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Preface and Dedication 
 
This paper is a form of plagiarism for it contains few new thoughts!  The author is extremely 
indebted to the following two groups of engineers for developing its concepts fully: 
 

Samuel I. Hyman, Brooklyn Union Gas Company, Brooklyn, New York 
Michael A. Stoner, Stoner Associates, Inc, Carlisle, Pennsylvania 

, Michael A. Karnitz, Stoner Associates, Inc, Carlisle, Pennsylvania 
Gas Flow Formulas – Strengths, Weaknesses and Practical Applications 

published in the 1975 AGA Distribution Conference Proceedings 
and republished as 

Gas Flow Formulas – An Evaluation 
in Pipeline and Gas Journal, December1975 and January 1976 

 
J. Christopher Finch, Natural Gas Pipeline Company of America 

David W. Ko, Natural Gas Pipeline Company of America 
Tutorial – Fluid Flow Formulas 

published in the 1988 PSIG Conference Proceedings 
 

In addition, the subject of explicit friction factor equations was definitively covered by: 
 

Garry A. Gregory, Neotechnology Consultants, Ltd., Calgary, Alberta, Canada 
Maria Fogarasi, University of Calgary., Calgary, Alberta, Canada 

Alternate to Standard Friction Factor Equation 
Published in Oil and Gas Journal, April 1, 1985. 



   
 

 
They said it all (or mostly all considering some exciting new work published in the year 2000). 



   
 

Abstract: 
 
The purpose of this paper is to describe the equations which govern the flow of compressible fluids 
through pipes.  Particular emphasis is placed on those used within the natural gas industry in hopes that 
engineers within that industry can make knowledgeable decisions on how to model pipes.  Its thesis is that 
all practical equations were created to solve intense numerical problems and have been made obsolete by 
advancing computing technology.  It further discusses a new flow formula proposed by the GERG 
Research project 1.19 

 
 

A Note Concerning Units: 
 
These equations have generally been published in the English system of units.  Where appropriate, the 
alternate equations in metric units have been included, with the names of the metric units being shown in 
italic type.  Since the Pole, Spitzglass, and Weymouth equations are included only for historical interest, 
only their original published form is presented 
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I. The Fundamental Equation 
 

During the almost two centuries that the natural gas industry has been in existence there has always been 
a need for workable equations to relate the flow of gas through a pipe to the properties of both the pipe 
and the gas and to the operating conditions such as pressure and temperature.  The usefulness of such 
equations is obvious: systems must be designed and operated with full knowledge of what pressures will 
result from required flow rates.  The purpose of this paper is to describe the ways that this has been 
accomplished and to provide some practical insight into what the current practice should be. 
 
Since nearly every text on fluid mechanics, and they are legion, contains some derivation of the 
fundamental equation governing one dimensional, compressible fluid flow, it is not necessary to repeat that 
derivation here.  Excellent derivations are presented in both the Hyman, Stoner, Karnitz and the Finch, Ko 
papers referenced in the bibliography.  Essentially one begins with the partial differential equations of 
motion along with the equation of state and then starts assuming and integrating.  The end result for flow 
in a horizontal pipe is the following equation: 
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Where: 

C Constant, 77.54 (English units); .0011493 (Metric units) 
D Pipe diameter (inches) (millimeters) 
e Pipe efficiency (dimensionless) 
f Darcy-Weisbach friction factor (dimensionless) 
G Gas specific gravity (dimensionless) 
L Pipe length (miles) (kilometers) 
Pb Pressure base (PSIA) (Kilopascals) 
P1 Inlet pressure (PSIA) (Kilopascals) 
P2 Outlet pressure (PSIA) (Kilopascals) 
Q Flow rate (standard cubic feet/day) (standard cubic meters/day) 
Ta Average temperature (°R) (°K) 
Tb Temperature base (°R) (°K) 
Za compressibility factor (dimensionless) 

