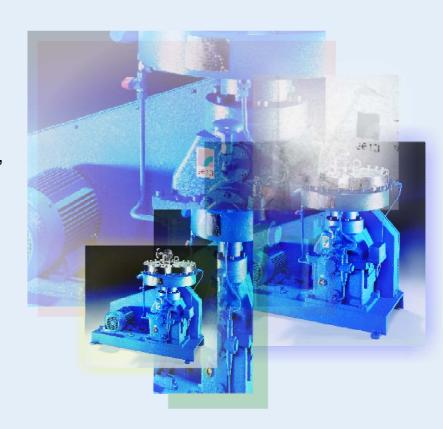


s e r a / hü / 01 Compressors 06/02

In General

Sera Dosing Feeding Compressing

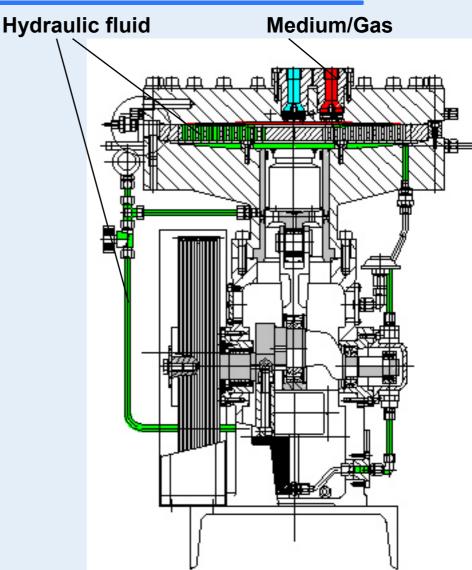

s e r a metal diaphragm compressors and compressor units are oscillating diaphragm compressors to compress gases of all kinds oil-free and free of solids.

Operative range

Gaseous media with inflammable, aggressive, inert, toxic or radioactive properties.

Advantages

- Absolutely oil-free
- Optimum compression ratios
- Maximum leak-proofness
- High-grade CrNi steels in the section in contact with gas
- Easy maintenance
- Careful treatment of gas while compressing due to good heat dissipation via the large contact surfaces
- Free of impurities


Construction

Main structural components of compressors and compressor units:

- Hydraulic- and lubrication circuit designed as closed system (compensating pump)
- Diaphragms made of 1.4310, 1.4571 or Monel
- Leak-proofness up to 10⁻⁶ mbar l s⁻¹
- Water cooling
- Driven by electric motor and antistatic Vbelt
- Integrated relief valve
- Suction and pressure valve executed as plate valves

Function Principle

Function principle:

- The stroke movement of the piston is transferred hydromechanically onto the set of diaphragms.
- The hydraulic part is separated from the gas by the set of diaphragms (this
 way the gas remains free from oil or solids).
- The gas is taken in by the suction valve, compressed as required and then exhausted by the pressure valve.
- An oil compensation pump replaces the small amount of oil which is pressed through cylinder wall and piston with each stroke.
- As the pump always conveys more oil than is lost by leakage the surplus amount of oil is fed back to the drive housing by a relief valve (adjustable with the help of a set screw).
- During the feedback the oil is additionally used to lubricate the piston.

