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Preface

This manual contains the solutions to all 292 problems contained in Gas Dynamics, Third
Edition.

As in the text example problems, spreadsheet computations have been used
extensively. This tool enables more accurate, organized solutions and greatly speeds the
solution process once the spreadsheet solver has been developed. To accomplish the
solution of the text examples and problems in this manual nearly 40 separate spreadsheet
programs were constructed. Some of these programs required only minutes to build, while
others were more challenging.

The authors have attempted to carefully explain and detail the problem solutions so
as to save time for the users. However, it should be recognized that some errors may have
inadvertently crept into the manual. Should a user find any defects, the authors would
appreciate hearing from the user so that revisions can be prepared. Please e-mail any
comments to tkeith@eng.utoledo.edu

JAMES E. A. JOHN
THEO G. KEITH, JR.
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Chapter One

BASIC EQUATIONS
OF COMPRESSIBLE FLOW

Problem 1. — Air is stored in a pressurized tank at a pressure of 120 kPa (gage) and a temperature
of 27°C. The tank volume is 1 m’. Atmospheric pressure is 101 kPa and the local acceleration
of gravity is 9.81 m/s®. (a) Determine the density and weight of the air in the tank, and (b)
determine the density and weight of the air if the tank was located on the Moon where the
acceleration of gravity is one sixth that on the Earth.

Pybs = Pgage + Paym =120+101=221kpa T
T =27+273=300°C | |
V=1m’ i i

g=9.8Im/s> R=0287kl/kg-K

P 221 S

D PR T 0200y - 0% 3

W =mg = pV¥g = (2.5668)(1)(9.81) = 25.180IN

k
b) Pmoon = Pearth = 2.5668—%
m

Wmoon

1
_ &moon Wearth = gWearth =4.1967N
€earth

Problem 2. — (a) Show that p/p has units of velocity squared. (b) Show that p/p has the same
units as h (kJ/kg). (c) Determine the units conversion factor that must be applied to kinetic
energy, V2/2, (m”/s”) in order to add this term to specific enthalpy h (kJ/kg).
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N k
i) (p~—%J
2
() e )y
N-s S
iy o Ty
kg 10007 1000 kg

i
e e

*. factor =

'ol*s

b)

'ol'-c

1000gc

Problem 3. — Air flows steadily through a circular jet ejector, refer to Figure 1.15. The primary
jet flows through a 10 cm diameter tube with a velocity of 20 m/s. The secondary flow is through
the annular region that surrounds the primary jet. The outer diameter of the annular duct is 30
cm and the velocity entering the annulus is 5 m/s. If the flows at both the inlet and exit are
uniform, determine the exit velocity. Assume the air speeds are small enough so that the flow
may be treated as an incompressible flow, i.e., one in which the density is constant.

m; =th, - .
—— ]

i =i, + g = pA,V, +pA,V, e -+
s

me =pAcVe @ @

LAV, AV = AV,

So
AVp+AV
v
c
Ae
A=A +A
T2 M2 T2 _ 2
Ap=7Dp  Ag=,Do— Dy Ac=7Dg
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2 2
ApVp +AVs DRV, +[p2-D2V,

Ve = =V, +—(V, -V,
== o +D2( y
2
_5+1l(20 5)=6.6667m/s
302

Problem 4. — A slow leak develops in a storage bottle and oxygen slowly leaks out. The volume
of the bottle is 0.1 m’ and the diameter of the hole is 0.1 mm. The initial pressure is 10 MPa and
the temperature is 20°C. The oxygen escapes through the hole according to the relation

th, = 0.04248 -2

JT

where p is the tank pressure and T is the tank temperature. The constant 0.04248 is based on the
gas constant and the ratio of specific heats of oxygen. The units are: pressure N/m?’, temperature
K, area m” and mass flow rate kg/s. Assuming that the temperature of the oxygen in the bottle
does not change with time, determine the time it takes to reduce the pressure to one half of its
initial value.

v=01m’

p; =10 MPa m(®)
=293K =T,

pp =5MPa

R = 83143 _ 259.8219L
32

kg -K

p
‘ . =0.04248-2 A

JT

From the continuity equation

dm
dt

_me
but
_pv
RT
SO
dm ¥V dp 0.04248 A,

d RTd& ¢ g "

Integrating we get,
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| P2 _ [0.04248RVTA |
Pi v

B v 1n P2
n_
(0.04248)A . RNT  py

- 0.1 oL

2 2
(0.04248)(Zj[o.lmmj (259.8219)4/293

m
1000 mm

=46,713.4076sec =12.9759 hrs

Problem 5. — A normal shock wave occurs in a nozzle in which air is steadily flowing. Because
the shock has a very small thickness, changes in flow variables across the shock may be assumed
to occur without change of cross-sectional area. The velocity just upstream of the shock is 500
/s, the static pressure is 50 kPa and the static temperature is 250 K. On the downstream side of
the shock the pressure is 137 kPa and the temperature is 343.3 K. Determine the velocity of the
air just downstream of the shock.

/ V; =500m/s V, =?
| p; =50kPa pp =137kPa
— T, =250K T, =3433K

% A=A,

From the continuity equation
m; =m,

So
P1A1V]I =p2As V)

RT T .
V2 = p_lvl — pl/—l\/l = ﬁ_zvl - (&j{ﬁj@o@) =250.5839m/s
P2 | ) /RT2 | ) Tl 137 250
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Problem 6. — A gas flows steadily in a 2.0 cm diameter circular tube with a uniform velocity of
1.0 cm/s and a density p,. At a cross section farther down the tube, the velocity distribution is
given by V = U,[1-( t/R)*], with r in centimeters. Find U,, assuming the gas density to be
Po[1+( t/R)’].

S

2
Vi=lem/s V,=U, 1—(8

VVVVVY
L,

L

| =

2
P1 =Po P2 =P, 1+(Ej

mj =m,

. R R b 2
m; :j p1VidA :j p1Vi2nrdr =p, ViR =nR“p,,
(6] (6]

2 2
. U, 1_r_2 2mrdr

, R R
1, =L szsz=LPo 1+R2 .

r

_ pOUoanzL1 (gz - gS)ig where & =

(1 1 2 -
:27'CPOUOR (E—EJZETCR pOUO

SO Vo :%cm/s

Problem 7. — For the rocket shown in Figure 1.6, determine the thrust. Assume that exit plane
pressure is equal to ambient pressure.

) ) . my +m my +m
T:(pe—patm)Ae+meVe=0+(mH+mo)[ H Oj:( H 0)
peVe peAe
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Problem 8. — Determine the force F required to push the flat plate of Figure P1.8 against the
round air jet with a velocity of 10 cm/s. The air jet velocity is 100 cm/s, with a jet diameter of 5.0
cm. Air density is 1.2 kg/m’.

Vi=100 == l——
s :
. x
V=-10m
Figure P1.8 s
=
! |
! |
| i F
:4_

<
l
=
m|g

-

To obtain steady state add + V to all velocities
F=mV
m =pAV = (1.2)(%}(0.5)2 (1+0.1)=0.002592 kg /s

F =(0.002592)(1.1)= 0.002851 N

Problem 9. — A jet engine (Figure P1.9) is traveling through the air with a forward velocity of
300 m/s. The exhaust gases leave the nozzle with an exit velocity of 800 m/s with respect to the
nozzle. If the mass flow rate through the engine is 10 kg/s, determine the jet engine thrust. Exit
plane static pressure is 80 kPa, inlet plane static pressure is 20 kPa, ambient pressure surrounding
the engine is 20 kPa, and the exit plane area is 4.0 m”.
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300 m/s 800 m/s
., -
Figure P1.9

T =(pe —Patm JAe +1(Ve = V;)=(80-20)4)+ (10)(800 —300) = 240 + 5 = 245kN

Problem 10. — A high-pressure oxygen cylinder, typically found in most welding shops,
accidentally is knocked over and the valve on top of the cylinder breaks off. This creates a hole
with a cross-sectional area of 6.5 x 10 m”. Prior to the accident, the internal pressure of the
oxygen is 14 MPa and the temperature is 27°C. Based on critical flow calculations, the velocity
of the oxygen exiting the cylinder is estimated to be 300 m/s, the exit pressure 7.4 MPa and the
exit temperature 250 K. How much thrust does the oxygen being expelled from the cylinder
generate? What percentage is due to the pressure difference? What percentage due to the exiting
momentum? Atmospheric pressure is 101 kPa. Also note that 0.2248 1bg=1 N.

SR o=

Figure P1.10

V, =300m/s Ae =6.5x10"4m?
pe =7.4MPa Patm = 101kPa =0.101 MPa
: p
T, =250k m=p.A.V, = R_T:Aeve
7.4x100
J m? —4

R =259.82—— = (6.5 x10 X300) =22.2kg/s

kg -k (259.82)(250)
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T= (pe —Patm )Ae +mV,

2
(7400-101)x 10 x 6.4x10™* N + (22.2)(300)(kg ' mj{l Ns }

g2 kg-m

= (4671.4+6664.6)N

=11,336.0N = 2,548.3Ibs

The thrust due to the pressure is 41% of total and that due to momentum 59%.

Problem 11.— Air enters a hand held hair dryer with a velocity of 3 m/s at a temperature of 20°C
and a pressure of 101 kPa. Internal resistance heaters warm the air and it exits through an area of
20 cm” with a velocity of 10 m/s at a temperature of 80°C. Assume that internal obstructions do
not appreciably affect the pressure between inlet and exit and that heat transfer to the

surroundings are negligible. Determine the power in kW needed to operate the hair dryer at
steady state.

| P2 (101)103) . . m? kg
=prA,Vy =| —2|(Ay)V, = 20 10)=0.019939-=2
m=pyAjVy (RTZJ( 2) 2 (287)(353)( /(100)2( ) S
kJ kJ
h, —hy =¢,(T, —=Ty)=1.005——(80 —20) = 60.3—
2 by =Ty =T;)=1.005, 5L (30-20) =603,
vi-Vi( 1 _(1043)10-3) _ ) ouss kT
2 1000 g, 2000 ' kg
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L \ V2
Q-W=m h2+72 ~th h1+71

=1.203205 K =1,203.2051W

kg

Problem 12. — Air is expanded isentropically in a horizontal nozzle from an initial pressure of
1.0 MPa, of a temperature of 800 K, to an exhaust pressure of 101 kPa. If the air enters the
nozzle with a velocity of 100 m/s, determine the air exhaust velocity. Assume the air behaves as
a perfect gas, with R = 0.287 kJ/kg - K and y = 1.4. Repeat for a vertical nozzle with exhaust
plane 2.0 m above the intake plane.

- IPa p, = 101kPa
T, = 800K
(a) Horizontal nozzle V, = 100m/s I
2 2
\Y% \% ©)
(¢] 1 2 2 2
2 2 ZYR
%) =\/V1 +2cp(T1 —T2) =\/Vl +m(T1 —Tz)
R = 287L
kg -k
1=l El
T (P27 :(ﬂjl-“ =0.5194
T, P 1000
T, =415.5K

V, = \/(100)2 + %(800 —415.5) = /10,000 + 772,460.5 = 884.568 m /s

(b) Vertical nozzle
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V2 V2
hl +71+g21 =h2 +72+g22

V, = \/VIZ +2LR1(T1 ~ Ty )+2g(z) —25) = /782,460.5 +(2)9.81)(2)
y—

=4/782,499.74 =884.590m/s

Problem 13. — Nitrogen is expanded isentropically in a nozzle from a pressure of 2000 kPa, at a
temperature of 1000 K, to a pressure of 101 kPa. If the velocity of the nitrogen entering the
nozzle is negligible, determine the exit nozzle area required for a nitrogen flow of 0.5 kg/s.
Assume the nitrogen to behave as a perfect gas with constant specific heats, mean molecular

mass of 28.0, and y = 1.4.

p1 = 2000kPa p>» = 101kPa
T, = 1000K .

— m = 0.5kg/s = p,A,V,
V| ~ small

@ A,=7?
@ V2:?

VZ V2
h,=h;+——=h, +—2
0 1 2 2 5

Vy =42(h —hy) = 2¢,(T; - T2)

11 04
T, =1, 2|7 =(1000)(ﬂj1'4 = 426.1K
P, 2000
R 83143 _ oo T
28 kg-K

V, = \/2LR1(T1 ~Ty) =/7R(T; = T5) = 4/(7)(296.9)1000 — 426.1) = 1092.2m /s
’Y J—

0y = P2 _ 101,000 :0.798k_g
RT, (296.9)426.1) m3

10
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Ay=—T 05 =0.0005734 m? =5.734 cm?
prVy  (0.798)1092.2)

Problem 14. — Air enters a compressor with a pressure of 100 kPa and a temperature 20°C; the
mass flow rate is 0.25 kg/s. Compressed air is discharged from the compressor at 800 kPa and
50°C. Inlet and exit pipe diameters are 4.0 cm. Determine the exit velocity of the air at the
compressor outlet and the compressor power required. Assume an adiabatic, steady, flow and
that the air behaves as a perfect gas with constant specific heats; ¢, = 1.005 kJ/kg - K and

R =0.287kJ/kg K.
©) p1 = 100kPa
T, =293K
m = 0.25 kg/s
d=4.cm ji V.V _o

@ p2 = 800KPa V,=?
T, =323K

Cp = 1.005ﬁ R = 0.287i

P kg kg -k
l’i’ll :ﬂlz :m:025kg/s

A=A, =2d? =Z(0.04)? =0.00126 m>
4 4

p1 10.0 kPa kg
PLZRT, ~ (0.287)(293) m3
P) 800 ke
P27RT, ~ (0.287)(323) m3
h 0.25 m
Vv, = - =16732
oA, (1.189).00126) s
yyo 025 _,.m

T poA,  (8.63).00126) s

11
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167.3+ 23.1)(23.1—1673)}

- (0.25){(1.005)(323 ~293)+ ( (2)1000)

=(0.25)30.15-13.73) = a1 4w
S

Problem 15. — Hot gases enter a jet engine turbine with a velocity of 50 m/s, a temperature of
1200 K, and a pressure of 600 kPa. The gases exit the turbine at a pressure of 250 kPa and a
velocity of 75 m/s. Assume isentropic steady flow and that the hot gases behave as a perfect gas
with constant specific heats (mean molecular mass 25, y = 1.37). Find the turbine power output
in kJ/(kg of mass flowing through the turbine).

V1 = 50m/s
T, = 1200K
p1 = 600kPa

W

me

—1@
p2 =250 kPa
V,=75m/s

_ 83143 _ 3326 J y=137 ¢, = R _ (137)332.6) — 1_2314i
25 ke K y-1 37 kg-K

R

v-1 0.37

T, = Tl(pij [ 1200[@j1'37 =9473K
Pl 600

12
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2 2

V-V
W=m(h1—h2)+ 1 > 2
2 2
Vi -V,

W = (1.2314)(1200 - 947.3) + [M] —311.18-1.563 = 309.6
2000 kg

Problem 16. — Hydrogen is stored in a tank at 1000 kPa and 30°C. A valve is opened, which
vents the hydrogen and allows the pressure in the tank to fall to 200 kPa. Assuming that the
hydrogen that remains in the tank has undergone an isentropic process, determine the amount of
hydrogen left in the tank. Assume hydrogen is a perfect gas with constant specific heats; the ratio
of specific heats is 1.4, and the gas constant is 4.124 kJ/kg - K. The tank volume is 2.0m".

p; =1000kPa T, =303K

v-1 0.4
py =200 kPa T, =T P2 | " =(303)(ﬂ]1'4 =191.3K
Pl 1000
v
my =227 = (200)2) =0.507 kg

RT, (4.124)191.3)

13
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Problem 17. — Methane enters a constant-diameter, 3 cm duct at a pressure of 200 kPa, a
temperature of 250 K, and a velocity of 20 m/s. At the duct exit, the velocity reaches 25 m/s. For
isothermal steady flow in the duct, determine the exit pressure, mass flow rate, and rate at which
heat is added to the methane. Assume methane behaves as a perfect gas; the ratio of specific
heats is 1.32 (constant) and the mean molecular mass is 16.0.

d=3
@ @ y=1.c?>nZl

. s : MW = 16
S Q .,
| T=constant__ !
p1 = 200kPa p2="?
T, =250K m=?
V] =20 m/s V2 =25m/s
Q=?