 
Let us now examine the components of this equation.  Note first that this expresses flow rate in terms of 
standard cubic feet per day.  Although it looks like one, this is not a measure of volume per time; it is 
rather a measure of mass per time.  It is in fact the mass contained in one cubic foot of the stated gravity 
gas at the standard conditions defined by Pb and Tb.  These standard conditions are established by gas 
sales contracts and are not those conditions usually defined by the scientific community.  To further 
complicate matters, if we permit gas gravity to vary throughout the system, the definition of a standard 
cubic foot also varies and we wind up comparing quantities in different units as if they were the same.  So 
much for the concept of mass continuity! 
 
This equation shows clearly how flow varies with the pertinent parameters.  Obviously bigger, shorter, 
colder, more efficient pipes containing lighter gasses permit more flow.  Of particular interest is Za, the 
equation of state.   Since Za is a function of pressure and temperature, it must be evaluated at average 
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conditions for the pipe.  For temperature an arithmetic average flowing temperature is usually used while 
the following equation, which accounts for the non-linearity of pressure drop with distance, is generally 
accepted for determining average pressure: 
 

















+

−+=
21

21
21av PP

PP
PP

3
2

P  

 
This equation is also used for linepack determinations, which represent the amount of gas entrained in the 
pipe. An alternative and more precise way of treating supercompressibility would be to modify the 
fundamental equation to incorporate supercompressibility evaluated separately at inlet and outlet 
conditions.  Since it further complicates the computation without offering significant benefits, this has not 
been generally done for pipes but it is common in reservoir work . 
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Pipes are usually not horizontal.  So long as the slope is not too great, a correction for the static head of 
fluid may be incorporated and determined as follows: 
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where: 
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Note also that the flow equation includes an efficiency term for calibration purposes.  Many purists, 
including Dr. Stoner, have argued that using a correct correlation for the friction factor alleviates the need 
for providing such an adjustment and that pipe roughness alone is sufficient as an adjustment mechanism.  
This is simply not the case.  Roughness is one of these seemingly obvious things that appear to be 
intuitively obvious until an attempt is made to use them quantatatively.  Yes, there is more frictional loss in 
concrete pipe than in drawn tubing, but reducing it to one measure in anyplace but a laboratory is difficult.  
While roughness can account for frictional effects such as  bends and fittings, pipes also can have various 
obstructing materials like condensate accumulations, rust, and sediment that behave more like diameter 
reductions.  For these and other reasons that will become more apparent when the friction factor is 
discussed, pipe roughness alone is an inadequate compensator. 
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II. The Friction Factor 
 
This brings us to the most interesting and complex part of the equation, the friction factor.  The first 
complication that arises is that there are two common friction factor definitions in standard usage : the 
Fanning and the Darcy-Weisbach..  In the nineteenth century, two groups approached the fluid flow 
problem independently and arrived at remarkably similar results.  Since the Darcy-Weisbach factor is 
simply 4 times the Fanning factor, it’s mostly a matter of personal choice and what branch of engineering 
you come from, and the only problem is keeping track of which one is being discussed.  Although I am a 
chemical engineer and therefore should use Fanning, the Darcy-Weisbach friction factor is used 
exclusively in this paper in deference to the civil engineers who comprise the industry, but beware of 
reading other papers, particularly the Finch and Ko paper. 
 
Use of the fundamental equation for calculating flow requires the numerical evaluation of f, the friction 
factor.  In general, the friction factor itself is in turn a function of flow rate, thus making the whole flow 
equation an implicit one.  For purposes of determining friction factor, it has been found that fluid flow may 
be characterized by a dimensionless grouping of variables known as the Reynolds’ Number, which is 
defined as: 
 

µ
ρDv

Nre =  

Where: 
Nre Reynolds' number (dimensionless) 
D pipe diameter (feet) (meters) 
v fluid velocity (feet/second) (meters/second) 
ρ fluid density (lbm/foot3) (kg/meter3) 
µ fluid viscosity (lbm/second-foot) (kg/second-meter) 