Constructions

Single stage compressors

Multi-stage compressor units

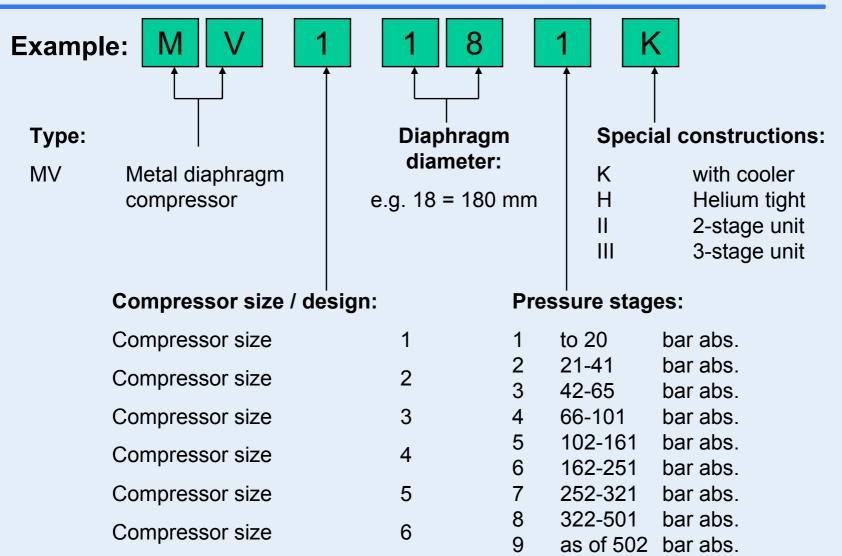
- 2 stage
- 3 stage
- Tandem units

Final pressure up to 500 bar

Conveying capacities depend on prepressure and gas features

Notice: Special designs for higher

pressures on request.



Type Code

Which Gases and Gas Mixtures can be Compressed?

Please find in the following a rough survey of the media which can be conveyed:

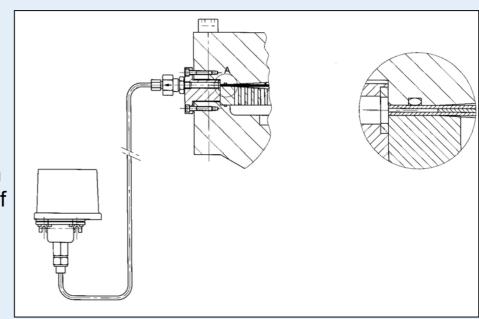
Gas	Chem. not.
Ammonia	NH ₃
Argon	Ar
Ethane	C ₂ H ₆
Ethylene	C ₂ H ₄
Boron trifluoride	BF ₃
Hydrogen bromide	HBr
Butane	C ₄ H ₁₀
Chlorine	Cl ₂
Hydrogen chloride	HCI
Natural gas	
Fluorine	F ₂
Freon / Frigen	
Helium	He
Carbon dioxide	CO ₂
Carbon monoxide	CO

Gas	Chem. not.
Hydrocarbon	НС
Krypton	Kr
Methane	CH₄
Methyl chloride	CH₃CI
Neon	Ne
Propane	C ₃ H ₈
Propylene	C ₃ H ₆
Oxygen	O_2
Sulphur dioxide	SO ₂
Sulphur hexafluoride	SF ₆
Hydrosulphide	H ₂ S
Nitrogen	N_2
Dinitrogen monoxide	N ₂ O
Vinyl chloride	C ₂ H ₃ CI
Hydrogen	H ₂

Further gases on request!

sera/hü/01	Compressors	06/02	7
------------	-------------	-------	---

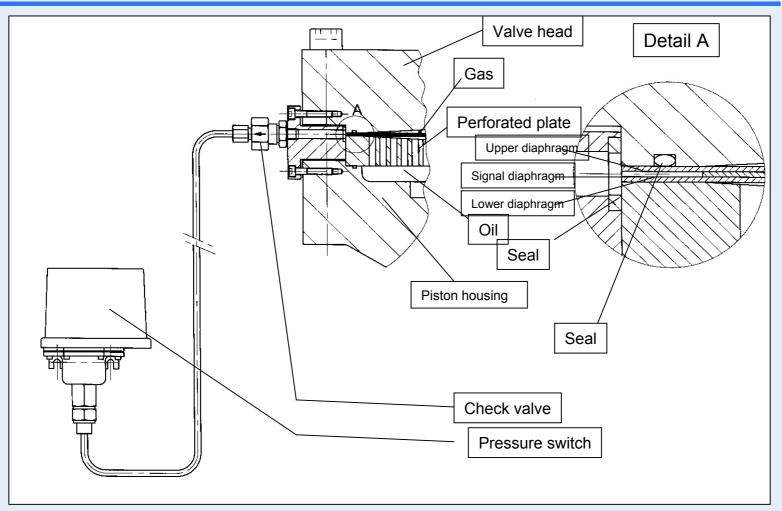
Diaphragm Rupture Early Warning System



The diaphragms in the sera – compressors are wearing parts. In spite of their long service-life a diaphragm might break during operation.

