Radius of Gyration: (I1 / Ar)^0.5	2.493	in			
L1	Height of Saddle: B - Rs * Cos(Theta/2)	39.067	in			
Lr	Slenderness Ratio: L1 / r	15.7				
Сс	(2*Pl()^2*Emod/Fy)^0.5	126.1				
Fa	(1-Lr^2/(2*Cc^2))*Fy/(5/3+3*Lr/(8*Cc)-Lr^3/(8*Cc^3))	20,853	psi			
fu	Unit Force: FI / (2 * E)	-	lb/ft			
М	Bending Moment: 0.5 * fu * e * L1	0.000E+00	in-lbs			
fb	Bending Stress: M * C1 / I1	-	psi			
SR	Stress Ratio: fa/Fa+fb/Fb	0.16				
	Inside Ribs					
Litrib	Tributary Length: Min (e , Lrib)	104.000				
Pr	Axial Load on Ribs: Bp * F * Litrib	3.000E+05				
Ar	Area of Web and Rib: J*(F-2*d2-tweb) + tweb*Litrib	84.19	in^2			
fa	Compressive Stress: Pr / Ar	3,563	psi			
12	(J/12) * ((wb + F) / 2)^3	8.640E+02				
C2	0.5 * Wb	12.000	in			
r	Radius of Gyration: (I2 / Ar)^0.5	3.204	in			
L2	Height of Saddle: B - (Rs^2-(E/2-d1-Lrib)^2)^0.5	39.1	in			
Lr	Slenderness Ratio: L1 / r	12.2				
Cc	(2*Pl()^2*Emod/Fy)^0.5	126.1				
Fa	(1-Lr^2/(2*Cc^2))*Fy/(5/3+3*Lr/(8*Cc)-Lr^3/(8*Cc^3))	21,043	psi			
fu	Unit Force: FI / (2 * E)	-	lb/ft			
М	Bending Moment: 0.5 * fu * e * L2	0.000E+00	in-lbs			
fb	Bending Stress: M * C2 / I2	-	psi			
SR	Stress Ratio: fa/Fa+fb/Fb	0.17				

per "Pressure Vessel Design Manual" by Dennis R. Moss

Customer: N	/leca
-------------	-------

Desc: Example from Pressure Vessel Handbook

Project: Pg 93 by: CR

	Stress Summary						
Description	Equation	SR	Result	Actual A	Allowable		
		Tangential S	Shear				
Shell not stiffened	S6	0.37	PASS	5,153	= 14,000 psi		
	Circ	cumferential	Bending				
Horn of Saddle - Shell Not Stiffened	S9	0.71	PASS	(18,694)	= 26,250 psi		
Horn of Saddle - Shell not Stiffened	S10	0.40	PASS	(10,385)	26,250 psi		
Circumferential Compressive Stress	S12	0.33	PASS	(6,323)	19,000 psi		
	Com	bined Stress	- Tension				
Longitudinal Tension at Saddles	S1+fx	0.54	PASS	7,974	14,875 psi		
Longitudinal Bending @ Midspan	S4+fx	0.84	PASS	12,475	🗗 14,875 psi		
Tension in Head	S11+fp	0.80	PASS	14,875	18,594 psi		
		Saddle W	eb				
Tensile Stress in Web	ft	0.03	PASS	545	21,600 psi		
Bending Stress in Saddle	fb	0.04	PASS	913	23,760 psi		
	2	Saddle Wear	[•] Plate				
Bending Stress in Wear Plate	fb	0.74	PASS	17,624	23,760 psi		
	:	Saddle Base	Plate				
Bending stress in Baseplate	fbplt	0.82	PASS	19,471	23,760 psi		
Bearing pressure on Concrete	Вр	0.43	PASS	321	750 psi		
	Sa	ddle - Outsi	de Ribs				
Bending Stress	fb	0.00	PASS	-	23,760 psi		
Axial Stress	fa	0.16	PASS	3,320	20,853 psi		
S.R. for Bending + Axial	ftot	0.16	PASS	0.16	1.00		
	S	addle - Insid	le Ribs				
Bending Stress	fb	0.00	PASS	-	23,760 psi		
Axial Stress	fa	0.17	PASS	3,563	21,043 psi		
S.R. for Bending + Axial	ftot	0.17	PASS	0.17	1.00		
	S	addle - Insid	le Ribs				
Tensile Stress	fa	0.00	PASS	-	20,000 psi		
Shear Stress	fv	0.00	PASS	-	10,000 psi		