 
Note that in this context the units are not the same for they must cancil to produce a dimensionless group.  
For a compressible fluid, we can determine density from the equation of state to substitute for ρ, and 
determine velocity as flow rate/area corrected to actual conditions to substitute for v.  Conveniently, much 
of the equation of state cancels-out and we are left with the following expression: 
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Where: 
Nre Reynolds' number (dimensionless) 
D pipe diameter (inches) (millimeters) 
g Gas specific gravity (dimensionless) 
Pb Base Pressure (PSIA)  (Kilopascals) 
Q Gas flow rate (standard ft3/day) (standard m3/day) 
Tb Base Temperature (°R) (°K) 
µ fluid viscosity (lbf-sec/ft2) (pascal-sec) 
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This is a better way to view the Reynolds’ number in a gas industry context since it points out that the 
Reynolds’ number is essentially proportional to the flow rate. 
 
The other parameter in the friction factor correlation is pipe roughness.  Friction factor may be correlated 
as a function of the Reynolds' Number and the relative pipe roughness (absolute roughness whatever that 
means divided by inside diameter).  This function is usually presented in the familiar Moody Diagram. 
 

 
 
To understand it, the Moody diagram may be broken down into four zones: Laminar, Transition, Partially 
turbulent, Fully turbulent. 
 
The Laminar zone is the part on the extreme left.  In this zone of extremely low flow rate the fluid flows 
strictly in one direction and the friction factor shows a sharp dependency on flow rate as defined by the 
Hagen-Poiseuille equation: 
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The Fully Turbulent zone is the part on the extreme right where the lines flatten-out.  In this zone of 
extremely high flow rate the fluid flows laterally within the pipe in complete turbulence as well as in the 
primary direction and the friction factor shows no dependency on flow rate.  Note: the ultimate friction 
factor is only a function of roughness and an ideally smooth pipe never makes it to this zone.  Here the 
friction factor is given by the rough pipe law of Nikuradse: 
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The Partially Turbulent zone is the part in the middle where the curves exist.  In this zone of moderately 
high flow rate the fluid flows laterally within the pipe as well as in the primary direction although some 
laminar boundary layer outside the zone of roughness still exists.  Starting in the left side of this region, 
flow is governed by the smooth pipe law of von Karman and Prandtl: 
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How the friction factor varies across this region from the smooth pipe law to the rough pipe law is not 
completely agreed-upon.  Some feel that the straight horizontal lines of the rough pipe law should be 
extended to the smooth pipe law forming a corner at the intersection.  Others feel that nature abhors 
corners and the Colebrook-White equation, which is nothing more than a combination of the two, is the 
proper method: 
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This is shown in the following diagram: 
 

Moody Diagram - Colebrook-White
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Unfortunately the published data are inconclusive so that either method may be considered valid.  Recent 
work by GERG (Groupe European de Recherches Gazieres) has proposed a new flow equation that 
includes an additional parameter “n”.  For details please refer to the Gersten et. al. paper in the 
bibliography.  “n” is essentially a shape factor that places the friction factor between these two limits (n=1 
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approximates Colebrook-White while n=10 approximates the sharp intersection).  Several observations are 
important: 

1. The Colebrook-White equation always predicts a higher friction factor; hence it is the more 
conservative. 

2. The maximum difference in friction factor is about 17% which translates to a 8.5% difference 
in flow. 

3. This maximum difference occurs at fairly low Reynolds’ numbers associated with low 
pressure drop and lessens with increasing pressure drop where it is more important. 

4. There is significant scatter to the data. 
 

While this work is exciting, it is unclear how adding one more factor that is even more physically remote 
than the roughness term will help clarify the vary murky world of system calibration. 
 
These equations point out  the other reason for stating earlier that roughness alone is not a sufficient 
calibration parameter: roughness only affects half of the equation. Note that the smooth pipe law does not 
include an effect for roughness.  This means that as flow rate decreases, roughness enters in less and less, 
and not at all if using the sharp intersection technique. 