P1A1V] =p2A, V)

P1 Vv, = P2 v,
RT, RT,

p1Vi=p2 V2

Py =Dy Vi =(200)(§j=160l
2 25 m2

A= %(0.03)2 = 0.000707m>

_ 8314.3 _5196 J

16 kg-K

R

h=pAV] = (p—I)(Al WV = (200) (0'000707)(20) _0.0217658
RT, (519.6) 250 s

O] Y2VE (25-+20)5)
2

= (0.02176)( =2.448W

Problem 18. — Air is adiabatically compressed from a pressure of 300 kPa and a temperature of
27 C to a pressure of 600 kPa and a temperature of 327 C. Is this compression actually possible?

14
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p; =300kPa pp = 600 kPa
T, =27+273=300K T, =327+273=600K
S =81 =Cp lnT—z—Rlnp—2 =cpln 600 —RIn 000

T P1 300 300

= (cp - R)ln2 =cyIn2>0 .. possible

Problem 19. — Two streams of air mix in a constant-area mixing tube of a jet ejector. The
primary jet enters the tube with a speed of 600 m/s, a pressure of 200 kPa and a temperature of
400°C. The secondary stream enters with a velocity of 30 m/s, a pressure of 200 kPa and a
temperature of 100°C. The ratio of the area of the secondary flow to the primary jet is 5:1. The
air behaves as a perfect gas with constant specific heats, ¢, = 1.0045 kJ/kg: K. Using the iterative
numerical procedure described in Example 1.9 determine the velocity, pressure and temperature
of the air leaving the mixing tube.

g 1
o 5
v 1.4
R 287
Cp 1004.5
Primary Secondary
\Y 600.00 30.00
T 673 373
P 200,000 200,000
A 43,122.5078
B 263,528.7595
C 706,538.5693

n V. (m/s) P, (Pa) T, (K)
1 0.0000 101,000.0 293.1500
2 125.1620 244,722.8 695.5757
3 122.5671 245.112.7 695.8957
4 122.4284 245.133.6 695.9126
5 122.4210 245,134.7 695.9135
6 122.4206 245,134.7 695.9136
7 122.4206 245,134.7 695.9136
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Problem 20. — The flow exiting a jet ejector was determined by utilizing an iterative numerical
procedure. A more direct approach is possible however. Eliminate pressure P, between Eqgs.
(1.53) and (1.54). Solve for the temperature T. in the resulting expression, and equate it to Eq.
(1.55). This produces a quadratic equation for the velocity V.. Solve the quadratic to determine
Vi, for the same set of conditions given in Example 1.9.

From Eq. (1.53),
_ AT,
Ve

Pe

From Eq. (1.54),

A
Pe =B_EVe

Combine these to obtain

2
V B
Ter g =a Ve

Equation (1.55) can be written as

1 V62=C

2cpe Cpe

Te +

Eliminate T, to obtain the quadratic

aV2 —bV, +c=0

ol
R 2Cpe
where b:E
A
C
c=—
Cpe
v _bi\/b2—4ac
. e_—
2a
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Chapter Two

WAVE PROPAGATION
IN COMPRESSILBE MEDIA

Problem 1. — Using the expansion wave and control volume depicted in Figs. 2.8 and 2.9
along with the continuity and momentum equations, rederive Eq. (2.4).

moving wave moving wave
av___ ] PR e gy Trp-d s
«— ] voop-dp > At T t1op-dp > at
i » dV rest LY rest
Continuity equation
(p—dp)a+dV)A —paA =0
Expand, neglect products of derivatives and simplify to get
pdV —adp=0 (1)
Momentum equation
pA —(p—dp)A = paAl(a +dV)-a]
or
dp = padV (2)

Combining Egs. (1) and (2) gives
dp = azdp

Since the process is reversible and adiabatic, i.e., isentropic, this can be written as:
p S
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Problem 2. — (a) Derive an expression for kg, for a perfect gas, substitute the result into
Eq. (2.10), and thereby demonstrate Eq. (2.7); (b) Derive an expression for kr, for a
perfect gas, substitute the result into Eq. (2.11), and thereby demonstrate Eq. (2.7) and

finally; (c) Derive an expression for [, for a perfect gas, substitute your result into Eq.
(2.14), and thereby demonstrate Eq. (2.7).

1{op
kg =—|—
o kel2)

An isotropic process involving a perfect gas is described by P =cp”

d _ cp’
_p:ycpy 1=—Y§ _Yp

So,

b) kg =1(a—"j
T

So,

18
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a= o JYRT
pk

a:\/g:JyRT
P

Problem 3. — Use dimensional analysis to develop an expression for the speed of sound in
terms of the isentropic compressibility, the density and g.

a="f(ks,p.gc)
2~z ks~£ Pt o
T’ F’ 137 °° pr2
E = (ﬁ]a (Ejb (&jc _ F—a—ch+c L2a—3b+cT—2c
T [ F){?) (FT?
F:-a-c=0
M:b+c=0
L:2a-3b+c=1
T:-2c=1
Hence, c:l a:_l b:_l
2 2 2

So,
a= |8
Pk

Problem 4. — Using the data provided in Tables 2-1, 2-2 and 2-3, i.e., the density, and the
isentropic compressibility or the bulk modulus, calculate the velocity of sound at 20°C
and one atmosphere pressure in (a) helium, (b) turpentine, and (c) lead.

(a)  Helium: p=0.16k—%, K, =5919—

m GPa
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1 10°
a= = =1027.6m/s
pk, (0.16)(5,919)

ke o736t
3 GPa

m
9
Ao L 10 —1249.7m/s
ok, | (870)(0.736)

(¢) Lead: p =11,300k—§, B, =16.27GPa
m
9
a= B—S: w =1199.9m/s
o 11,300

Problem 5. — In Example Problem 2.3 the speed of sound of superheated steam was
determined by using a finite difference representation of the compressibility and steam
table data (Table 2-4). Using the same steam table data, determine the speed of sound of
superheated steam for the same pressure and temperature, i.e., at p = 500 kPa and T =
300°C. However, use the following finite differences to obtain two estimates for the
speed of sound:

(b) Turpentine: p =870

I S
[apj oll/v)
ap)r L ® I
a2= ! == ! =
(apj o(1/v)
g L P I
2 Y 2yAp

{a(l/v)} 1 1 1
op |p Vp+apT) v(p-4p.T) v(p+4p.T) v(p-Ap.T)
2Ap

From Example 2.3

3 3
v(p+Ap;T)= 0.43441\1{4— , v(p—ApT)= 0.65481\;[—, and Ap =100,000 Pa
g g
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2
.2 (2)(11.327)(1001000) 34521, 5m_2

— s
0.4344 0.6548

a=>5853m/s

5 1 2Ap

{G(I/V)} 1

op v(p+Ap,s) v(p—Ap,s)

From Example 2.3

M3 M3
v(p+ Ap,s) = 0.4544k—, v(p—Ap,s)= 0.6209k— and Ap =100,000 Pa
g g
2
a2 = (12)(100’00(1)) =338903.2°-

S

0.4544  0.6209

a=>5822m/s

Problem 6. — Equation (2.16) provides a convenient expression for calculating the speed
of sound in air: a = 20.054T , where T is the absolute temperature in degrees Kelvin.
Derive the following linear equation for the speed of sound in air:

a=ag+0.6t

where ay is the speed of sound in air at 0°C and t is °C.

To accomplish this make use of Eq. (2-16) and the expansion

(x+y)" =x"+ nxn_1y+ .....

a=yRT =[yR(273+1)]'/?

¢ 1/2 |t
=./YR(273)| 1+ — =a | l+——m+.....
TR ( )( 273j o( j
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a, =[YR(273) =20.05v273 =3312,
S

o

a 331
=" =0.6
(2)273) 546

a=331+0.6t

Problem 7. — Rather than measure the bulk modulus directly it may be easier to measure
the speed of sound as it propagates though a material and then use it to compute the bulk
modulus. For a Lucite plastic of density 1,200 kg/m’, the speed of sound is measured as
2,327 m/s. Determine the bulk modulus. What is the corresponding isentropic
compressibility?

Now p = 1,2ook—g3, a=23270
m S

Bs

a=_|—
p

2 2
so, PB,=pa’= (1,200§j(2,3272j [1 N-s ] = 6.498x10°Pa = 6.498 GPa
ms S kg-m

s GPa

Problem 8. — An object of diameter d (m) is rotated in air at a speed of N revolutions per
minute. Draw a plot of the rotational speed required for the velocity at the outer edge of
the object to just reach sonic velocity for a given diameter. Take the speed of sound of
the air to be 331m/s.

The highest speed will occur at R.

V= N( rey j(2nrad)R(m)lmm 4o 331E

min rev 60s S
=" np, 2
60 S
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The following is a log base 10 plot of N = 6,321.6/D.

s 54 \ | |
~ 52 Av Supersonic Region
50
B 48 \
5 : N\
& 46 AN
—_ N
g 4.4 ~_
g 40 T
S | Subsonic Region ——
~ 3.8 i
36 [ [ [ [ [ []

0.0 0.1 0.2 03 04 05 06 0.7 0.8 09 1.0

Diameter, m

Problem 9. — (a) Newton assumed that the sound wave process was isothermal rather
than isentropic. Determine the size of error made in computing the speed of sound by
making this assumption. (b) A flash of lightening occurs in the distance. 20 seconds later
the sound of thunder is heard. The temperature in the area is 23°C. How far away was
the lightening strike?

1 1 a k
(@) ag= /— ar = /— s Lo |5
pk pkr ag kp
a2 L hoo  fory=14 a8
ag Jy ag

(b) L =aAt=(344.86)20)=6,897.2m

Problem 10. — (a) The pressure increase across a compression pulse moving into still air
at 1 atmosphere pressure and 30°C is 100 Pa. Determine the velocity following the pulse.
(b) The velocity changes by 0.1 m/s across a pressure wave that moves into hydrogen gas
that is at rest at a pressure of 100 kPa and temperature 300K. Determine the pressure
behind the wave.

Use Eq (2.2) and write the expression in difference form as
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(a) AVzﬂ, Ap =100 Pa

pa
airr  p=—0b000 1.1615k—g3
(8314)(303) m
28.97

a =20.05v303 =349.0 m/s

Therefore, AV = 100 =0.247 m/s

(1.1615)349.0)

(b) Ap=paAV, AV =0.1 m/s

hydrogen: p= % = Sis(i(é)li = 0.0808k—g3
(j(soo) m
2.016

a= 1/(1.415(%](300) =1320.8 m/s

Therefore,  Ap = (0.0808)(1320.8)(0.1)=10.68 Pa

Problem 11. — (a) Helium at 35°C is flowing at a Mach number of 1.5. Find the velocity
and determine the local Mach angle. (b) Determine the velocity of air at 40°C to produce
a Mach angle of 38°

(a) helium: T =35°C =308K M =1.5

V =aM a=yRT = \/(1.667)@"3 é‘;j@os) =1,032.7 m/s

2

V =(1,032.7)1.5)=1,549.0 m/s

= sin_{lj =41.8°
1)

(b) air: T = 40°C =313K a=20.05v223.3 =299.6 m/s
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n= sin_l(ij
M
v

Mol
sin  a
Vo & 3546 e oms

sing  sin(38)

Problem 12. — (a) A jet plane is traveling at Mach 1.8 at an altitude of 10 km where the
temperature is 223.3K. Determine the speed of the plane. (b) Air at 320 K flows in a
supersonic wind tunnel over a 2-D wedge. From a photograph the Mach angle is
measured to be 45°. Determine the flow velocity, the local speed of sound and the Mach
number of the tunnel.

(a) M=18, T=2233K, a=20.054/223.3 =299.6 m/s

V =aM =(299.6)1.8) = 539.3m/s

(b) air: T=320K, pn=45°, a=20.05v320 =358.7m/s

ve 2 23987 070
sinp sm(45)
M:X: _1 =1.414
a sinp

Problem 13. — A supersonic aircraft, flying horizontally a distance H above the earth,
passes overhead. At later the sound wave from the aircraft is heard. In this time
increment, the plane has traveled a distance L. Show that the Mach number of the
aircraft can be computed from:

RCER IR

Hint: first show that the Mach angle p can be expressed as tan_l(l/ VM2 - 1) and then

connect the Mach angle, p, to the geometric parameters H and L.

. 1
m Slnu—ﬁ
]
N
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2
M2 -1 o M= (%) +1 but L = VAt

Problem 14. — Given speeds and temperatures, determine the corresponding Mach

numbers of the following (note: 1 mile = 5,280 ft = 1,609.3 m; 1 mi/hr = 1.6093 km/hr =
0.447 m/s):

(a) A cheetah running at top speed of 60 mi/hr; the local temperature is 40°C

(b) A Peregrine falcon in a dive at 217 mi/hr; local temperature of 25°C

(c) In June 1999 in Athens Greece, Maurice Greene became the world’s fastest human
by running 100 m in 9.79 s; the temperature was 21°C

(d) In June 1999, Alexander Popov became the world’s fastest swimmer by swimming
50 m in 21.64s; the temperature of the water was 20°C

(a) a=20.054313 =354.7m/s

v (60)™(0.447) ms
M=_—— hr mi/hr _ 076
a (354.7)m/s
(b) a =20.054/298 =346.1m/s
MoV (217)0.447) _ 0.28
a (346.1)
100 10.21 mi
=20.05+/294 =343.8m/ V=—1=102lm/s |=———=229—
©)a e 9.79 e ( 0.447 hrj
M = @ =0.03
343.8

(d) a = 1481 /s (from Table 2-2) V=—0 =23Im/s |=—22L 5170
21.64 0.447 hr

= 231 =0.00156
1,481
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Problem 15. — Given speeds and Mach numbers, assuming air is a perfect gas, determine
the corresponding local temperature (note: 1 mi/hr = 0.447 m/s) for the following:

(a) A Boeing 747-400 at a cruise speed of 910 km/hr; M = 0.85.

(b) Concorde at a cruise speed of 1,320 mi/hr; M = 2.0

(c) The fastest airplane, the Lockheed SR-71 Blackbird, flying at 2,200 mi/hr; M =
33

(d) The fastest boat, the Spirit of Australia, that averaged 317.6 mi/hr; M = 0.41

(e) The fastest car, the ThrustSSC, averaged 760.035 mi/hr; M = 0.97

@ v=220000m 5 eM  N_08s a=r o228 _ogy,m
3600s S M .85 S
2 2
T=[—2 | o[274) _ o0k = —s3°C
20.05 20.05
m A%
(b)  V=(1320)0.447) = 590.0 — M =20 a = =2950 m/s
S
2 2
T :( 2 j = (ﬁj =216.5K =—56.5°C
20.05 20.05
(3)  V=(2200)0447)=98342 M=33 a= % =298.0 m/s

S

2 2
=2 | —[2B9) 090k =—52.1°C
20.05 20.05

d)  V=(317.6)0447)=1420" M=041 a= % =346.3m/s

S

2 2
To[ 2 ) (3463} 595K = 25.20C
20.05 20.05

()  V=(760.035)0.447)=339.7m/s M=0.97 a= 3397

2 2
T:( a j :(wj —305.1K =32.1°C

=350.2m/s

20.05 20.05

27



FromGasDynamics,Third Edition, by Jame<. JohnandTheoG. Keith. ISBN 0-13-120668-0© 2006 PearsorEducationJnc.,
UpperSaddleRiver,NJ. All rightsreservedThis materialis protectedunderall copyrightlawsastheycurrentlyexist.No Portionof
this materialmaybereproducedin anyform or by anymeanswithout permissionin writing from the publisher.