The diaphragm rupture early warning system indicates the rupture of a diaphragm in the initial phase and thus avoids a contamination of the gas.

Functioning


- The set of diaphragms consists of three single diaphragms
- The signal diaphragm is slotted.
- In case the upper or the lower diaphragm breaks a pressure is build up in the slot of the signal diaphragm
- This change in pressure is collected by the mounted-on pressure switch
- This signal can be used to shut down the compressor and as an alarm signal

Details of Diaphragm Rupture Early Warning System

Notice: All s e r a – metal diaphragm compressors are equipped with this monitoring system

Accessories / Mechanics (optional)

Mechanical accessories (optionally available):

- Oxygen-resistant hydraulic fluid for the compression of O₂
- Pulsation dampers for smoothing the gas flow
- Cooling aggregate for cooling the compressor
- Gas cooler to reduce the gas temperatures
- Special connections for the gas and hydraulic circuit

Further mechanical accessories on request.

Accessories / Mechanics (optional)

Mechanical accessories (optionally available):

- Suction filter for contaminated gases
- Vibration damper for absorbing the solid-borne sound
- Noise hood for absorbing the air-borne sound
- Heating of compressor for outdoor installation
- Accessories like safety valves, shut-off valves, manometers, thermometers

Further mechanical accessories on request.

Cooling Aggregate

Cooling aggregate for circulation cooling:

- More flexible application of a compressor with cooling aggregate (independent from place of installation)
- Application without cooling system on site
- Lower operating expenses in comparison to open cooling systems

Components of cooling aggregate:

- Coolant tank made of CrNi-steel
- Coolant pump
- Flow monitoring
- Air/water cooler with ventilation
- Fittings

12

Accessories / Process Measuring and Control Technology

Process measuring and control accessories (optional):

- Central control by relays or PLC-system
- Terminal box mounted to compressor or compressor unit
- Temperature monitoring (gas, cooling water and oil)
- Flow monitoring for cooling water
- Pressure measuring in gas area
- Pressure measuring in hydraulic area (oil)

Further process measuring and control accessories on request.

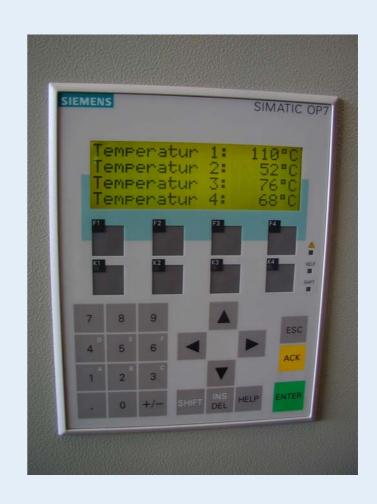
Process Measuring and Control Technology

Control:

- All important operation parameters can be monitored with the help of the control devices
- Possible malfunctions can be recognised at an early stage
- The safety of process is increased
- The control unit can be executed in relay or PLC-technology
- Operation of system and indication of all important operating parameters in plain text on an operator display (only with PLCexecution)

Process Measuring and Control Technology

Sera Dosing Feeding Compressing



Temperature monitoring

- All temperatures at the compressor or compressor unit can be monitored
- Process safety is enhanced
- The single temperature values measured are used to determine the limiting values
- If necessary the unit can be shut off automatically

Example:

Monitoring of temperatures at gas inlet and outlet, at compressor head (at both heads in case of a 2-stage compressor)

Process Measuring and Control Technology

sera Dosing Feeding Compressing

Pressure monitoring:

- All pressures at the compressor or compressor unit can be monitored (see on the right)
- Besides the oil pressure also the gas pressure at suction and pressure side can be measured
- Process safety is enhanced
- The single temperature values measured are used to determine the limiting values
- If necessary the unit is shut off automatically and a fault indication given

Fields of Application

Chemical and petrochemical industry:

- Air separation
- Reactor supply
- Hydrogen recycling and burnable gas processing
- Booster for the storing and blanketing of extremely dry nitrogen
- Polyethylene, polypropylene and further polymer processes
- Hydrogenating processes
- Fluoric gases (TFE, BF₃, SIF₄, HF, etc.)
- Corrosive, toxic, explosive gases (H₂S, CO, etc.)
- Oil drilling simulation

sera/hü/01

Fields of Application

Energy:

- Gas: biogas compression, natural gas storage
- Power supply: Cooling of turbine-type generators with helium or hydrogen
- Coal: gasification and methane enrichment
- Nuclear power: recycling and preparation of radioactive gases, research

Deep diving:

- Breathing gas-mixtures
- Diving simulators
- Pressurized cabins

Fields of Application

Industrial gases and special mixtures:

- Bottling
- Gas decanting
- Recycling of liquid gas vaporization
- All applications with a high demand as to the purity of the gas and absolute tightness

Metal working:

- Hot isostatic pressing
- Gas screening for surface treatment
- H₂ or He for metal hardening
- Laboratory tests
- Cathode depositing of particles

Fields of Application

Electronics:

- Noble gas lamps and tubes (neon, krypton, xenon)
- Very thin deposits in epitaxial reactors under high-purity nitrogen
- High pressure nitrogen injection in coaxial cables to enhance their properties
- All applications with high requirements as to gas purity and absolute tightness

20

Defence / Space travel:

- Leak test with high pressure helium
- Pneumatic tests with high pressure
- Test stands for rocket drives

Fields of Application

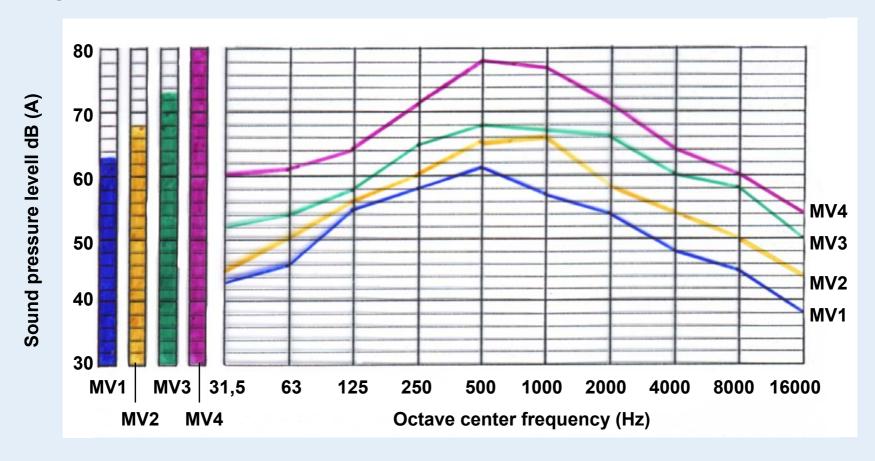
Various industries:

- Production of electrolysis systems
- Test stands (pneumatic high pressure tests, leak tests)
- Mobile oxygen generation systems for civil and military purposes
- CO₂-compression for beverages containing carbon dioxide, packaging, conservation and water treatment
- Dinitrogen monoxide bottling for anaesthesia
- Extraction in supercritical phase
- Helium cooling for nuclear magnetic resonance systems
- Hydrochloric gas compression or storage for cotton treatment