 
The Critical zone is where there are no lines, hence no function.  In this zone of relatively low flow 
between the Laminar and Partially Turbulent zones no one knows what is happening.  This is not due to 
lack of effort in trying to explain it.  The fact is that the upper end of laminar flow is unstable and in this 
region multiple behaviors are observed. 
 
The connection of these zones works pretty much as follows.  As fluid starts flowing from rest, the friction 
factor decreases at a fairly fast rate.  During this time the fluid is in the laminar flow regime in which there 
is no motion at the wall, the velocity follows a parabolic distribution to the center of the pipe, and there is 
no non-axial flow. At some point, usually assumed to be at an Nre greater than 2000, the laminar flow 
begins to break up in the center of the pipe and the friction factor sharply and discontinuously increases.  
Precisely where this happens cannot be determined.  Nothing fully predictable happens until an Nre of at 
least 3250 is reached, at which point a partially turbulent regime may be assumed to be established and the 
friction factor is again decreasing with flow rate in a regular manner according to the smooth pipe law.  
As flow further increases, the turbulent core increases in diameter at the expense of the annular laminar 
outer layer.  At some point the inherent roughness of the pipe limits further drop in friction factor.  As 
stated previously, how the friction factor approaches its limit is not completely clear. 
 
The mathematical representation of the above has presented serious problems to modelers from the 
beginning.  The most common approach has been to use either the familiar Colebrook-White equation or a 
combination of the smooth pipe and rough pipe laws which accurately represent the partial and fully 
turbulent regions, use the Hagen - Poiseuille relationship for laminar flow, and connect the end of laminar 
flow, assumed at an Nre of 2000, and the beginning of the smooth pipe law, assumed at an Nre of 3250 
with a straight line.  This is without question the best that can be done.  Its only questionable area is that it 
has reduced the ambiguity of the Critical zone to a representative equation, but that operation is essential 
for modeling. 
 
A performance issue does arise however.  The fact that neither the Colebrook - White equation nor the 
smooth pipe law are explicit in the partially turbulent zone (f appears on both sides of the equation) 
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requires an iterative method for computation.  Since the function is very well behaved and predictor-
corrector techniques work very well, this only means that the computing requirements increase slightly.  
Alternative methods have been developed to provide an explicit, hence faster performing, method.  An 
excellent comprehensive discussion of the available equations may be found in the Gregory and Fogarasi 
paper.  Note that these equations are only defined for  the partially and fully turbulent zones.  Critical flow 
is still a problem where some appropriate modifications must be made.  As an example, the equation of 
Chen, which is the most precise, is presented here: 
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The critical zone presents another more serious numeric problem.  First it must be stated that normal pipes 
through which any significant amount of fluid is flowing and which have any measurable headlosses will 
have Nre  much greater than 3250.  Still, very low flow pipes do occur in both liquid and gas systems.  
Since the friction factor can over double very quickly and go in the “wrong’ direction in the Nre range of 
2150-3250, gradient methods for solving a network using this equation simply may not converge to a 
unique solution. 
 
One solution to this problem is to cut-off the laminar zone at the point where f drops to its value at the 
beginning of the partially turbulent zone and use that value as a constant for all points in between.  This 
will make the fundamental pipe element inherently stable and introduce a maximum friction factor error of 
45% at an Nre  of 2300, which translates to a 20% error in flow, but so what?  There is no flow or 
pressure drop in the first place!  This “error” disappears completely outside the Nre  range of 1400-3250 
and should introduce no discernable change in simulation results for gas systems. 
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III. The “Practical” Equations 
 