Problem 16. — A baseball, which has a mass of 145 grams and a diameter of 3.66 cm,
when dropped from a very tall building reaches high speeds. If the building is tall
enough the speed will be controlled by the drag, as the baseball will reach terminal speed.
At this state

W =Fp

Where W (weight) = mg, g (acceleration of gravity) = 9.81 m/s’, Fp (drag force) =
CopairAV?/2, Cp (drag coefficient) = 0.5 and A (projected area of sphere) = nR”. Find the
terminal speed of the baseball and determine the corresponding Mach number if the
ambient air temperature is 23°C and the ambient air pressure is 101 kPa..

The density of the air is first determined:

p 101 3
i =——=——<——=1.19kg/m
Pair = R (0.287)(296) s
Now
CpAp,iV
W=mg=Fp = DPair
2
Hence,

vo | 2mg _ 2(0.145)9.81) C3376m /s
CppairA  \(0.5)1.19)0.0042)

a . J(1.4)287)296)

v 33.76

M= =0.098

Problem 17. — Derive the following equation for the speed of sound of a real gas from
Berthelot’s equation of state:

_ PpRT 3 ocp2
I-Bp T

. RT N RTpB2_20cp
I=Pp (-pp)= T
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Since T is treated as a constant, we may simply use information from Section 2.6 where

_ %
T Y[ngT

(@j __RT _ RTpp _
o)r 1-Bp (1-Bp)

20p

Now replace a with a/T. Thus, from Eq. (2.24)

az |y I_{T N RTpBZ_Zap
I=Pp (-pp)” T

Problem 18. — Using the speed of sound expression from the previous problem and the
following constants for nitrogen

R =296.82 (N'm)/(kg'K)
a=21,972.68 N-m*/kg’
B=0.001378 m’/kg
y=14

determine the speed of sound for the two cases described in Example 2.4.

Case (1) p 0.3 MPa and T = 300K

Iteration A f(v) df /dv  |v-f/(df/dv) p a
1 0.296823 |-4.9286E-05 [8.7530E-02| 0.297386 | 3.3690 | 353.7517
2 0.297386 | 1.8796E-07 |8.8198E-02| 0.297384 | 3.3626 | 353.7505
3 0.297384 | 2.6975E-12 |8.8195E-02| 0.297384 | 3.3627 | 353.7505

The result differs from the experimental value 353.47 m/s by 0.08%.

Case (2): p 30.0 MPa and T = 300K
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Iteration v f(v) df/dv  |v-fi@df/dv)]  p a
1 0.002968 |-8.2594E-09 |3.0708E-06| 0.005658 | 336.9016 | 604.3973
2 0.005658 | 5.2436E-08 |4.9296E-05| 0.004594 | 176.7430 | 426.1798
3 0.004594 | 1.3084E-08 |2.5826E-05| 0.004088 | 217.6647 | 457.9898
4 0.004088 | 2.2920E-09 |1.7035E-05| 0.003953 | 244.6426 | 483.2795
5 0.003953 | 1.4088E-10 |1.4959E-05| 0.003944 | 252.9695 | 491.8702
6 0.003944 | 6.6552E-13 |1.4817E-05| 0.003944 | 253.5736 | 492.5088
7 0.003944 | 1.5099E-17 |1.4817E-05| 0.003944 | 253.5765 | 492.5118

The result differs from the experimental value 483.18 m/s by 1.9%.

Problem 19. —Employ the finite difference method of Example 2.5 to determine the
speed of sound in nitrogen using the Redlich-Kwong equation of state

RTp a p2

T1-Bp (1+BpNT

p

where for nitrogen:
R =296.823 (N'-m)/(kg-K)
a,=1979.453 (N'‘m*VK )/(kg?)
B =0.0009557 m’/kg
y=14

Compute the speed at a pressure of 30.1 MPa and a temperature of 300 K. Experimental
values of the speed of sound of nitrogen may be found in Ref. (11). For the given
conditions the measured value is 483.730 m/s.

RT a,
V=B v(v+BNT
f(v):v3 _(Ej\g —(BZ n RTB  a,
p p

ar _,

2 _,(RT) (g2, RTB 2o
dV_V 2(p]V [B+p pﬁ}

Use Newton-Raphson to find v = 0.003279 m’/kg. Thus, p = 304.9917 kg/m’. Use Ap =
0.1 and compute

The Redlich-Kwong equation of state is: p =

. Rearrange to obtain:

_ap
pﬁ]V pJT

0
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p(p+Ap,T) = p(305.0917,300) = 30,112,951.62 Pa
p(p—Ap,T) = p(304.8917,300) = 30,087,052.10 Pa

a= /v% = 425791
p S

The result is 12% too small compared to the experimental value of 483.73m/s. However,

if a more appropriate value of y at this pressure and temperature is used, i.e., y = 1.704, a
=469.75m/s, which is in error by only 2.9%.
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Chapter Three

ISENTROPIC FLOW
OF A PERFECT GAS

Problem 1. — Air flows at Mach 0.25 through a circular duct with a diameter of 60 cm.
The stagnation pressure of the flow is 500 kPa; the stagnation temperature is 175°C.
Calculate the mass flow rate through the channel, assuming y = 1.4 and that the air
behaves as a perfect gas with constant specific heats.

p= [1]500 kPa = 0.9575(500) = 478.7500 kPa

P,

T= (%](175 +273)=0.9877(448) = 442.4896 K

o

P (478.75 kN /m?)
RT (0.287 kN-m/kg-K (442.4896 K)

p= =3.7698 kg/m’

A= %(0.6)2 =0.2827m’

V = M/yRT =0.25,/1.4(287 N - m/kg - K )(442.4896 K ) = 105.4136 m/s

m=pAV =112.3603 kg/s

Problem 2. — Helium flows at Mach 0.50 in a channel with cross-sectional area of 0.16
m®. The stagnation pressure of the flow is 1 MPa, and stagnation temperature is 1000 K.
Calculate the mass flow rate through the channel, with y = 5/3.

p= [i} MPa = 0.8186(1000kPa)=818.6 kPa

Po

T

(le(looo K)=0.9231(1000) = 923.1 K

(0]
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R =2.077kJ/kg-K

p 818.6 :
P SI86 4 70ke
PTRT ~ (2077)923.1) sim

V = M{/yRT =0.50,/(5/3)2077 N - m/kg - K }923.1K) = 893.7931 m/s

= pAV = (0.4270 kg/m’0.16 m* (893.7931 m/s) = 61.0639kg /s

Problem 3. — In Problem 2, the cross-sectional area is reduced to 0.12 m?. Calculate the

Mach number and flow velocity at the reduced area. What percent of further reduction in
area would be required to reach Mach 1 in the channel?

Ay As A .
Ao Ao A1 [%)1.3203 —0.9902
AY A A" lod6

So, Ay < A* for M; = 0.5. Therefore, M, =1 and M, will be reduced below 0.5. Since the
exit Mach number is 1, then A, = A*,

Ay A, (s

L= 2 = —j1=1.3333
A" A A 002

Using this area ratio we find: M, =0.4930. Now M,=1 so

T, = (? jTO =(0.7500)1000 = 750.0 K

o

V, =M, /yRT =1.0,/(5/3)(2077)750 =1611.2883 m/s

Problem 4. — (a) For small Mach numbers, determine an expression for the density ratio
p/Po. (b) Using Egs. (3.15) and (3.17), prove that

LG

(a)
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Problem 5. — An airflow at Mach 0.6 passes through a channel with a cross-sectional area
of 50 cm”. The static pressure in the airstream is 50 kPa; static temperature is 298 K.
(a) Calculate the mass flow rate through the channel.
(b) What percent of reduction in area would be necessary to increase the flow
Mach number to 0.8? to 1.0?
(c) What would happen if the area were reduced more than necessary to reach
Mach 1?

50 kPa
@ p=--=

=0.5846 kg/m’
RT (0.287 kN -m/kg-K)298 K

V =M,/yRT =0.64/1.4(287)298 =207.6177 m/s

= pAV = (0.5846)(0.0050 m* {207.6177 m/s) = 0.6069kg /s

(b) ForM =0.8,A/A* =1.0382
For M =0.6, A/A* =1.1882
1.1882-1.0382

(% reduction in area to reach Mach 0.8) = 1882 100 =12.62%
(% reduction in area to reach Mach 1.0) = %100 =15.84%

(c) Flow would be reduced.

Problem 6. — A converging nozzle with an exit area of 1.0 cm?® is supplied from an
oxygen reservoir in which the pressure is 500 kPa and the temperature is 1200 K.
Calculate the mass flow rate of oxygen for back pressures of 0, 100, 200, 300, and 400
kPa. Assume that y = 1.3.
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%
For y = 1.3, the critical pressure ratio is: P _0.5457. So, the back pressure is
P,

%
Dy = (p—Jpo =0.5457(500) = 272.8500kPa ,

(4]

Thus, the nozzle is choked for back-pressures below 272.85 kPa, i.e., for 0, 100, and 200
kPa. For these back pressures, p. = 272.8 kPa and

€

T. = G—jT =0.8696(1200 K ) = 1043.5200 K

[

V, =M_{[YRT, =4/1.3(259.8)1043.52 = 593.6653 m/s

_ P _ 272.85 kN/m’

- - =1.0064kg/m’
RT, (0.2598 kl/kg-K)(1043.52K)

Pe

m=p, AV, = (1.0064)1x10)593.6653) = 0.05975 kg/s

For p, = pe =300 kPa; thus, 2¢ = % = 0.6, from which we find M_ =0.9133

P,

€

T. = G—jT =0.8888(1200 K ) = 1066.5600 K

[}

V, = M_4[YRT, =0.9133,/1.3(259.8)1066.56 = 548.1474 m/s

. p —4_2 300 kg —4_2
= Lo |1x107*m?Y546.5 m/s) = X2 (1x107*m? )(548.1474 ny/
" [RT j( <107 m’f546.5 s O.2598(1066.56)m3( <107’ ms)

e

=0.05935 kg/s

For py = pe = 400 kPa, £ = 0.8, M_ =0.5935
D,

T, =0.9498(1200) =1139.7600 K
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. 400 .
= 107*)0.5935,/1.3(259.8)1139.76 |= 0.04974 kg /
" (0.2598x1139.76)( Jo.5935,1:3259.) ] g/s

Problem 7. — Compressed air is discharged through the converging nozzle as shown in
Figure P3.7. The tank pressure is 500 kPa, and local atmospheric pressure is 101 kPa.
The inlet area of the nozzle is 100 cmz; the exit area is 34 cm”. Find the force of the air on
the nozzle, assuming the air to behave as a perfect gas with constant y = 1.4. Take the
temperature in the tank to be 300 K.

—_ —
T,=300 K
Po =500 kPa

\ .
4

Assume the nozzle is choked. Accordingly, p. = 0.5283 (500 kPa) = 264.15 kPa. Since
this pressure exceeds the back pressure, the assumption is valid.

Figure P3.7

M.=1.0

T, = 0.8333(300) = 249.9900 K

V, =M_[YRT, =/1.4(287)249.99 =316.9321 m/s

At the nozzle inlet, % = 13%‘? =2.9412, fromwhichwefind M, =0.2038

% =0.9938, so T, =0.9938(300) = 298.1400 K

[}

Pi_0.9735, p. =0.9735(500) = 486.7500 kPa
P,

V, =0.2038,/1.4(287)298.14 = 70.5374 m/s
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264.15

= 2D (50034)316.9321)=3.9673kg/
e 0.287(249.99)( X ) &7

piAi + FT _pcAc _patm(Ai _Ac)= m(Vc _\/1)
FT = peAe _piAi + patm(Ai _Ae)+ Ih(ve _\/1)

Fy = (264.15 kN/m? |34 x10*m? )— (486.75 kN/m | 100 x 10 *m?)

+(101.0kN/m? 100 - 34)10~*
s (3.9673 kg/s)(316.9321-70.5374 m/s)
1000 N/kN

F. =0.8981-4.8675+0.6666 + 0.9775 = -2.3253 kN

The force of the fluid on the nozzle (equal but opposite) is 2.3253 kN to the right.

Problem 8. — A converging nozzle has an exit area of 56 cm. Nitrogen stored in a
reservoir is to be discharged through the nozzle to an ambient pressure of 100 kPa.
Determine the flow rate through the nozzle for reservoir pressures of 120 kPa, 140 kPa,
200 kPa, and 1 MPa. Assume isentropic nozzle flow. In each case, determine the increase
in mass flow to be gained by reducing the back pressure from 100 to 0 kPa. Reservoir
temperature is 298 K.

For Ny, y = 1.40. The nozzle is choked for

Pob _ 100

- - —189.2864 kPa
P " (p*/p,)  0.5283

Case 1. p, =120 kPa and p, = 100 kPa

T
Pe _100_ 8333 M, =0.5171, 5 =0949

po 120 o

T, =0.9492(298) = 282.8616 K

 Pe 100 kN /m?

= =1.1911 kg/m>
RT, (0.2968 kJ/kg -k)282.8616 K

Pe

Ve = Mg+/YRT, =0.5171,/1.4(296.8)282.8616 =177.2791 m/s
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m=p, AV, =(1.191 1)(56>< 10‘4)177.2791 = 1.1825kg/s

Case 2. p, = 140 kPa and p, = 100 kPa

Pe _100_ ) 7143, M, =0.7103, T, =0.9083(298)=270.6734K
p, 140
b, = — 100 ~ 12448 kg/m’

0.2968(270.6734)

Ve =0.7103,/1.4(296.8)270.6734 = 238.2103 m/s
= 1.2448(56 x1074 )238.2103 =1.6605 kg/s

Case 3. p, = 200 kPa and py, = 100 kPa

Since p, is above the critical reservoir pressure the nozzle is choked, therefore M. = 1.0

pe = 0.5283(200) = 105.6600 kPa
T, = 0.8333(298) = 248.3234 K

10566
Pe = 0.2968(248.3234)

=1.4336 kg/m>

V, =1.04/1.4(296.8)248.3234 = 321.2216 m/s

= (1 .4336)(56>< 1074 X321.2216) =2.5788 kg/s

Case 4. p, = 1 MPa = 1000 kPa and p, = 100 kPa

m =2.5788 10007 _ 12.8941kg/s
200

Case 5. p, =120 kPa and p, = 0 kPa

For Case 1, lowering back pressure to 0 kPa will change the flow and the nozzle will now
be choked. Therefore,

M. = 1.0,

V.=321.2216 m/s
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0. = 0.5283(120) 0.8602 ke/m>
0.2968(248.3234)

= (0.8602)(56>< 1074 X321.2216) =1.5473 kg/s

Case 6. p, = 140 kPa and p, = 0 kPa

The nozzle is choked, so M. =1

= %(l 5473)=1.8052 kg/s
Case 7.
= @(1.5473) =2.5788kg/s
120
Case 8.
th = %(1.5473) =12.8941kg/s

Problem 9. — Pressurized liquid water flows from a large reservoir through a converging
nozzle. Assuming isentropic nozzle flow with a negligible inlet velocity and a back
pressure of 101 kPa, calculate the reservoir pressure necessary to choke the nozzle.
Assume that the isothermal compressibility of water is constant at 5 x 107 (kPa)” and
equal to the isentropic compressibility. Exit density of the water is 1000 kg/m’.

2
J@ﬂ_:c
p 2
lop 1dp
kp #kg=———=—
pop pdp
vV
L d_§+_2_0
lep 2
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Vz =aj 2\/ 1 = 3 ! 1 =1414.2136 m/s
paks 1 (1000 kg/m>)5x1077 (kPa)

Pt P2

11 [ 14142136 m?
2 2

J(5x10_7)<Pa_1 =-0.0005m>/kg

L b 00005m’/ke

b, 1000 kg/m’

p, =2000.0 kg/m’

2 1 2

o

Py - D :Lgn(p—zj = : 1 1n(1000j =-1.3863x10° kPa
kt \p1) 5x1077(kpa)™ 12000

or p, =101+1.3863x10° =1.3864 x10° kPa

Problem 10. — Calculate the stagnation temperature in an airstream traveling at Mach 5
with a static temperature of 273 K (see Figure P3.10). An insulated flat plate is inserted
into this flow, aligned parallel with the flow direction, with a boundary layer building up
along the plate. Since the absolute velocity at the plate surface is zero, would you expect
the plate temperature to reach the free stream stagnation temperature? Explain.