Advantages of sera - Metal Diaphragm Compressors

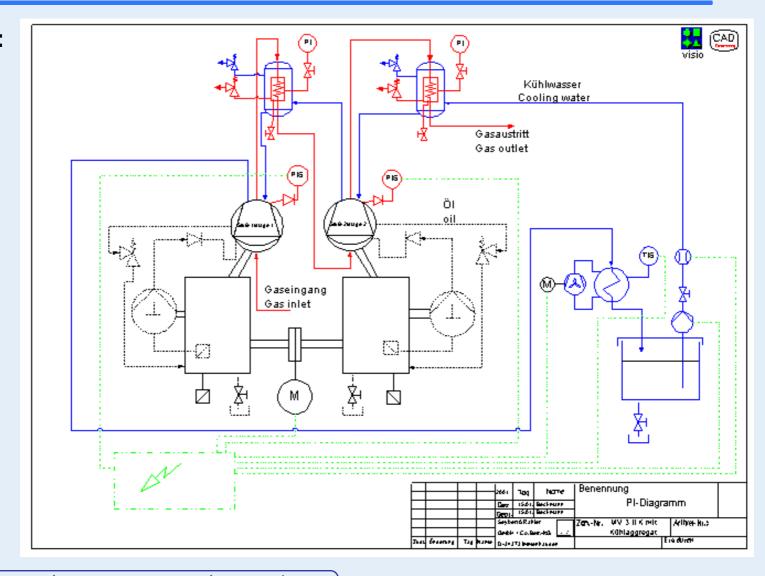
Advantages of sera-compressors

- Oil-free compression
- Starting against max. pressure (no bypass required)
- Applicable for corrosive, aggressive and toxic gases
- Solid-free/abrasion-resistant compression
- Leakage-free
- Few wear and tear parts (therefore insensitive to failures)
- Simple construction
- Simple handling / maintenance
- Good heat dissipation
- Low noisepollution (please refer to noise level measurement)
- High pressure
- Long service-life
- Compact construction
- Monitoring of all essential compressor functions


s e r a / hü / 01 Compressors 06/02 22

Noise Level Measurement

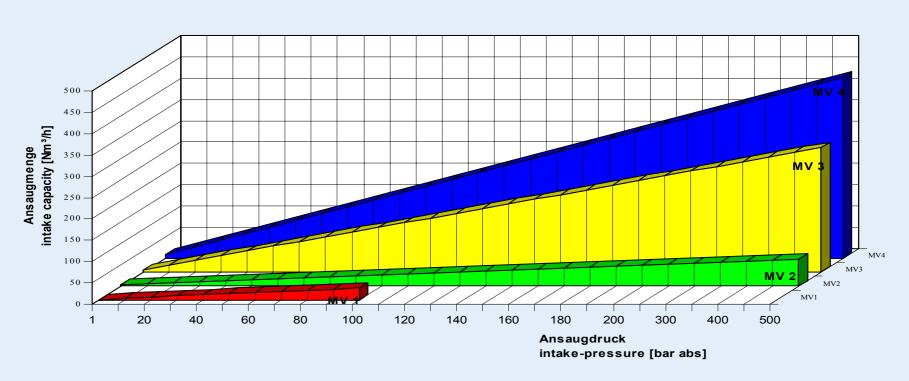
Diagram on noise level measurement of MV 1 – MV 4:


Notice: Diagram only for driving power up to max. 18,5 kW

P & I Flow Chart (2-Stage Compressor Unit)

Sera Dosing Feeding Compressing

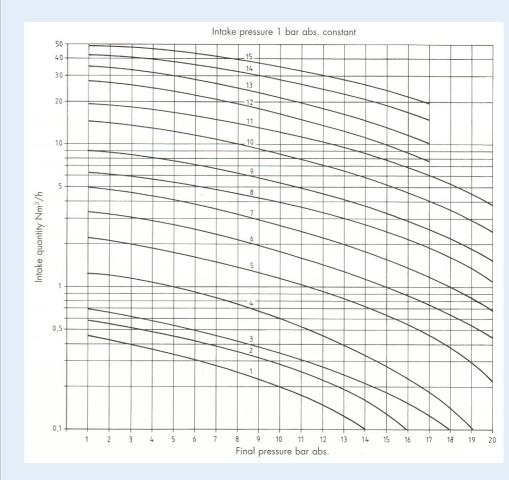
Example:



Selection Diagram

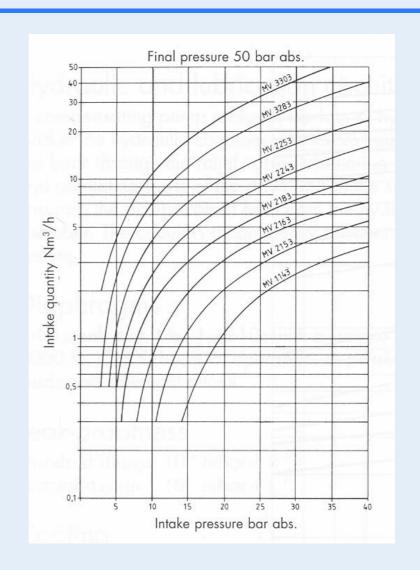
Sera Dosing Feeding Compressing

Leistungsschaubild (Kreisverdichter) performance diagram

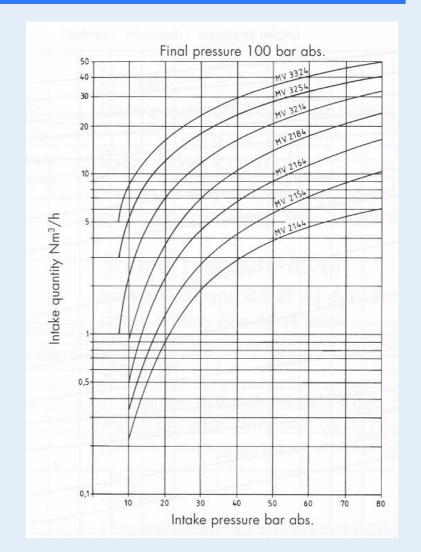


- The intake capacity doubles when a tandem unit is chosen
- This performance diagram gives only a rough survey
- The compressors are individually designed for each application

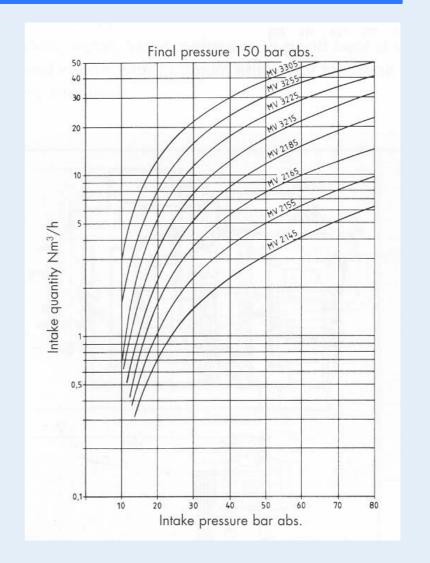
Performance Diagram: Low Pressure Compressor


Performance curve	Туре
1	MV 1181
2	MV 1201
3	MV 1211
4	MV 2231
5	MV 2321
6	MV 2351
7	MV 2381
8	MV 3401
9	MV 3451
10	MV 3501
11	MV 3531
12	MV 4651
13	MV 4711
14	MV 4731
15	MV 4751

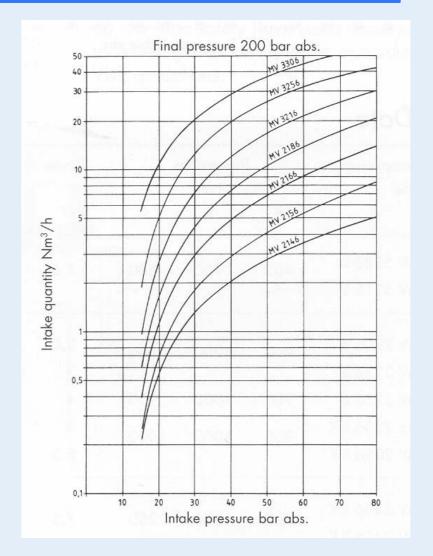
Performance Diagram: High Press. – Final Press. 50 bar abs.


Туре
MV 1143
MV 2153
MV 2163
MV 2183
MV 2243
MV 2253
MV 3283
MV 3303

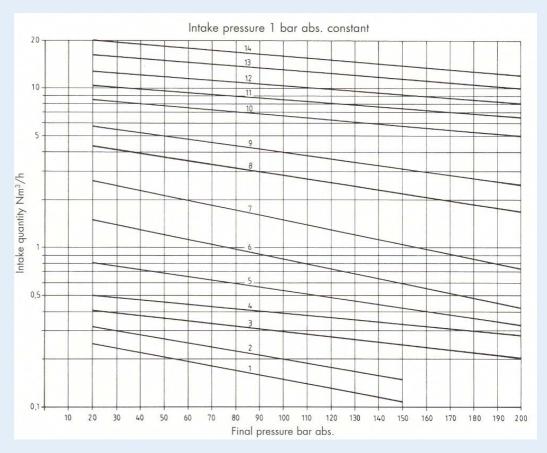
Performance Diagram: High Press. – Final Press. 100 bar abs