The fundamental flow equation as described above are universally accepted as the full and complete 
statement of how fluid flow works.  Why then are there other equations in some use to describe this 
phenomenon?  To understand the reasons for this we must review some history.  Gas lines date back to 
England in the early 19th century and engineers have needed to determine their capacity ever since.  It is 
difficult for many to recall the time as recently as the 1960’s when there were no personal computers or 
even desk-top calculators that could do much more than add or subtract.  Pocket calculators with 
extended mathematical functions? Forget it!  As a personal note, I participated in the first computing class 
offered by Carnegie Institute of Technology in 1961.  Slide rules and mental arithmetic were the orders of 
the day!  In that environment an implicit relationship such as Colebrook-White, which was well-known 
then, was impractical and some simplification was essential.  Specialized slide rules and nomographs were 
the order of the day for manually solving gas networks within a Hardy-Cross framework. 
 
In the following discussions I will adopt the way of looking-at things established in the Hyman, Stoner, 
Karnitz paper since it provides the best common ground for comparison.  Although the equations may 
appear to be very different, any real equation may be equated to the fundamental equation and the result 
solved for the friction factor.  In this process many of the common factors cancel and the friction factor 
relationship is much simpler.  The friction factor equation may then be superimposed on the Moody 
diagram to view the comparison, remembering that any difference in f affects flow as vf 
 
One starting point for simplification is to recall that originally gas was distributed in low-pressure systems 
measured in inches of water column.  Under these conditions the flow can be considered non-
compressible and the fundamental equation may be reduced by factoring the  (P1

2 - P2
2) term into        

(P1 - P2)(P1 + P2) and assuming an appropriate average pressure.  The equation then becomes: 
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That may not look like much but it’s a help.  In 1851 a Dr. Pole submitted one of the first flow equations to 
the natural gas industry.  His equation is: 
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Where: 
D Pipe diameter (inches) 
G Gas specific gravity (dimensionless) 
L Pipe length (yards) 
P1 Inlet pressure (“H20) 
P2 Outlet pressure (“H20) 
Q Flow rate (standard cubic feet/hour)  

 
The equivalent friction factor for this is: 
 

   f = .0291 
 

Not bad for 1851!  Note that .0291 is just about what one would expect for low pressure pipe under 
moderately low flow conditions. 
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Constant friction factors are certainly not the most realistic.  At the very least one would expect the 
friction factor to vary with the pipe diameter.  Probably the oldest equation still in current use is the 
Spitzglass equation, first published in 1912, which comes in two flavors: 
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The equivalent friction factor for this is: 
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Moody Diagram - Spitzglass
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This equation is a minor improvement in that it allows the friction factor to vary with pipe size.  Note 
however that the friction factor decreases with increasing pipe size, which is what one would expect for a 
constant roughness, but only to a diameter of about 10.95 inches, then it starts increasing!  This behavior 
obviously is counter to what should happen although the range over which it may be observed, .0187 - 
.0246, is not too broad. 
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Turning to more transmission-like conditions, the Weymouth equation is another diameter varying friction 
equation, also dating from 1912, as follows: 
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The equivalent friction factor for this is: 
 

  
 

 

Moody Diagram - Weymouth
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Note that the friction factor decreases consistently with increasing pipe size, and it does so in a range of 
.008 - .02 that is more appropriate to high flow situations.  This was one of the earlier transmission 
equations that has survived to this day.  Proper tuning of efficiencies can make it work well, particularly in 
a design mode. 
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The next improvement comes in the form of equations that show a friction factor that varies with 
Reynolds’ Number and hence flow, but do so in an explicit form.  The first of these is the Panhandle A 
equation: 

.5394

aa
.8538

c
2

2
2

12.6182

1.0788

b

b

ZTLG
HPP

eD
P
T

435.87Q 




 −−






=   (English) 

 
.5394

aa
.8538

c
2

2
2

12.6182

1.0788

b

b

ZTLG
HPP

eD
P
T

.0045965Q 




 −−






=  (Metric) 

 
The equivalent friction factor for this is: 
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Moody Diagram - Panhandle "A"
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Note that this line falls slightly below the Colebrook-White lines but that it can be moved up or down by 
using an appropriate efficiency.  Its slope is appropriate for relatively low Reynolds’ numbers. 
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After recognizing that flow rates were increasing beyond those used in developing the correlation, the 
Panhandle B equation was proposed: 
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The equivalent friction factor for this is: 
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Moody Diagram - Panhandle "B"
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Note that this line falls  below the Colebrook-White lines but that it can be moved up or down by using an 
appropriate effic iency.  Its slope is appropriate for higher Reynolds’ numbers than Panhandle “A”. 