M =5
e
Figure P3.10
T, = 273 =1637.7K
0.1667

No. In general the reduction to zero speed is not an adiabatic process. However, it could
be if viscous heating counteracts heat conduction back through the boundary layer.
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Problem 11. — A gas stored in a large reservoir is discharged through a converging
nozzle. For a constant back pressure, sketch a plot of mass flow rate versus reservoir
pressure. Repeat for a converging-diverging nozzle.

A A
m 0
M =1 at M=1at
nozzle exit nozzle
> throat -
Po pr Po P
Converging Nozzle C-D Nozzle

Problem 12. — A converging-diverging nozzle is designed to operate isentropically with
air at an exit Mach number of 1.75. For a constant chamber pressure and temperature of 5
MPa and 200°C, respectively, calculate the following:

(a) Maximum back pressure to choke nozzle
(b) Flow rate in kilograms per second for a back pressure of 101 kPa
(©) Flow rate for a back pressure of 1 MPa Nozzle exit area is 0.12 m’.
A
(a) ForM=1.75, — =1.3865
A k

For % —1.3865, M =0.4770, -2 =0.8558

Po

Maximum back pressure to choke nozzle = 5(0.8558) = 4.2790 MPa

(b) pv = 101 kPa, nozzle choked
_012m® _ 0.086549 m2
throat 1.3865 .

Pthroat = 5 MPa(0.5283) = 2.6415 MPa

Tihroat = (200 +273)0.8333 = 394.1509 K
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Vinroat = v/1.4(287)394.1509 = 397.9571 m/s

2641.5kPa
Pthroat = K
0.287 —(394.1509K )
kg-K

=23.3510 kg/m’

M = Pihroat A throat Vihroat = (23-3510)(0.08655)(397.9571) = 804.2829 kg/s

(c) h = 804.2829 kg/s

Problem 13. — A supersonic flow is allowed to expand indefinitely in a diverging
channel. Does the flow velocity approach a finite limit, or does it continue to increase
indefinitely? Assume a perfect gas with constant specific heats.

2
For adiabatic flow, cpTo =c,T+ VT However, T cannot be less than 0 K (second law)

So,

Vinax =4/2¢pTo and Vi, is finite

Problem 14. — A converging-diverging frictionless nozzle is used to accelerate an
airstream emanating from a large chamber. The nozzle has an exit area of 30 cm” and a
throat area of 15 cm”. If the ambient pressure surrounding the nozzle is 101 kPa and the
chamber temperature is 500 K, calculate the following:

(a) Minimum chamber pressure to choke the nozzle

(b) Mass flow rate for a chamber pressure of 400 kPa

(c) Mass flow rate for a chamber pressure of 200 kPa

A .

(a) texit 5

A throat

For 2 =20, M=03059, £ =09372

A Po
.. 101

Minimum chamber pressure to choke = 5 =107.7678 kPa

(b) Nozzle choked for p. = p, = 400 kPa

Pthroat = 0-5283(400) = 211.3200 kPa
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Tihroat = 0.8333(500) = 416.6500 K

211.32 kPa

kJ
0.287)———(416.65K
(0287), 7, 16.65%)

= pAV = (15 x10™*m? )\/1.4(287)(416.65)

~ (17672 ke/m? Ji5 %1074 m }409.1576 mis

=1.0846kg/s

(©) i =1.0846 222 | = 05423 kg
400

Problem 15. — Sketch p versus x for the case shown in Figure P3.15.

\_/

—> M>1 M>1 —

—.X

Figure P3.15

\

v

throat
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Problem 16. — Steam is to be expanded to Mach 2.0 in a converging-diverging nozzle
from an inlet velocity of 100 m/s. The inlet area is 50 cm?; inlet static temperature is 500
K. Assuming isentropic flow, determine the throat and exit areas required. Assume the
steam to behave as a perfect gas with constant y = 1.3.

M; = 199 =100 41826
J1.3(461.5)500  547.6997

A* =3.2669, A roat = Y 153050 cm?

A 3.2669

*

A
For M =2.0, i =-%-1.7732 so Ayit =27.1389 cm?
A Ay

Problem 17. — Write a computer program that will yield values of T/T,, p/po, and A/A*
for isentropic flow of a perfect gas with constant y = 1.27. Use Mach number increments
of 0.05 over the range M =0 to M = 2.0.

bH 1
p_y-1 T _ 1-b 1_(1]% i_[1+b(M2—l)]%
v+1" T, 14bM2-1) Po \To) = A* M
M T/T, P/pPo A/A*

0.00 | 1.00000 | 1.00000 | infinite
0.05  10.99966 | 0.99841 [11.76142
0.10 ] 0.99865 | 0.99367 | 5.90577
0.15 10.99697 | 0.98584 | 3.96515
0.20 1 0.99463 | 0.97499 | 3.00342
0.25 10.99163 | 0.96125 | 2.43340
0.30 ] 0.98800 | 0.94478 | 2.05940
0.35 ]0.98373 | 0.92575 | 1.79759
0.40 ] 0.97886 | 0.90437 | 1.60608
0.45 10.97339 | 0.88086 | 1.46164
0.50 ] 0.96735 | 0.85545 | 1.35034
0.55 10.96076 | 0.82839 | 1.26335
0.60 | 0.95365 | 0.79994 | 1.19481
0.65 ]0.94604 | 0.77035 | 1.14069
0.70 1 0.93795 | 0.73986 | 1.09813
0.75 10.92942 | 0.70873 | 1.06506
0.80 10.92047 | 0.67720 | 1.03995
0.85 091113 | 0.64547 | 1.02166
0.90 10.90143 | 0.61378 | 1.00931

44



From GasDynamics,Third Edition, by Jame<E. JohnandTheoG. Keith. ISBN 0-13-120668-0© 2006PearsorEducation|nc.,
UpperSaddleRiver,NJ. All rightsreservedThis materialis protectedunderall copyrightlawsastheycurrentlyexist. No Portionof
this materialmaybereproducedin anyform or by anymeanswithout permissiorin writing from the publisher.

0.95 ]0.89139 | 0.58230 | 1.00226
1.00 | 0.88106 | 0.55121 | 1.00000
1.05 ] 0.87045 | 0.52067 | 1.00215
1.10 | 0.85959 | 0.49081 | 1.00844
1.15 ]0.84851 | 0.46177 | 1.01864
1.20 | 0.83724 | 0.43362 | 1.03264
1.25 ] 0.82581 | 0.40646 | 1.05032
1.30 | 0.81423 | 0.38035 | 1.07166
1.35 ]0.80254 | 0.35534 | 1.09664
1.40 | 0.79076 | 0.33147 | 1.12530
1.45 10.77891 | 0.30875 | 1.15768
1.50 ] 0.76702 | 0.28718 | 1.19389
1.55 ] 0.75509 | 0.26678 | 1.23404
1.60 | 0.74316 | 0.24752 | 1.27826
1.65 ]0.73124 | 0.22939 | 1.32672
1.70 ] 0.71935 | 0.21236 | 1.37960
1.75 1 0.70750 | 0.19640 | 1.43712
1.80 ] 0.69570 | 0.18147 | 1.49952
1.85 ]0.68398 | 0.16753 | 1.56703
1.90 ] 0.67234 | 0.15453 | 1.63996
1.95 10.66079 | 0.14244 | 1.71860
2.00 | 0.64935 | 0.13121 | 1.80329

M TT, | plp, | A/A*

Problem 18. — A gas is known to have a molecular mass of 18, with ¢, = 2.0 kJ/kg - K.
The gas is expanded from negligible initial velocity through a converging-diverging
nozzle with an area ratio of 5.0. Assuming an isentropic expansion in the nozzle with
initial stagnation pressure and temperature 1 MPa and 1000 K, respectively, determine
the exit nozzle velocity.

~ 8314.3J/kg —mole-K
18 kg/kg —mole

= 461.9056 J/kg-K

c =R—y1=2.OkJ/kg-K

Py

Yo 2.0 — 43299
y—1 0.4619056
-~y =1.300

A

=50, M, =29723, T, =1000(0.4301)=430.1000 K

A
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V, =2.9723,/1.3(461.9056)430.1 =1510.5171 m/s

Problem 19. — A jet plane is flying at 10 km with a cabin pressure of 101 kPa and a cabin
temperature of 20°C. Suddenly a bullet is fired inside the cabin and pierces the fuselage;
the resultant hole is 2 cm in diameter. Assume that the temperature within the cabin
remains constant and that the flow through the hole behaves as that through a converging
nozzle with an exit diameter of 2.0 cm. Take the cabin volume to be 100 m’. Calculate
the time for the cabin pressure to decrease to one-half the initial value. At 10 km, p =
26.5 kPaand T=223.3 K.

Because the back pressure to cabin pressure is 26.5/101 = 0.2624, which is less than
0.5283 the critical pressure ratio at y = 1.4, the flow is choked and Me = 1. Hence, the
mass flow rate is

(0.5283)p, (E 0.022

287(0.8333)293)\ 4 j(wl.4(287)(0.8333)(293)

I = pAV = %AM,MRT -

= 7.4186x10 p,

In the cabin,

p.V =mRT

_dpc _RTdm__RT_

: = m
dt v odt v

de _ RT(; 418651077 )t
Pc v

Integration produces,

| Dofinal _ _E(7.4186x 10‘7)t

Pcinitial
In2= M(7.4186x10_7)t
100

t=1111.1096 s =0.3086 h
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Problem 20. — A rocket nozzle is designed to operate isentropically at 20 km with a
chamber pressure of 2.0 MPa and chamber temperature of 3000 K. If the products of
combustion are assumed to behave as a perfect gas with constant specific heats (y = 1.3
and MM = 20), determine the design thrust for a nozzle throat area of 0.25 m™.

At 20 km, p=15.53 kPa

Pp _ 533 _ 0.002765 = Pe.

pr 2000 Po

M, =4.3923, T, = (le T, =0.2568(3000) = 770.4000 K
c

[}
At design

Thrust = mV, +(pe )A.

V., = 4.3923\/1 .3(83213'3j770.4 =2834.1293 m/s

Now at the throat M = 1, so (p/po): = 0.5457 and (T/T,); = 0.8696.

2
(0.5457)2000 kN/m (0.25m 1) \/1 .3[%)(0.8696)(3000) m/s

Iht =
8.3143 kNm ), ¢606)(3000)K
20 kg-K

= (1 0063 kg/m’ Xo.zsmzh 187.3805 m/s)

= 298.7290 kg /s

Thrust = [(298.7290)(2834.1293)+(5530)(0.25)]/(1,000,000)
= 0.8466 +0.0014
= 0.8480MN

Problem 21. — A converging nozzle has a rectangular cross section of a constant width of
10 cm. For ease of manufacture, the sidewalls of the nozzle are straight, making an angle
of 10° with the horizontal, as shown in Figure P3.21. Determine and plot the variation of
M, T, and p with x, taking M; = 0.4, P,; = 200 kPa, and T,; = 350 K. Assume the
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working fluid to be air, which behaves as a perfect gas with constant specific heats
(y=1.4), and that the flow is isentropic.

10 cm

M, = 0.4 t0.em
P, = 200kPa
Cross section at 1
Tol =350K
1
10 cm
M,=1.0
h
X Cross section at 2
Figure P3.21
A2 = A*
2 Ay
A;=100cm?, M; =04, L =1.5901
A*
Ay =90 _6r89em2, so h=6289cm
1.5901
hy—h
X=———
2tan(10)

h(cm) | x(cm) A/A* M p (kPa) | T (K)
10.00 0 1.5901 0.400 179.1 339.2
9.50 1.418 1.5106 0.426 176.5 337.7
9.00 2.836 1.4311 0.457 173.3 336.0
8.50 4.253 1.3516 0.494 169.3 333.7
8.00 5.671 1.2721 0.539 164.1 330.8
7.50 7.089 1.1926 0.596 157.3 326.8
7.00 8.507 1.1131 0.676 147.3 320.7
6.50 9.925 1.0336 0.812 129.7 309.3
6.29 10.523 | 1.0000 1.000 105.7 291.7
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Problem 22. — A spherical tank contains compressed air at 500 kPa; the volume of the
tank is 20 m’. A 5-cm burst diaphragm in the side of the tank ruptures, causing air to
escape from the tank. Find the time required for the tank pressure to drop to 200 kPa.
Assume the temperature of the air in the tank remains constant at 280 K, the ambient
pressure is 101 kPa and that the airflow through the opening can be treated as isentropic
flow through a converging nozzle with a 5-cm exit diameter.

Py _ 101

For pank = 200 kPa, ; 5= 0.505 (< 0.5283 so choked)
(6]

pe =0.5283p,, T, =0.8333(280)=233.3240K

V, = JYRT, =4/1.4(287.0)233.3240 = 306.1855 m/s

= — 09283 P (50.052j306.1855
0.287(233.3240)\ 4

=0.004743 p, kg/s with p,inkPa
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In the tank,
PoV=mRT
dp, _RTdm __RT . RT

TR ——Vm:—7(0.004743p0)

dpo _ = 0'287(270)(0.004743)dt
Po

lnﬂ =-0.01838t
500

(o 04) _oeore
Z0.01838

Problem 23. — A converging-diverging nozzle has an area ratio of 3.3 to 1. The nozzle is
supplied from a tank containing a gas at 100 kPa and 270 K (see Figure P3.23).
Determine the maximum mass flow possible through the nozzle and the range of back
pressures over which the mass flow can be attained assuming the gas is (a) helium (y =
1.67, R =2.077 kJ/kg-K) and (b) hydrogen (y = 1.4, R =4.124 kJ/kg'K).

—

T,=270 K
A hroat — 60 sz
po = 100 kPa J J

-,

T

Figure P3.23

A
(a) Helium: y =1.67, —< =33

A*
M, =0.1739, 3.1494

Maximum py to choke nozzle: at M. = 0.1739, (iJ =0.9752
Po /.

Maximum py to choke nozzle = 97.52 kPa

Nozzle choked for py, <97.52 kPa
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. _ DPthroat /
Myyax = AMthroat yRTthroat

R throat

_ (0.4867)100
2.077(0.7491)270

(60>< 10—4)(Wl.67(2077)(0.7491)270

m . = 0.5822 kg/s

Ae
(b) Hydrogen: y =1.40, Yl 33
M, =0.1787, [ij =0.9780
Po /.
Nozzle choked for all py, <97.8 kPa

I (0.5283)100
M 4,124(0.8333)270

(60 x1074 )(1)\/1 4(4124)0.8333)270

=0.3894 kg/s

Problem 24. — Superheated steam is stored in a large tank at 6 MPa and 800°C. The
steam is exhausted isentropically through a converging-diverging nozzle. Determine the
velocity of the steam flow when the steam starts to condense, assuming the steam to
behave as a perfect gas with y = 1.3.

Solution Using Steam Table Data

At 6 MPa, 800°C: s; =7.6554kJ/kg-K

hy =u; +p1vy

3641250 (6000)(0.08159)£
kg kg
=4130.7 kl/kg

Steam will just condense for s, = s, = s
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At 45 kPa, Sg = 7.6307; at 40 kPa, Sg = 7.6709

Interpolation gives

py = 42kPa, T, =77°C, hy = 2638.8-

kg

V, =4/2(h; —hy) =4/2(4130.7 - 2638.8)1000 = 1727 m/s
Solution Assuming Steam is a Perfect Gas

P _ 92 =0.007, M, =3.7794, T,=273+600=873K

p, 6000

T, =873 (0.3182) =277.7886 K

V, =3.7794,/1.3(461.5)277.7886 =1542.8994 m/s

Because the second answer assumes that the steam is a perfect gas with constant specific
heats, the first answer is more accurate.