Туре
MV 2144
MV 2154
MV 2164
MV 2184
MV 3214
MV 3254
MV 3324

Performance Diagram: High Press. – Final Press. 150 bar abs


Туре
MV 2145
MV 2155
MV 2165
MV 2185
MV 3215
MV 3225
MV 3255
MV 3305

Performance Diagram: High Press. – Final Press. 200 bar abs


Туре
MV 2146
MV 2156
MV 2166
MV 2186
MV 3216
MV 3256
MV 3306

Performance Diagram: Compressor Units

Performance	Type
curve	
1	MV 5183 II
2	MV 5213 II
3	MV 2206 II
4	MV 2236 II
5	MV 2256 II
6	MV 2306 II K
7	MV 2356 II K
8	MV 3406 II K
9	MV 3456 II K
10	MV 3506 II K
11	MV 3536 II K
12	MV 3566 II K
13	MV 4656 II K
14	MV 4716 II K

List of Compressor Customers and Realized Projects

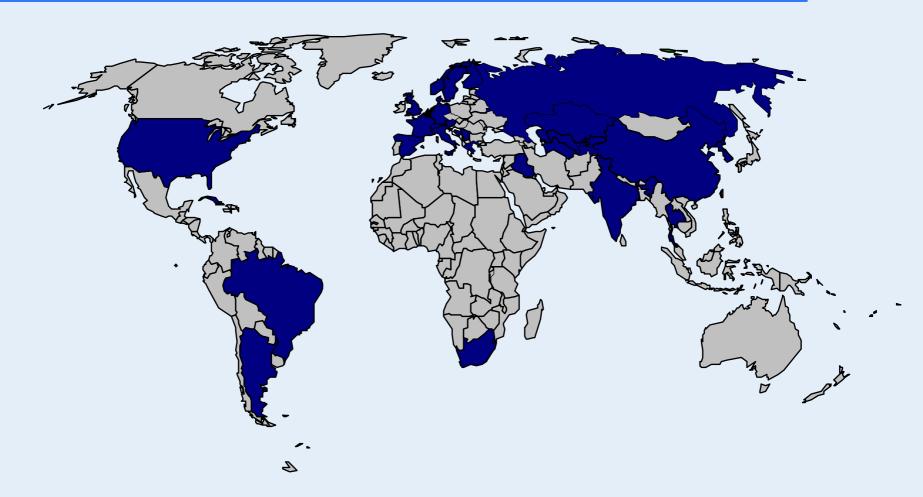
Sera
Dosing
Feeding
Compressing

s e r a / hü / 01 Compressors 06/02 32

An Insight into our List of Compressor Customers:

Sera Dosing Feeding Compressing

Dräger



s e r a / hü / 01 Compressors 06/02 33

Countries with Locations of sera - Compressors

Sera
Dosing
Feeding
Compressing

Countries with sera - compressors

Realized Projects

Sera
Dosing
Feeding
Compressing

Type MV 3501

Low pressure compressor

 p_A : 1 bar abs.

 p_E : 5 bar abs.

Q: 10 Nm³/h

Low pressure compressor with final pressure monitoring

 p_A : 1 bar abs.

 p_E : 10 bar abs.

Q: 16 Nm³/h

Realized Projects

Type MV 3226

High pressure compressor

65 bar abs. p_A:

141 bar abs. p_E:

Q: 27 Nm³/h

Realized Projects

Sera Dosing Feeding Compressing

Type MV 3458 III K

High pressure compressor unit (3-stages)

 p_A : 7 bar abs.

 p_E : 350 bar abs.

Q: 15 Nm³/h

Type MV 3296 II K

High pressure compressor unit (2-stages)

 p_A : 2...30 bar abs.

 p_E : 200 bar abs.

Q: 28 Nm³/h