 

Flow Formula Tutorial Page 13 of 13 8/3/01 
 

Not wanting to miss the boat, the Institute of Gas Technology also developed the IGT equation: 
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The equivalent friction factor for this is: 

 

( )2.1
re4.619N

4
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Moody Diagram - IGT
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All of these flow dependent equations share one common attribute: at low flow they are conservative and 
under-predict flow while at high flow overly optimistic and over-predict flow.  The main difference is 
where low and high flow are defined. 
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IV. Some Conclusions and Observations 
 
What does any of this mean?  If we accept the Moody diagram as the definitive statement of fluid flow, 
which is seems like nearly everyone does, then all of the practical equations are simply ways of arriving at 
wrong answers more quickly.  Of course, like the stopped clock that is right twice a day, they can give 
correct answers at some conditions particularly when tuned through proper use of efficiency, but why 
bother?  Modern computing technology has rendered the computational effort a non-issue and one cannot 
use any of these without carefully computing Reynolds’ Numbers and checking each pipe in each system 
to determine when the clock is right.  Their proper place is on the bookshelf with the slide rule! 
 
In the original 1975 paper, Sam Hyman went out of his way to state that “anyone continuing to use a fixed 
friction factor equation is not properly addressing the problem.”  I would rephrase that as ”anyone not 
using a Moody Diagram based friction factor equation is not properly addressing the problem.”  Probably 
the worst thing that can be done in to use either the Panhandle “A” or IGT equations blithely without 
checking Reynolds’ Numbers since the friction factor, and hence the associated pressure drops, can 
decrease without bound.  The most common question asked when converting from these equations is 
“why did my pressure drops increase so much?”  Since most distribution systems are rarely fully stressed 
(how often does design temperature really occur?), this is a potentially dangerous situation.  To me, the 
proper way to approach an empirical problem is to go to the theory to get the correct shape of the solution 
and then to go to the data to refine the answers.  This is precisely what the explicit friction factor 
relationships (Chen, Shacham, et. al) do, and what the empirical equations do not do. 
 
A few words about performance are in order since this ultimately becomes a balancing act between 
precision and performance.  To attempt to measure this I chose a fairly typical large integrated natural gas 
distribution system having somewhere in excess of 200,000 nodes and 500 regulators.  By choosing this 
kind of network, the friction factor computations will be exercised over a wide range of flows and 
pressures.  The following table shows the computational performance of this network relative to the most 
rigorous method, Darcy-Weisbach: 
 

Friction Method Relative Computational Time Savings 
Darcy-Weisbach 1.000 - 
Chen .913 9% 
Shacham .844 16% 
IGT .842 16% 

 

This indicates that there is not a wide range in performance over all, and virtually no difference between 
the Shacham equation, which has the correct shape, and the IGT, which does not.  Any differences 
become much less significant when we consider that this problem only requires nominally three minutes to 
solve on a fairly slow 333 megahertz Pentium II.  Clearly we are talking about a difference of a few 
seconds on a more typical machine, not a high price for peace-of-mind. 
 
This  leads to four sensible alternatives for approaching flow equations: 

1. Use the full Moody Diagram complete with the Hagen-Poiseuille equation for laminar flow,  
the Colebrook-White equation or the GERG approach for the rest of the flow and make some 
assumptions to traverse the critical zone.  This is the most defendable course of action. 
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2. Use the Colebrook-White equation or the GERG approach for the flow above Nre of 3250 
and do something smooth with f for Nre < 3250.  In gas flow, misstating f in this range of Nre 
makes no practical difference and does eliminate some potential convergence problems. 