Problem 25. — Air is stored in a tank 0.037661m’ in volume at an initial pressure of
5,760.6 kPa and a temperature of 321.4K. The gas is discharged through a converging
nozzle with an exit area of 3.167x10” m?. For a back-pressure of 101 kPa, assuming a
spatially lumped polytropic process in the tank, i.e., pv" = constant, and isentropic flow in
the nozzle, i.e., pv’ = constant, compare predicted tank pressures to the measured values
contained the following table. Try various values of the polytropic exponent, n, from 1.0
(isothermal) to 1.4 (isentropic). Perform only a Stage I analysis, i.e., the nozzle is

choked.
t‘;::’ 00| 1.0[2030/|40|50]60]70]90][11.0]/130/15.0](17.0/19.0
Do/pay | 000|0-717/0.551/0.44810.358/0.281/0.24110.199)0.142|0.104/0.078 0.059|0.044/0.033
0 0

Now from the continuity equation

dm

E =—M, = —PA. Ve

For polytropic expansion within the tank

52



From GasDynamics,Third Edition, by Jame<E. JohnandTheoG. Keith. ISBN 0-13-120668-0© 2006PearsorEducation|nc.,
UpperSaddleRiver,NJ. All rightsreservedThis materialis protectedunderall copyrightlawsastheycurrentlyexist. No Portionof
this materialmaybereproducedin anyform or by anymeanswithout permissiorin writing from the publisher.

Po _ Po1.
Pg Pgl

So

And for isentropic expansion in the nozzle
Po _ Pe

Py PY
So

_ y/(y=1) y/(y=1)
p—°=(1+yTlng :(v_ﬂj

Pe 2
So,
y+1 y/(1-v)
Pe = pO(T)
Therefore,
1 1
+1\1—y n
Pe :pol(y j v(p_oj
2 Poi
Now,

1'he = peAeVe = peAeae = peAeW,Y% = Ae YPePe
e

y 1 1

1\201=7) 1\ 2(1=v) 2n
el s

2 Poi

53



From GasDynamics,Third Edition, by Jame<E. JohnandTheoG. Keith. ISBN 0-13-120668-0© 2006PearsorEducation|nc.,
UpperSaddleRiver,NJ. All rightsreservedThis materialis protectedunderall copyrightlawsastheycurrentlyexist. No Portionof
this materialmaybereproducedin anyform or by anymeanswithout permissiorin writing from the publisher.

Using a, = \/ypol/ po1 the mass flow rate at the exit can be written as

v+ LS|

- o 5o

l’i’le :Aeaol Pol y+1 2(1 Y) ! np02n
V2\ 2 Pol
Pol °

Now the time rate of change of the mass within the tank is given by

(i-n)
d_m_vdpo_ Po1V a dpo

¢ dt np!/" Po "4t
(¢]

Equating this to the exiting flow rate gives

v (1-n) d v+l . 1 oan
Pol n Po . Pol Y+1j2(l—y)( J2n n
pO :_me :_Aeaol _— — RN po
npi)/ln dt le 2 Pol
or
I-n
n I-n) (n+l 1-3n y+1
Po” dpo _ ( n j (211) dpo _ on dPo _ —DAeAr (y+1)2(1-y) 1/n-1/2-1/2n
~Po "t Po B pol
n+l o dt dt dt v 2
p02n
v+l 1-n
_ —NAcay) ('Y"‘ljZ(l—y)pzn
A/ 2 ol
Integration yields, (note: I=3n +1= lz—_n)
n
l-n 1-n v+l 1-n

o on _(n-—1 Agag |(v+1 2(1-y) _on
ps" —pg" —( 5 j( v j( 5 pi"t

Rearrangement brings

54



From GasDynamics,Third Edition, by Jame<E. JohnandTheoG. Keith. ISBN 0-13-120668-0© 2006PearsorEducation|nc.,
UpperSaddleRiver,NJ. All rightsreservedThis materialis protectedunderall copyrightlawsastheycurrentlyexist. No Portionof
this materialmaybereproducedin anyform or by anymeanswithout permissiorin writing from the publisher.

2n
y+1 1-n

Po _ n n—1) Acag | v+1 Z(I_Y)t
2 v 2
Pol

Note this is not valid for n =1, the isothermal case which must be treated separately. For
n=1

y+1

Po

y+1

le(V_HJZ(l—Y)p

d d
dm v Po =\v,pol Po = —th, =-Aay
dt dt Pol dt Pol

(o)

2

Canceling, separating variables, integrating and rearranging yields,

y+1
_Aedol (Yﬂjz(l—y)t
Po _, v (2
Pol
A spreadsheet program was written and run for various n. A table of the results is as
follows
n= 1.0 1.1 1.2 1.3 14
t Po/Poi | Po/Po1 Po/Por Po/Pot Po/Poi__ |Po/Po1 (eXp)

0.0 1.0000 | 1.0000 1.0000 1.0000 1.0000 1.000
1.0 0.8396 | 0.8257 | 0.8122 0.7990 0.7862 0.717
2.0 0.7049 | 0.6830 | 0.6620 0.6421 0.6230 0.551
3.0 0.5918 | 0.5658 | 0.5415 0.5187 0.4974 0.448
4.0 0.4969 | 0.4695 0.4443 0.4212 0.3999 0.358
5.0 0.4172 | 0.3902 | 0.3658 0.3437 0.3237 0.281
6.0 0.3503 | 0.3247 | 0.3021 0.2818 0.2636 0.241
7.0 0.2941 | 0.2707 | 0.2502 0.2321 0.2159 0.199
9.0 0.2073 | 0.1890 | 0.1731 0.1594 0.1473 0.142
11.0 0.1461 | 0.1327 | 0.1211 0.1112 0.1025 0.104
13.0 0.1030 | 0.0937 | 0.0856 0.0787 0.0726 0.078
15.0 0.0726 | 0.0665 0.0611 0.0564 0.0522 0.059
17.0 0.0512 | 0.0474 | 0.0440 0.0410 0.0382 0.044
19.0 0.0361 | 0.0340 | 0.0320 0.0301 0.0283 0.033
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Chapter Four

STATIONARY NORMAL
SHOCK WAVES

Problem 1. — A helium flow with a velocity of 2500 m/s and static temperature of 300 K
undergoes a normal shock. Determine the helium velocity and the static and stagnation
temperatures after the wave. Assume the helium to behave as a perfect gas with constant
y=15/3 and R =2077 J/kgK.

2500 2500 _
J(5/3)(2077)300 1766.4219

M, = 4153

From the normal shock relations

T

T—2 =1.2646, T, =300(1.2646)=379.3800 K
1

From the isentropic relations

T
—L —0.7140, Ty, =T, :% = 420.1681K

ol
From the normal shock relations

%
P2_ M1 17162, v, = 127510602

p1 V2

=1456.7067 m/s

Problem 2. — A normal shock occurs at the inlet to a supersonic diffuser, as shown in
Figure P4.2. A./A; is equal to 3.0. Find M, p., and the loss in stagnation pressure (po; —
Poe)- Repeat for a shock at the exit. Assume y=1.4.
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/ @
w2 O[O - ©
p- =10 kPa p- = 10 kPa

\

Figure P4.2
Shock at inlet:
%
M, =M, =2.5, Po2 = 4990 = A—l*, PL _0.05853
Po1 Aj Po1
Ae _Ae_[Ac |l ALl Ay (3.0)(2.6367)(0.4990) = 3.9471
Ae A A ) AL LA,
M. = 0.1486

Pe _ 9847, Po2 _ 4990,
Po2 Po1

10 _170.8526 kpa, Poa = 0.4990(170.8526) = 85.2554 kPa
0.05853

Po1 =

Pe =22 p_, =0.9847(85.2554) = 83.9510 kPa
Po2

Poi - Dog = pol[l = pﬂj =170.8526(1 - 0.4990) = 85.5972 kPa

ol
Shock at exit:
A3, A_ye367, Do 3(2.6367)=17.9101
Ai Al * Al *
M, =36649, M, =0.4451
p,=P2P1 Pol,, (15.5038)(0.01040)( ! le = 27.5482 kPa
P1 Por Pi 0.05853
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Po2

ol

pm-—pob::pm(l— J==1708526@——01847)=1392961kPa

Problem 3. — Sketch p versus x for the three cases shown in Figure P4.3. Assume
isentropic flow except for flow across the normal shocks.

M<1 M>1 M=>1 M<1
3 X » X > X
P P, P4

Problem 4. — Air expands from a storage tank through a converging-diverging nozzle
(see Figure P4.4). Under certain conditions it is found that a normal shock exists in the
diverging section of the nozzle at an area equal to twice the throat area, with the exit area
of the nozzle equal to four times the throat area. Assuming isentropic flow except for
shock waves, that the air behaves as a perfect gas with constant y = 1.4, and that the
storage tank pressure and temperature are 200 kPa and 300 K, determine the following:

(a) A* for flow from inlet to shock

(b) A* for flow from shock to exit

(c) Mach number at nozzle exit plane

(d) Stagnation pressure at nozzle exit plane

(e) Exit plane static pressure

(f) Exit plane velocity
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— —
To =300 K
Po = 200 kPa Athroat =50 sz

F4 Acxit = 4 Athroat

Ashock = 2 Athroat

Figure P4.4
(a) 50 cm?
A*
(b)  Forshock, M, =2.20,202 - 2L _ ¢ 6281
pOl A2
* * 50 2
Aghock to exit = A2 = 06281 =79.6052 cm
© D200 55004 M, -02383
AL 79.6052

(d)  Poe = pol(pon =200(0.6281)=125.6200 kPa

ol

o€

(€  p.= poe(&] =125.62(0.9613)=120.3548 kPa

® T.= T{%) =300(0.9888) = 296.6400 K

o

V, =0.2383,/1.4(287)296.64 = 82.2704 m/s

Problem 5. — A supersonic flow at Mach 3.0 and y = 1.4 is to be slowed down via a
normal shock in a diverging channel. For the conditions shown in Figure P4.5, find p,/p;
and pe/pi.
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C Ex
Inlet T /@ -
[e M. = 0.4

M;=3.0 g 0)[0) I

Ai=

\

T A =24

Figure P4.5

From the isentropic Mach number-area relation at the inlet and exit Mach numbers, we

have
A A A
—-=4.2346, —==1.5901, and from the given information — =0.50
A; A, Ae
Hence,
A _ALAA =( 1 j(o.so)(1.5901)=0.1878=1”&:1”&2
A, Aj AL A, 4.2346 Poi Pol

Now using this ratio of stagnation pressures across the shock, we can find the Mach
number on the upstream side of the shock, i.e., M, and in turn, determine the pressure
ratio across the shock: M; = 3.6455

P2 _153378
P1

Pe _ Pe Poe Poi _ (0.8956)0.1 878)(;j = 6.1790
b; Poe Poi Pi 0.02722

Problem 6. — A body is reentering the earth's atmosphere at a Mach number of 20. In
front of the body is a shock wave, as shown in Figure P4. 7. Opposite the nose of the
body, the shock can be seen to be normal to the flow direction. Determine the stagnation
pressure and temperature to which the nose is subjected. Assume that the air behaves as a
perfect gas (neglect dissociation) with constant y = 1.4. The ambient pressure and
temperature are equal to 1.0 kPa and 220 K.
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Figure P4.6
Ml2 +il
M3 = "= =0.1447, M, =0.3804
y_Vle -1
2
P2 % = 466.5000, p, =466.5000 kPa
b 1+vM;
T 1+ Y2_1M12
=2 —=787219, T,=173188125K
Ti 1+YTM%

Poy =22 p, :( 1 j466.5 =515.4867 kPa

P, 0.90497
T,, 1

T,, =—22T, = 17318.8125=17,819.5416 K
T, 0.9719

Problem 7. — Determine the back pressure necessary for a normal shock to appear at the
exit of a converging-diverging nozzle, as shown in Figure P4.7. Assume y=1.4.
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pe=1.0 MPa v

Po

T, =800 K

AeXit — 20

A throat

Figure P4.7

From the given area ratio, we use the Newton-Raphson method to determine the
supersonic Mach number on the upstream side of the shock. Then we may use the
isentropic and shock relations to determine the pressure ratios that enable us to compute
the back pressure:

M, =2.1972, PL = 09393, P2 _5.4656
Po1 P1

p, =P Pe P2 Py (1)1)5.4656)0.09393)1.0 = 0.51338 MPa = 513.38 kPa
Pe P2 P1 Pol

Problem 8. — A normal shock is found to occur in the diverging portion of a converging-
diverging nozzle at an area equal to 1.1 times the throat area. If the nozzle has a ratio of
exit area to throat area of 2.2, determine the percent of decrease in nozzle exit velocity
due to the presence of the shock (compared with the exit velocity of a perfectly expanded
isentropic supersonic nozzle flow). Assume the flow is expanded from negligible
velocity, that the stagnation temperature of the flow is the same for both cases, and that
the working fluid is steam, which behaves as a perfect gas with constant y = 1.3.

With no shock,

From the given area ratio and because the flow is choked: A/A; = AJ/A* = 2.2, we can
determine the exit Mach number using the Newton-Raphson method and find that
Me = 2.2201, and therefore, the static to total temperature ratio is 0.5749. Hence,

V, = M yRT, =2.2201,/yRT,(0.5749)

With shock,
% = ii =1.1, sousing Newton - Raphson we find M; =1.3598
1 1
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Po2 _ AL _ ¢ 9662

Po1 AZ
Ac _AcACAL () o)1Y0.9662) = 2.1256
Ay A Al A (22)1)0.9662) =2

From this area ratio we are able to extract the exit Mach number again using the
Newton-Raphson method, therefore, the static to total temperature ratio

M, =0.2888, % =0.9876

(0]

V. =0.2888,/yRT,(0.9876

2.2201,/yRT,(0.5749)—-0.2888,/yRT,.(0.9876
%decreaseinVe:IOO( i 0( ) Y 0( )j

2.2201,/yRT,(0.5749)

= 100(1 - 0'28;?] =82.9502% decrease

Problem 9. — A flow system consists of two converging-diverging nozzles in series (see
Figure P4.9a. If the area ratio (exit to throat) of each nozzle is 3.0 to 1, find the area ratio
As/A; necessary to produce sonic flow at the second throat, with a shock at A,. Assume
isentropic flow except for the normal shock. Find the percent of loss in stagnation
pressure for this flow. At another operating condition, a shock appears at Az (Figure
P4.9b). Find the percent of loss of stagnation pressure for this condition.

A1 A3

Aj Al
\_ N\
N\ 7\

) (

AZ A2

(a) (b)
Figure P4.9

(a) For the shock at A;, we may use the given area ratio to determine the Mach
number exiting the upstream nozzle and assuming that the Mach number does not
change in the constant area section we then have
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*

Pod Al _ 04462, 50 22 222411

* =

Poi1 Az A]

M, =2.6374,

Since sonic flow exists at both A; and As, we have, A = Ay =2.2411

*
1A

% loss in stagnation pressure = EMJI 00 = (1-0.4462)100 = 55.3800%
Po1

(b) For shock at A3, we have from part (a) A3/A; = A3/A* = 2.411. Using this area
ratio, we can find the Mach number on the upstream side of the shock, i.e.,

M, =2.3238

And so,

Po2 _ ) 5728
pol

or 42.72% loss of stagnation pressure

Problem 10. — For the system shown in Figure P4.10, M; = 2.0, A; =20 cmz, throat area =
15 cm?, shock area = 22 cm?, and exit area = 25 cm”. With the working fluid behaving as
a perfect gas with constant y = 1.3, find the following:

(a) Throat Mach number

(b) Exit Mach number

(c) Ratio of exit static pressure to static pressure at i

Figure P4.10

(a) Now at M; = 2.0 and for y = 1.3, we use the Mach number-area relation to find:
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ii =1.7732.
Al

Hence,

AL ALA) 15(

1.7732)=1.3299
Al A A] 20

From which we determine the result of part (a),

M, =1.6620
(b) As _A A— = 21 3299 =1.9505 ; therefore from the Newton-Raphson method
A1 At A1 15
we find:
M, =2.0995

At this Mach number we can compute the total pressure ratio across the shock

Po2 _ 6502 = 21
Poi A2

Thus,

Ae _ ﬁﬁA—i = f—z(l 3299)(0.6502) =1.4412

Ay ACA]A;
M.=0.4571
() From the various Mach numbers computed thus far, we may determine the

following pressure ratios and form the string,

Pe _ Pe Poc Po2 Pol _ (9 8749)(1)(0.6502)

( ! j:4.3591
Pa Poe Po2 Po1 Pi 05

Problem 11. — A jet plane uses a diverging passage as a diffuser (Figure P4.11). For a
flight Mach number of 1.8, determine the range of back pressures over which a normal
shock will appear in the diffuser. Ambient pressure and temperature are 25 kPa and
220 K. Find the mass flow range handled by the diffuser for the determined back pressure
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range. Also, the inlet and exit area are A; = 250 crnz, A. = 500 cm’. Assume isentropic
flow except for the shocks. Take y = 1.4.
A

Aj

M=1.8
p=25kPa

Pb

Figure P4.11

For a shock at the inlet, with M; = 1.8 and y = 1.4, from the normal shock relations

Po2 _ g g127= 21
Poi1 A2

A _ﬁﬁA_T_(SOO
Ay AP AfA;

—— ((1.4390)0.8127)=2.3390
e Ji4390)0:8127)

From this area ratio, we can determine the exit Mach number and therefore the exit static
to total pressure ratio

M, =0.2574, Pe —0.9550
Po2

The following pressure ratio string may be readily formed

p. = Pe Po2 Pal o (0.9550)(0.8127)—

(25)=111.5127 kPa
Po2 Po1 Pj 0.1740

Next the mass flow rate is computed

. _L _ 25 4
=LAV —0.287(220)(250><10 1.8/14287)220)

= (0.3959 kg/m’ Xo.ozsom2 X535. 1664 m/s)

=5.2974kg/s
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For a shock at the exit,

Ar_Ae Ai 500 4390)=2.8780
AL A AT 250

M, =2.5934, PL—0.0506, 22=7.6799
Po1 P1

_P2 P1 Pol  _ (76799 0.0506)( !
Pe Poo = X .t

J(25)= 55.8338 kPa
P1 Po1 P 40

The diffuser is choked so it passes the same mass flow for the back pressure range,

m =5.2974kg/s

A shock appears in the diffuser for: 55.8338 kPa < p, <111.5127 kPa

Problem 12. — Air (y = 1.4) enters a converging-diverging diffuser with a Mach number
of 2.8, static pressure p; of 100 kPa, and a static temperature of 20°C. For the flow
situation shown in Figure P4.12, find the exit velocity, exit static pressure, and exit

stagnation pressure.

A, =0.10 m’

A;=0.25m’ A.=0.50 m*
Figure P4.12

AtM=2.8, 235001, Pi—0.0368, —i=03894

A1 Po1 Tol

AL_AA_ 010

L2 (3.5001)=1.4000, M, =1.7632

From this value of M; we can determine the total pressure ratio across the shock
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Po2 _ g g9 = A1

Po1 Aj

Ae _Ae AL AL 05 (3.5001)0.8289) = 5.8025
A, ATAA; 5

From this area ratio we can compute the exit Mach number

M. =0.1003

Pe _ 9930, % —0.9980

Po2 0
T, = 293 =752.4397K, p, = ﬂ =2717.3913 kPa
0.3894 0.0368

Poe = 0.8289(2717.3913) = 2252.4457 kPa

Pe = 0.9930(2252.4457) = 2236.6785 kPa

V, = M1 [YRT, =0.1003,/(1.4)(287)(750.9348) = 55.0943 m/s

Problem 13. — Write a computer program that will yield values of p»/p1, p2/p1, T2/T1, and
Po2/po1 for a fixed normal shock with a working fluid consisting of a perfect gas with
constant y = 1.20. Use Mach number increments of 0.05 over the range M = 1.0 to M =
2.5.

Let b= y_—l Then,
y+1

P2 _(b+1)ME-b
P1

2
P2 Mj

P bMZ +(1—b)

T, [bM% +(1—b)l(b+1)M12 —b]
T M?
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b+l 1=b

2
Po2 _ Mj 2b 1 2b

Pol | bM? +(1-b) (b+1)M? —b

M; p2/pl Po/p1 Ty/T;1 | Por/Par
1.00 1.0000 | 1.0000 | 1.0000 | 1.0000
1.05 1.1118 | 1.0923 | 1.0178 | 0.9998
1.10 1.2291 | 1.1873 | 1.0352 | 0.9989
1.15 1.3518 | 1.2848 | 1.0521 | 0.9965
1.20 1.4800 | 1.3846 | 1.0689 | 0.9924
1.25 1.6136 | 1.4865 | 1.0855 | 0.9861
1.30 1.7527 | 1.5902 | 1.1022 | 0.9777
1.35 1.8973 | 1.6957 | 1.1189 | 0.9671
1.40 2.0473 | 1.8027 | 1.1357 | 0.9542
1.45 22027 | 1.9110 | 1.1527 | 0.9391
1.50 2.3636 | 2.0204 | 1.1699 | 0.9220
1.55 2.5300 | 2.1308 | 1.1873 | 0.9030
1.60 2.7018 | 2.2420 | 1.2051 | 0.8822
1.65 2.8791 | 2.3539 | 1.2231 | 0.8599
1.70 3.0618 | 2.4663 | 1.2415 | 0.8362
1.75 3.2500 | 2.5789 | 1.2602 | 0.8114
1.80 3.4436 | 2.6918 | 1.2793 | 0.7856
1.85 3.6427 | 2.8048 | 1.2987 | 0.7591
1.90 3.8473 | 29177 | 1.3186 | 0.7320
1.95 4.0573 | 3.0304 | 1.3388 | 0.7045
2.00 4.2727 | 3.1429 | 1.3595 | 0.6767
2.05 44936 | 3.2549 | 1.3806 | 0.6490
2.10 4.7200 | 3.3664 | 1.4021 | 0.6213
2.15 4.9518 | 3.4773 | 1.4240 | 0.5938
2.20 5.1891 | 3.5876 | 1.4464 | 0.5667
2.25 54318 | 3.6971 | 1.4692 | 0.5401
2.30 5.6800 | 3.8058 | 1.4925 | 0.5139
2.35 5.9336 | 3.9135 | 1.5162 | 0.4884
2.40 6.1927 | 4.0203 | 1.5404 | 0.4636
2.45 6.4573 | 4.1261 | 1.5650 | 0.4395
2.50 6.7273 | 4.2308 | 1.5901 | 0.4162

M, p2/pl p2/p1 T,/Ty Po2/Pot

Problem 14. — A converging-diverging nozzle has an area ratio (exit to throat) of 3.0. The
nozzle is supplied from an air (y = 1.4, R = 287 J/kg-K) reservoir in which the pressure
and temperature are maintained at 270 kPa and 35°C, respectively. The nozzle is
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exhausted to a back pressure of 101 kPa. Find the nozzle exit velocity and nozzle exit-
plane static pressure.

Since, py/po = 101/270 = 0.3741 < 0.5283, the nozzle is choked. Hence the A; = A So,
for AJ/A = 3.0 determine the subsonic and supersonic solutions, i.e., curves 4 and 5 in
Fig. 4.14. This yields M, = 0.1974 and M, = 2.6374.

For the subsonic solution: pe/p, = 0.9732. Thus, p. = (0.9732)(270) = 262.7640 kPa,
which is much larger than the given back pressure.

For the supersonic solution: pe/p, = 0.04730. Thus, p. = (0.0473)(270) = 12.7764 kPa,
which is far lower than the given back pressure.

The actual situation is somewhere in between these. For a shock in the exit of the nozzle
(curve ¢ in Fig 4.14), we use the shock relations at M, = M; =2.6374 and find
pa/p1 = 7.9486. Since p; = 12.7764 kPa, p, = p. = (12.7764)(7.9486) = 101.5545 kPa.
Since this is larger than the given back pressure, this situation is also not possible.

The actual case corresponds to curve d in Fig 4.14, where oblique shock waves (refer to

Fig. 4.16) occur outside the nozzle in order to compress the exiting flow to the correct
pressure.

Thus, for p, = 101 kPa, p. = 12.7764 kPa and

V, = M, JYRT, =2.6374,/1.4(287)(0.4182)308 =599.9960m /s

Problem 15. — A supersonic nozzle possessing an area ratio (exit to throat) of 3.0 is
supplied from a large reservoir and is allowed to exhaust to atmospheric pressure (101
kPa). Determine the range of reservoir pressures over which a normal shock will appear
in the nozzle. For what value of reservoir pressure will the nozzle be perfectly expanded,
with supersonic flow at the exit plane? Find the minimum reservoir pressure to produce
sonic flow at the nozzle throat. Assume isentropic flow except for shocks, with y = 1.4.

At A/A* =3.0, M. = 0.1974 and pe/p, = 0.9732 or M, =2.6374 and p/p, = 0.0473.

101

For a shock just past the throat: p, =p, = 0.9732 =103.7813kPa
: 101
For a shock at exit: p, =p, = (0.0473)(7.9486) =268.6393kPa

Thus, for a shock in the nozzle: 103.7813 kPa < p, <268.6393 kPa
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For perfect isentropic expansion: p, =p, = 1ot 2135.3066 kPa

(0.0473)

Minimum reservoir pressure for sonic flow at nozzle throat: 103.7813 kPa

Problem 16. — A converging-diverging nozzle with an area ratio (exit to throat) of 3.0
exhausts air (y = 1.4) from a large high-pressure reservoir to a region of back pressure py.
Under a certain operating condition, a normal shock is observed in the nozzle at an area
equal to 2.2 times the throat area. What percent of decrease in back pressure would be
necessary to rid the nozzle of the normal shock?

For AS/A* =2.2,M;=M; =2.3034. At this Mach number from the shock tables we find:

Poa _A1_ 5518

*

pol A2
Ae _A A Al

* +— =3.01)(0.5818)=1.7454
A, A AL A (3.0(1)0.5818)

From this area ratio we find, M, = 0.3577 from which pe/po2 = 0.9154. Thus,

Pe _Pe _ Pe Po2 _(0.9154)0.5818)=0.5326
Pr Por  Po2 Pol

Now for a shock at the exit, i.e., AS/A* = AJ/A; = 3.0: M; == 2.6374 and in turn Me =
0.5005.

Pe _Pe _ 1 PeP2_(90473)1)7.9485)=0.3760
Py Po1 Po1 P2 Pq

% reduction = 0.5326 -0.3760 100 = 29.4097%

0.5326

Problem 17. — Due to variations in fuel flow rate, it is found that the stagnation pressure
at the inlet to a jet-engine nozzle varies with time according to:

Po = 200[1 + 0.1 sin (m/4)t],

with t in seconds and p, in kilopascals. Determine the resultant variation in nozzle flow
rate, nozzle exhaust velocity, and exit-plane static pressure. The nozzle area ratio (exit to
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throat) is 2.0 to 1, and the inlet stagnation temperature is 600 K. Assume negligible inlet
velocity. The nozzle exhausts to an ambient pressure of 30 kPa; y = 1.4; nozzle exit area
is 0.3 m% R =0.3 kl/kg - K.
2
p() t Ae

. p T
my, = pAV, :ﬁAtMt\/yRTt = A M, YR(T_] T,
t

[¢] At

(V]

(0.5283)p,, ( 03

(0.3)(0.8333)(600)\ 2.0

jl.0\/(1.4)(300)(0.8333)(600)

= 0.2421p, = 48.4200 + 4.8420 sin(%tj

Hence, the stagnation pressure varies from 48.4200 — 4.8420 = 43.5780 kg/s to 48.4200 +
4.8420 = 53.2620 kg/s.

The stagnation pressure varies from 200 — 20 = 180 kPa to 200 + 20 = 220 kPa.

For a shock at the exit, for Ae/A* = 2.0, we find M. = M; = 2.1972. From which we
obtain and (pi/po1) = 0.0939 and (p»/p;) = 5.4656. Thus,

30
—p. = = 58.4545kP
Pr=Po (0.0939)(5.4656) !

Hence, the exit velocity is constant,

V, =M, yR[Tl] T, =2.1972,/(1.4)300)0.5088)(600) = 786.7621m /s
(5]

o

pe =(0.0939)p, = 18.7800+1.87805in(%t)

Problem 18. — Helium enters a converging-diverging nozzle with a negligible velocity;
stagnation pressure is 500 kPa and stagnation temperature is 300 K. The nozzle throat
area is 50 cm’, and the exit area is 300 cm®. Determine the range of nozzle back

pressures over which a normal shock will appear in the nozzle. Also, find the nozzle exit
velocity if the nozzle exhausts into a vacuum.

For y = 5/3 and at an area ratio (A/A") = 300/50 = 6.0, we find,

72



FromGasDynamics,Third Edition, by Jame<. JohnandTheoG. Keith. ISBN 0-13-120668-0© 2006 PearsorEducationnc.,
UpperSaddleRiver,NJ. All rightsreservedThis materialis protectedunderall copyrightlawsastheycurrentlyexist.No Portionof
this materialmaybereproducedin anyform or by anymeanswithout permissiorin writing from thepublisher.

M =0.0943 and p/p, = 0.9926
M =4.1051, p/p, = 0.008878, p2/p; = 20.8145 and T/T, = 0.1511.

A normal shock will be in the nozzle for (0.008878)(20.8145)(500) = 92.3956 kPa < p;, <
(0.9926)(500) = 496.3000 kPa.

V, =M, yR[Tl] T, = 4.1051\/@}(2077)(0.1511)(300) =1626.1448m/s
(5]

o

Problem 19. — A jet plane uses a diverging passage as a diffuser (Figure P4.19). For a
flight Mach number of 1.92, determine the range of back pressures over which a normal
shock will appear in the diffuser. Ambient pressure and temperature are 70 kPa and 270
K. Find the mass flow rates handled by the diffuser for the determined back pressure
ranges, with Ajyer = 100 cm? and Acxit = 200 cm?. Assume isentropic air flow (y = 1.4,
R =287 J/kg-K) except for across the shocks.

Aexit
Ainlet

Figure P4.19

T=270K
p =70 kPa

When the shock is at the inlet: i (the inlet) = 1 (the upstream location of the shock)

AtM,; =1.92, pi/po1 = 0.1447, A, 'A," = 0.7581 and A1/A,” = 1.5804. Thus,

[&

A

A_Z_Al AT A;

_Ac A AL (200
100

—j(1.5804)(0.7581) =2.3962

From this area ratio we find, M. = 0.2507 and p¢/po2 = 0.9572. Now p; = 70 kPa, thus

p.—py = Pe P AL (0.9572)0.7581) 0 _ 351 0417kPa

D
Pox P1 Ay (0.1447)

When the shock is at the exit: e (the exit) = 2 (the downstream location of the shock)
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AtM;=1.92, A/A," =1.5804. Thus

AL _Ar Al (200

AT A ar 100

j(l 5804)=3.1608
From this area ratio we find, M; = 2.6926, p,/p; = 8.2918 and p;/p,1 = 0.04344. Because
the flow is isentropic from i to 1 we may write,

P1 Poi . _ 0.04344

P b T T 01447

70 =21.0145kPa

Db = DPe = P> =22 p; = (8.2918)(21.0145) = 174.248 1kPa
Pi

A normal shock will be in the diffuser for 174.2481 kPa < p, <351.0417 kPa

m; = p; A}V, =

pl AM JYRT, = 0257 )(2 O)(100x10_4X1.92)\/(1.4)(287)(270)

= 5.7127kg/s

Problem 20. — For the converging-diverging nozzle shown in Figure P4.20, find the range
of back pressures for which p. > py, the range of back pressures for which p. < pp, and the
range of back pressures over which the nozzle is choked. Take y = 1.4.