3. Use the Chen or Shacham equation instead of Colebrook-White.  No significant difference in 
results should occur but performance will improve as shown above. 

4. Use the smooth pipe law of von Karman and Prandtl (or an explicit fit thereof) intersected 
with the rough pipe law of Nikuradse.  This will generally produce a somewhat lower friction 
factor than Colebrook-White.  Since the difference is not large and disappears at the 
extremes, this is a perfectly safe approach that may follow observed data more closely. 

 

I suspect that using the new equation proposed by GERG as a means of interpolating between Colebrook-
White and alternative 4 may be much more computationally intensive that any other, and I’m not sure 
what the basis for picking the degree of interpolation is.  This is a wonderful area for more research and it 
is refreshing to see reexamination of the earlier work. 
 
My personal choice for gas systems is alternative 3 with the misstated laminar region of alternative 2.  
This should give good conservative answers with the least amount of computational problems.  For liquid 
systems alternative 1 is preferred since the laminar region may be significant. 
 
Some further comments on flow equation migration are in order.  Ultimately pipeline efficiency should be 
used to calibrate a model to reality.  As stated earlier, roughness is really not much help and going much 
beyond the published tables is pointless.  It is good for getting a correct shape to the flow function, but not 
much else.  Matching reality involves three separate issues: 

1. Accounting for problems with the flow equation, 

2. Accounting for problems with the pipe such as bends, fittings, junk inside, and the like, and 

3. Accounting for operational problems such as the relationship between daily and instantaneous 
flow. 

 

The efficiencies used by many companies are a composite of these items.  When considering a change in 
flow equation it is important to attempt to separate issue 1 from the others.  It is reasonable to expect that 
the efficiency contributions from items 2 and 3 to remain constant whatever flow equation is used while 
issue 1 should change.  For example, an efficiency of 85% could comprise: 

1. A component because the friction factor is too low, and 

2. A component because someone left a rag in the pipe, and 

3. A component because the only flows we have are peak day and we need to design for peak 
hour. 

 
Since the calibration is an overall process, this may not be a simple matter.  What it means is that this is 
not a simple procedure of changing flow equations and using either the same efficiencies as before or 
ignoring efficiency and using 100%.  Efficiency must be reviewed on a more local basis. 
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Appendix A. Nomenclature and Units 
 

 
Symbol 

 
Definition English Unit Metric Unit Factor 

D Pipe diameter inches mm .03937 
e Pipe efficiency - - - 
f Darcy-Weisbach friction factor  - - - 
g Gas specific gravity  - - - 
Hc Elevation correction  PSIA2 Kpa2 .021034 
H1 Inlet elevation  feet meters 3.2808 
H2 Outlet elevation feet meters 3.2808 
L Pipe length miles Km .62137 
Nre Reynolds' number - - - 
Pav Average pressure  PSIA KPascals .14503 
Pb Pressure base  PSIA KPascals .14503 
P1 Inlet pressure PSIA KPascals .14503 
P2 Outlet pressure PSIA KPascals .14503 
Q Standard Flow rate ft3/day m3/day 35.315 
Ta Average temperature °R °K 1.8 
Tb Temperature base °R °K 1.8 
v fluid velocity ft/sec m/sec 3.2808 
Za compressibility factor - - - 
Z1 compressibility factor at inlet 

conditions 
- - - 

Z2 compressibility factor at outlet 
conditions  

- - - 

ε  Pipe roughness  inches mm .03937 
µ Gas viscosity  lbf-sec/ft2 pascal-sec .0020886 
ρ fluid density lb/ft3 Kg/m3 .062417 

 
 
The stated factor multiplies the Metric unit value to reach the English unit value.  For example: 
 

1 meter   X   3.2808  =  3.2808 feet 
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