~

po =101 kPa
Aproat = 15 Cm

_—

—

r-“ Aexit = 60 cm?’

Figure P4.20

For an area ratio Ac/A;= AJ/A* = 60/15=4.0,
Supersonic case with shock at exit:

M. = 2.9402, pe/po = 0.0298 and p/p; = 9.9188
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pp =22 Pl (0.9188)0.0298)(101) = 29.8536kPa
P1 Po1

Subsonic case with shock just downstream of throat:
M. = 0.1465 and p./p, = 0.9851
po= (0.9851)(101) =99.4951 kPa

For perfectly expanded flow in nozzle:
pb= (0.0298)(101) = 3.0098 kPa

So, pe > py for all p, < 3.0098 kPa, whereas, p. < py for 3.0098 kPa < p, < 29.8536 kPa.
The nozzle is choked for all p, <99.4951 kPa.

Problem 21. — Nitrogen (y = 1.4, R = 296.8 J/kg'K) expands in a converging-diverging
nozzle from negligible velocity, a stagnation pressure of 1 MPa, and a stagnation
temperature of 1000 K to supersonic velocity in the diverging portion of the nozzle. If the
area ratio of the nozzle is 4.0, determine the back-pressure necessary for a normal shock
to position itself at an area equal to twice the throat area. For this condition, find the
nozzle exit velocity.

For Aq / Aik =2.0, M, =M, =2.1972. At this Mach number from the shock relations
we find:

Poa _ A1 6204

*

Poi A,
A _AcACAL (4 0V1Y0.6294) = 2.5176
NN (4.0)1)(0.6294) =2.

From this area ratio we find, M. = 0.2377 from which pe/p,; = 0.9614 and T./T, = 0.9888.
Thus,

Pe _ Pe _ Pe Po2 _(0.9614)0.6295) = 0.6052
Pr  Pol Po2 Pol

pp = 0.6052(1MPa) = 605.2 kPa

Te = 0.9888(1000) = 988.8K

V, =M, 4/YRT, =0.2377,/(1.4)(296.8)(988.8) = 152.3630m /s
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Problem 22. — (a) Develop a relation for the upstream Mach number, M, in terms of the
downstream Mach number, M,. (b) Use the result from (a) and Eq. (4.12) to prove that

M3 =[(y+1)/2v]ly =)/ (y + 1)+ p1 /p2].
Let b= (y+1)/(y-1), therefore b+1 = 2y/(y-1) and b-1 = 2/(y-1).

(a) Equation (4.9) may be written as

2, 2

, M3alb-1) M2
_ m—

(b+1)M3 -1 (y2_y jM%_l

The result is also apparent from Fig. 4.10 in which we may observe that the curve is
symmetrical about the line M, = M.

(b) Equation (4.12) can be written as

P2 _ 2y 2 ¥l _btl o 1 (b+1j M3 +(b-1)| 1

= Ml -/ —=——"M1 == -
p v+l v+l b b Ub J(b+1)M-1]| b
b

b+1)M3 —1
(b+1)M3

M§:(Lj Py 1)y v=t py
b+1){p, b 2y \y+1 psy
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Problem 23. — Prove that the Rankine-Hugoniot relation reduces to the equation for an
isentropic process for very weak shocks. Hint: start from Eq. (4.16b) and replace p, with
p + dp and p; with p. Repeat this for the densities. Then use the expansion technique
that was employed in Example 4.1. Note to properly use the expansion approach we must
first express the term to be expanded as 1 + (small quantity).

Let b = (y+1)/(y-1), therefore b+1 = 2y/(y-1) and b-1 = 2/(y-1). Thus, Eq. (4.16b) may be

written as
bp—2+1
P2 _ P1
P1

Now replace the downstream terms with the upstream value + a differential and rearrange
the result to get

b \dp

O )

b+1

p

_ 1+(Ljd_p 1_(¢jd_p m(L_;jd_p
b+1) p b+1) p b+1 b+1)p

Thus,

d d
dp_. dp
p P

Integration gives the isentropic relationp = Cp”

Problem 24. — The back pressure to reservoir pressure ratio is 0.7 for a C-D nozzle, with
an exit to throat area ratio of 2.0. Use the procedure when the shock location is not
specified, i.e., the direct approach to determine the location of a normal shock for a ratio
of specific heats equal to 1.3. Repeat the problem for y = 5/3. Draw a conclusion
regarding shock location and the value of .
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The following table showing the calculation results was prepared from a simple

spreadsheet program
step Y 1.3 1.4 1.67
1 M. 0.4128 | 0.4067 | 0.3919
2 pe/Po2 0.8964 | 0.8923 | 0.8827
3 por/Por | 0.7809 | 0.7845 | 0.793
4 M; 1.8397 | 1.8627 | 1.9221
5 Ad/A¢ 1.5349 | 1.5101 | 1.4573

As may be seen as 7 is increased the shock moves upstream.

Problem 25. — The back-pressure to reservoir pressure ratio is 0.7 for a C-D nozzle, with
an exit to throat area ratio of 2.0. Use the procedure for the situation when the shock
location is specified, i.e., the trial and error approach to determine the location of a
normal shock for a ratio of specific heats equal to 1.4. To start the calculations assume
the shock is at the exit of the nozzle.

The following table summarizes the calculations for each trial.

step trial 1 2 3
0 AdA¢ 2.0 1.467 | 1.508
1 M 2.197 | 1.825 | 1.861
2 Po2/Por | 0.6295 | 0.8015 | 0.7852
3 A/A; | 0.6295 | 0.8015 | 0.7852
4 AJA; | 12590 | 1.6030 | 1.5704

5 M. 0.5473 | 0.3960 | 0.4062
6 pe/poz 0.8158 | 0.8975 | 0.8926
7 pe/pol 0.53135 | 0.7193 | 0.7009
8 % error -26.6 2.8 0.1
9 A A¢ 1.467 1.508 1.51

Problem 26. — A converging-diverging supersonic diffuser is to be used at Mach 3.0. The
diffuser is to use a variable throat area so as to swallow the starting shock. What percent
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of increase in throat area will be necessary? Solve for air (y = 1.4) and for helium (y =
5/3) as working fluids.

Air:
A

With no shock from Eq.(3.23) at M = 3.0, =4.2346

throat

With shock at inlet, M; = 3.0 and from Eq.(4.9), M, = 0.4752. Using this Mach
number downstream of the shock in Eq.(3.23), we find A, / A; =1.3904.

Throat area must be increased slightly more than:

A4 A4

AA = 13904 42346 150 _ (#2386 50 5040,
A; 1.3904

4.2346

Helium:

A
With no shock from Eq.(3.23) at M = 3.0, L =3.0000
throat

With shock at inlet, M; = 3.0 and from Eq.(4.9), M, = 0.5222. Using this Mach
number downstream of the shock in Eq.(3.23), we find A, / AZ =1.2819.

Throat area must be increased slightly more than:

A A
AA = 1:28193.0000 , 10 (30000 _ 5 _ 1340,
A; 1.2819
3.0000

Problem 27. —A supersonic wind tunnel is to be constructed as shown in Figure 4.27,
with air (y = 1.4, R = 287 J/kg-K) at atmospheric pressure passing through a converging-
diverging nozzle into a constant-area test section and then into a large vacuum tank. The
test run is started with a pressure 0 kPa in the tank. How long can uniform flow
conditions be maintained in the test section (i.e., how long will it be before the tank
pressure rises to a value such that a shock will appear in the test section)? Assume the
test section to be circular, 10 cm in diameter, with a design Mach number of 2.4. The
tank volume is 3 m’, with atmospheric conditions of 101 kPa and 20°C. Assume the air to
be brought to rest adiabatically in the tank.
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For a shock at the nozzle exit

Pp=DP2 = (—j[ﬂjpol =(6.5533).06840)(101)=45.272 kPa

ol

Tunnel will run until

ey asomsimefowd)
ok = RT T (0.287kIkg K)293K) o E

The mass flow rate is constant while tunnel is running, so

Po
m:pAV:pAMa:[%)AM yRT =| —Po/ AN [yRT

RT,|
TO

_| 101(0.06840) (EIOOX10_4J2.4\/1.4(287)(0.4647)(293)
0.287(0.4647)293 |\ 4

= (0.1768)(0.007854)(561.3533) = 0.7794kg /s

Time to run :2— 16151 =2.0722s
m

©0.7794

Problem 28. — Repeat Problem 27 but assume that there is a diffuser of area ratio 2 to 1
between the test section and the tank.

Now at M = 2.4 we can find from Eq.(3.23) that A/ AT =2.4031. Furthermore, from

Eqgs.(4.15) and (4.21): po2/Pol :AT/A; =0.5401. Therefore, since A./A, =2.0,
then

*
A. A Al A
—& = L1 = (2.0)2.403)0.5401) = 2.5957
A2 Al Al A2
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Using the area ratio-Mach number numerical procedure, the subsonic solution gives for
this area ratio

M, =0.2301
Hence,

Pe _0.9638, p, = {&Ipﬂjpol = (0.9638)(0.5401)101 = 52.5754 kPa
Po2 Po2

ol

_52.5754

Time 2 2.0722 =2.4064 s
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Chapter Five

MOVING NORMAL
SHOCK WAVES

Problem 1. — A projectile moves down a gun barrel with a velocity of 500 m/s (Figure
P5.1). (a) Calculate the velocity of the normal shock that would precede the projectile.
Assume the pressure in the undisturbed air (y = 1.4, R = 287 J/kg-K) to be 101 kPa and
the temperature to be 25°C. (b) How fast would the projectile have to be moving in order
for the shock velocity to be two times the projectile velocity?

Air, V=0 < |

Figure P5.1

Projectile

(a) From Eq. (5.10),

272
S:(y+41)V+\/(y+i)6V va?

a; = +/1.4(287)(298) = 346.0295 m/s

S = (0.6)500+ v3002 +346.02952 = 757.9699 m/s

(b) For this part of the problem S = 2V. This is inserted into Eq. (5.9)

2
V= M 1—| 2L
(y+1) 2V
Cancellation and rearrangement brings

v A 3460295 oo se03m/s
3-y  1.2649

Problem 2. — A normal shock moves into still air (y = 1.4, R = 287 J/kg-K) with a
velocity of 1,000 m/s. The motionless air is at 101 kPa and 20°C; calculate the following:
(a) the velocity of the air flow behind the wave,
(b) the static pressure behind the wave, and
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(c) the stagnation temperature behind the wave

S S 1000
@ "Ta; YRT 1.4(287)293

Use this Mach number in the shock relations, to determine that

P2 _ 37760, P2 _ 97440, 12 —2.5799

P1 p1 T
Hence,
Pa_Vi_ S _ 1000 ;596

pi Vo, S-V 1000-V

From which we find, V = 735.2326 m/s.

)  P2-97440, p, =9.7440(101)=984.1440 kPa
P

T

(c) T

=2.5799, T, =2.5799(293)=755.9107K

ay =+/YRT, =4/1.4(287)755.9 =551.1124m/s

2 2
T, =Ty 1+ 1= Y| |=7559107 1+(0.2)(Mj = 1024.9834K
2 \a, 551.1124

Problem 3. — A normal shock is observed to move through a constant-area tube into air
(y =14, R =287 J/kg-K) at rest at 25°C (Figure P5.3). The velocity of the air behind the
wave is measured to be 150 m/s. Calculate the shock velocity.

V=150 ms ‘ S Airatres

Figure P5.3

From Eq. (5.10),
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2x72
S:(y+4l)V+\/(y+1)6V +a12

a) =4/YRT, =/1.4(287)298 = 346.0295m/s

S=90.0+357.5=447.5m/s

Problem 4. — A piston in a tube is suddenly accelerated to a velocity of 25 m/s causing a
normal shock to move into helium (y = 5/3, R = 2077 J/kg-K) at rest in the tube and at a
temperature of 27 C in the tube. One second later, the piston is suddenly accelerated from
25 to 50 m/s causing a second shock to move down the tube. How much time will elapse
from the initial acceleration of the piston to the intersection of the two shocks?

First shock:

a; =+/YRT] =4/1.667(2077)300 = 1,019.0682m/s

From Eq. (5.10)

24,2 2
Sp = (v +1)Vy +\/(v+1) VI, 2 _§(25)+\/[%(25)} +1019.0682>

4 16 12
—1035.8711m/s

_Sp1035.8711

= =1.0165
a; 1019.0682

At this Mach number from Eq.(4.11) or (5.13)

T
T—2 =1.0164 ; thus, T, = (1.0164)300 = 304.9200K
1

So

a5 =/yRT| =4/1.667(2077)304.92 = 1,027.3906m/s
Second shock:

Following Example 5.4, we may write
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g - (LN +B=)Vs JKY v -v; >T e

4

Hence, with V, =25 m/s and V3 = 50 m/s

2
Sg =W+\/ngbozs)} +1027.39062 =1069.1924m /s

1035.8711At =1069.1924(At —1)

At =32.0874s

Problem 5. — Air (y=1.4, R =287 J/kg'K) at 100 kPa and 290 K is flowing in a constant-
area tube with a velocity of 100 m/s (Figure P5.5). Suddenly the end of the tube is closed,
which causes a normal shock to propagate back through the airstream. Find the absolute
velocity of this shock.

V =100 m/s S \ l
—

Figure P5.5
First fix the shock
—>
X
V=100 m/s S V=0 S+ 100 S
—> — —
Moving Normal Shock Stationary Normal Shock

To compute the shock speed use Eq.(5.10). However, the speed S that appears in the
expression must be replaced with S + V to agree with the current problem. Accordingly
we may write:
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RACR COIR

The speed of sound of the gas in front of the moving shock wave, i.e., a; is required.
Accordingly we may write

a) =[YRT] =+/(1.4)287)(290) = 341.3532m /s

2
S= (YT_SSJV + \/HYTHJV} +a? =(-0.40)100+ V602 +341.35322 =306.5862m /s

Problem 6. — A normal shock traveling at 1,000 m/s into still air (y = 1.4, R =287 J/kg-K)
at 0°C and 101 kPa reflects from a plane wall. Determine the velocity of the reflected
shock. Compare the pressure ratio across the reflected shock with that across the incident
shock. Find the stagnation pressure that would be measured by a stationary observer
behind the reflected wave.

Incident shock: First we must immobilize the shock by redefining a coordinate system
that moves with the shock

X
Gas at S -V St
\4 rest :
—> < <
Si
Stationary Moving
Coordinate System Coordinate System

a] =+/YRT; =20.04494/273 =331.1969m/s

~S; 1000

= =3.0194
a;  331.1969

M,

From the normal shock relations:
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T

M, =0.47405, P2 =3.8749 -2 =2.7019 P2 ~10.4696.

Pl T p1

Thus,

T, =(2.7019)273 = 737.6187K ,

a, =+/(1.4)(287)(737.6187) = 544.4035m /s .

M, = S| -V

aj

V =S; —Mja, =1000—(0.47405)544.4035 = 741.9255m /s
Alternately,

P2 _ St _3g749_ 1000

pp S -V 1000 -V

Solve to obtain
V =741.9288 m/s

Reflected shock: Again the first step is to fix the moving shock by redefining the
coordinate system.

X
v V=0
E— - SR +V SR
Sk
> X
Moving Reflected Shock Stationary Coordinate System
for the Reflected Shock

For this configuration, the reflected shock speed is computed from

Ssz(vTﬂwﬂvTﬂ)vfﬂg

where V = 741.9288 m/s and a, = 544.4035 m/s; therefore,
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= (0.4)741.9288 + {/[(0.6)741.9288]* + 544.4035>

=406.4640m/s

From Eq.(5.24)

3y—1 -1
) (o[}
Py AVE AP YT 1 —5.0248
P2 14| Y=1) P2 1+(j10.4696
y+1 A p1 6

Behind reflected wave, because the velocity =0

P3 =P, = [pi][p—szl =10.4696(5.0248)101 = 5.3133 MPa
P2 A\ P1

Problem 7. — Under a certain operating condition, the piston speed in an auto engine is 10
m/s. Approximate engine knock as the occurrence of a normal shock wave traveling at
1000 m/s downward, as shown in Figure P5.7, into the unburned mixture at 700 kPa and
500 K. Determine the pressure acting on the piston face after the shock reflects from it.
Assume the gas has the properties of air (R = 287 J/kg-K) and acts as a perfect gas, with
y=1.4.

700 kPa
500K

v+ |
S

Incident Shock Reflected Shock
Figure P5.7

Incident shock: We must first consider the moving incident shock and redefine the
coordinate system in order to produce a steady flow problem.
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X

vy @ T S-V
l St ©) I Si+V,

V,=10m/s %
Incident Shock in Moving

Coordinate System

Incident Shock in Stationary
Coordinate System

Now Vj =Sj +V,, =1000+10=1010m/s and

a; =+/(1.4)287)500) = 448.2187m /.

Thus,
1010

=———=22534.
448.2187

1

Therefore, from the normal shock relations,

M, = 05401, P2 =3.0232 12— 19044 P2 _ 57574
P T p1

T, = (1.9044)500 = 952.2000K

ay =+/(1.4)(287)952.2) = 618.5418m /.
From the continuity equation across the stationary shock

Si+V
P2 P17 "p :3_0232:ﬂ
1000 -V

pp S -V

Therefore,V = 665.9169 m/s. Alternately,
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51—V
aj

M,

V =S; —M,a, =1000—(0.5401)618.5418 = 665.9256m /s

Reflected shock: Fix reflected shock:

l v Gas at rest

T el

T Vi T VitV l Sr-Vp
. X
Reflected Shock in a Intermediate Step Reflected Shock in a Moving
Stationary Coordinate Coordinate System

System

From the intermediate step, which results in a normal shock moving into a fluid at rest
(the fundamental problem), we may use the equations of Section 5.2. However, we must
replace the shock speed, S, in those relations, with Sg + V and we must replace the gas
speed behind the shock V with V, + V. Accordingly, we may rewrite Eq.(5.10) as

Sg +V = (VTHJ(VP +V)+ \/KYTHJ(VP +v)}2 +a3

Now V = 665.9256 m/s, V, = 10 m/s and a, = 618.5418 m/s, therefore

Sp = —665.9256 +(0.6)675.9256) + \/[(0.6)(675.9256)]2 +618.54182

=479.2710m/s

From Eq.(5.24)

3y-1 ~1
ka6 G (d
bs AVZ AP YT 1 ~3.8324
P2 1| = P2 1+(j5.7574
v+1A P 6
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Pressure on piston face = pl(p—2]£p—3] = (700 kPa)(5.7574)(3.8324) = 15.445MPa
P1 A\ P2

or
=152.9234 atm

Problem 8. — A normal shock moves down a tube with a velocity of 600 m/s into a gas
with static p = 50 kPa and static temperature of 300 K. At the end of the tube, a piston is
moving with a velocity of 60 m/s, as shown in Figure P5.8. Calculate the velocity of the
reflected wave and the static pressure behind the reflected wave. Assume the gas has the

properties of air (y = 1.4, R =287 J/kg'K).

el -

Incident Normal Shock Reflected Normal Shock
Figure P5.8

Incident Shock: As usual we perform the coordinate transformation to fix the incident
shock. Because the gas in front of the shock is moving it is helpful to perform an
intermediate step in which this gas is brought to rest. In this way the equations pertaining
to a normal shock moving into a stationary gas may be transformed to this problem.

x ¢
— |— — — «— | «—
Gas at rest @ @
Incident Normal Shock Intermediate Step Incident Normal Shock in
in a Stationary a Moving Coordinate
Coordinate System System

Si+Vp _ 600+60 _

= =1.9010
ay 347.1887

a; =+/(1.4)(287)(300) = 347.1887 m/s, M, =

P2 _ 40494, T _ 1.6087,
Py T

T, = (1.6087)300 = 482.6100 K, a, =/(1.4)287)(482.61) = 440.3552m /s

Now from Eq.(5.9) with S replaced by S; + V,, and V replaced by V + V, (see the
intermediate step), i.e.,
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2
X:i 1- 4L becomes
S 7y+1 S

2

V+V
b 2 1- il , Oor

Si+Vy, v+l Sp+Vp

2
208y +V 2
( I p) _[ aj } __60+M{1_(Mj }_337.8030m/s

V==V, +
Si+V, 24 660

y+1

Reflected Shock:
>x

— —

«—] <«—

_» 4_
@ Gas at rest @ @
Reflected Normal Shock Intermediate Step Reflected Normal Shock

in a Moving Coordinate

in a Stationary
System

Coordinate System

Now from Eq.(5.10) with S replaced by Sg + V and V replaced by V + V,, (see the

intermediate step), i.e.,

Sp +V = (YT”)(V £V, )+ \/[[YTHJ(V £V, )T +a3

= ~337.803 +(0.6)(337.803 + 60) + \/[(0.6)397.803]2 +440.35522

=401.7597m/s
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Sp +V _401.7597+337.8030

So M, = =1.6795
a, 440.3552
From the normal shock relations P3 31040 . This can be verified by using Eq.(5.24).
P2

The pressure behind the reflected shock, which is also the pressure on the piston face is

= pl[pl][pij = (50 kPa)(4.0494)(3.1242) = 632.5568kPa
P1 AP2

Problem 9. — For both y = 7/5 and 5/3, determine the limits of the pressure ratio of a
reflected normal shock, i.e., ps3/p2, (a) for a strong incident shock, i.e., p»/p; — o, and (b)
for a weak incident wave, , i.e., p2/p1 — 1.

From Eq.(5.24)
py _\r+ I \ p; y+1
Y+1A p1
(a) For the strong shock case since p,/p; is infinite the ratio simply becomes

P3 (?:j(iﬂ _By-1)

_9 =

P2 (v—lj(pzj (v-1)
Y+ py

Thus,

p—3:6f0ry=5/3and

P2

P3 _§ fory=1/5

P>

(b) For a weak shock, p,/p; is very close to 1, thus
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N @ﬂ“*@ﬂ_<3y—1>—<v—1>_2_v_1

P2 H(Y—l)(l) D)+ G6-1) 2y

y+1

Problem 10. — A shock tube is to be used to subject an object to momentary conditions of
high pressure and temperature. To provide an adequate measuring time, the tube is to be
made long enough so that a period of 100 ms is provided between the time of passage
over the body of the initial shock and the time of passage of the shock reflected from the
closed end of the tube. The initial pressure ratio across the diaphragm is 400 to 1, with
the object located 3 m from the diaphragm. The initial temperature of the air (y=1.4, R =
287 J/kg'K) in the shock tube is 35°C. Determine a suitable length for the low-pressure
end of the tube.

Incident Shock:

To begin we can calculate a; = \/(1.4)(287)(308) =351.7874m/s. For ps/p; = 400 we

find p,/p: using the iterative procedure described in Example 5.6. From that calculation
the shock pressure ratio is determined to be p,/p; = 9.2853. Now from Eq,(4.12)

M, = [ P2 v=l) é(9.2853+1j=2.8463
2y \p; v+l 7 6

S; =Mja; =(2.8463)(351.7874)=1001.3087m/s

Now at M; we can also find the density ratio and temperature ratio across the shock. The
first ratio will give the velocity behind the shock, V,, and the second will produce a,.

P2 _ 37102, 12 25026
P Ty

Hence,
Py S 1001.3087

=3.7102

pL S{—V, 10013087V,

From which we find, V, = 731.4287 m/s. Also,

T

T, = [T—ZJTI =2.5026(308) = 770.8008 K .
1

Thus,
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a, =+/(1.4)(287)(770.8008) = 556.5139m /s

Reflected Shock:
r— X
V, Sy Gas Gas Sr+V, V, Srt+V, Sk
> <— at at < < > >
Rest Rest
Reflected Normal Shock Intermediate Step Reflected Normal
in a Stationary Coordinate Shock in a Moving
System Coordinate System

To compute the reflected shock speed use Eq.(5.10). However the speed S that appears
in the expression must be replaced with Sg + V, and V is replaced with V, to agree with
the current problem. Accordingly we may write:

2
SR +V2 = (YTHJVZ +\/|:(YT+IJV2} +a%

Thus,

= —(0.4)731.4287 +4/|10.6)731.4287 2 +556.51392
(0.4) JI0.6) ]

=416.1622m/s

L-3 L-3

+ —100x103s
1001.3087  416.1622

Time to test =

L=3+293979=32.3979 m

Problem 11. — Air (y = 1.4, R = 287 J/kg'K) is stored in a tube at 200 kPa and 300 K
(Figure P.5.11). A diaphragm at the end of the tube separates the high-pressure air and
the ambient, which has a pressure of 101 kPa. The diaphragm is suddenly ruptured,
which causes expansion waves to move down the duct. Determine the time required for
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the first expansion wave to reach the closed end of the tube and the velocity of the air
behind the expansion waves.

- S5m :l
200 kPa Vs
300K 4— 4—

Figure P5.11

. L 5 5
Time =— = = =0.01440
as  J(L4)287)300) 347.1887 )
v4-1 0.4
2ay [p3 2v4 | 2(347.1887) (101jz.8
Vy= 4 || 2 S SR04 P il
va-1 \pa4 0.4 200

=1735.9435(1-0.9070) = 161.4218m /s

Problem 12. — Write a computer program that will yield values of the diaphragm pressure
ratio for given values of the shock pressure ratio for a shock tube with helium (y = 5/3)
with the same temperature on both sides of the diaphragm. Determine values of

diaphragm pressure ratio for shock pressure ratios from 1.0 to 5.0, using increments of
0.2.

From Eq.(5.36), with y4 =), a4 = a;, and p = p2/p:

~ 2y

_ 4

Y4_1
Pa _P2jy_ 44 A\ b1 P

p1  P1
V271 \/2\(1 +(y1 +1)(p2— j

{1_ oot |-
V2y27+(y+1)p-1)

P1

and with y = 5/3 this becomes
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s _ p

PLoT o 02(p-1)

-2
w/1+O.8ip—li

The spreadsheet program developed for this problem is as follows:

P2/p1 P4/P1
1 =H4/(1-((0.2)*(H4-1)/(SQRT(1+0.8*(H4-1))H)"5
—H4+0.2 —H5/(1-((0.2)*(H5-1)/(SQRT(1+0.8*(H5-1)))"5
—H5+0.2 =H6/(1-((0.2)*(H6-1)/(SQRT(1+0.8*(H6-1)))))"5
The results are
P2/P1 P4/P1 P2/P1 P4/P1

1.00 1.00000 3.00 |12.48052
1.20 1.44998 3.20  |14.90276
1.40 2.00841 340 |17.68189
1.60 2.68922 3.60  |20.86205
1.80 3.50817 3.80 [24.49276
2.00 4.48295 4.00 ]28.62954
2.20 5.63343 4.20 [33.33473
2.40 6.98190 440 |38.67827
2.60 8.55335 4.60 44.73876
2.80 |10.37576 4.80 [51.60453
3.00 | 12.48052 5.00  |59.37489

Problem 13. — A circular tube of length 1.5 m is evacuated to a pressure of 2.5 kPa, with
the ambient pressure at 101 kPa. A diaphragm at the end of the tube is ruptured, which
causes a normal shock to move down the tube. Determine the velocity of the initial shock
that moves down the tube, the velocity and Mach number of the air (y = 1.4, R = 287
J/kg-K) behind the shock, and the velocity of the shock that reflects from the closed end.
Initial air temperature before diaphragm rupture is 300 K. A test object is located midway
along the tube. Determine the time that this object is subjected to the pressure and
temperature conditions behind the initial shock (before arrival of the reflected shock).
Find the static pressure and temperature behind the initial shock.

Initial Shock: Fix the shock by redefining the coordinate system
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>x
s ||V S S-V,
Gas at rest ¢ ¢ @' @ >
Incident Normal Shock Incident Normal Shock in
in a Stationary a Moving Coordinate
Coordinate System System

To begin we can calculate a; =+/(1.4)(287)(300) = 347.1887m/s. Since we are given
p2 =101 kPa and p; = 2.5 kPa, then

Py 100 4540
25

Pi

From Eq,(4.12)

M, = [ P2 Y=L §(4O.4+1)=5.8967
2y A\p; v+l 7 6

S=Ma; =(5.8967)347.1887 = 2047.2781m /s

Now at M; we can also find the density ratio and temperature ratio across the shock. The
first ratio will give the velocity behind the shock, V,, and the second will produce a,.

T
P2 _ 59457, 2277016
P T

Hence,

Py S 20472781

= =5.2457
P1 S—Vz 2047.2781 —Vz

From which we find, V, = 1,657.0007 m/s (the velocity of the air behind shock). Also,

T
T, = (T—z]Tl =7.7016(300) = 2,310.48 K (the temperature of the air behind the initial
1

shock). Thus, a, =4/(1.4)(287)(2310.48) = 963.5097 m /s
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V,  1,657.0007
a,  963.5097

Mach number of the air behind the initial shock = =1.7198. The

pressure behind the shock is p, = 101 kPa.

Reflected Shock: Define a moving coordinate system for the reflected wave as usual.

—
X
Sk V» Sr Sr +V,
Gas at rest ’ ¢ ¢ @ @'
Reflected Normal Shock Reflected Normal Shock
in a Stationary in a Moving Coordinate
Coordinate System System

Replace S and V in Eq.(5.10) with Sg + V, and V,, respectively and rewrite the
expression as

(5]

= —(0.4)1657.0007 + 0.6)1657.0007 2 +963.50972
(0.4) Jl0.6) ]

=721.6799 m/s

0.75 0.75

- + —3.663x10"% +10.392x10~% =0.001406s
2047.2781  721.6799

Problem 14. — The pressure ratio across the diaphragm in a shock tube is set at 10. The
diaphragm is ruptured. Determine the velocity of the initial normal shock, the Mach
number of the gas behind the shock, and the static pressure and temperature behind the
shock for air (y = 1.4, R = 287 J/kg-K) as the working fluid and for helium (y = 5/3, R =
2.077 kl/kg-K).as the working fluid. Assume the initial temperature on each side of the
diaphragm to be 25°C and the initial pressure in the low-pressure end to be 25 kPa.

Air:
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a; =+/YRT, =/(1.4)287)(298) =346.0295m /s

Using the iterative procedure described in Example problem 5.6 for ps/p; = 10 and y =1.4,
we find :

shock pressure ratio: P2 _ 58482 from which
P

OSSR P B et P §(2.8482+1j=1.6075
2y Apy v+l 7 6

S=M;a, = (1.6075)346.0295) = 556.2548m /s

Now at M| = 1.6075 from the shock relations

T—2 =1.3932
T

T, = [&jn =1.3932(298) = 415.1736K
Tl

a, =/YRT, =4/(1.4)(287)(415.1736) = 408.4321m/s

P, = (p_szl =2.8482(25) = 71.2050kPa
P1

From Eq.(5.9)

2 2
Y, _ﬁ[l_(ﬁj ]:2(556.2548){1_[346.0295J }284.166%/8

v+l S 2.4 556.2548

Finally the Mach number behind the shock is

v Vo _ 284.1668

= =0.6958
a, 408.4321

Helium:

a; = /YRT, =/(1.667)(2077)(298) =1,015.6656 m /s
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Using the iterative procedure described in Example problem 5.6 for ps/p; = 10 and

v =5/3, we find :

shock pressure ratio P2 _5 7611 from which
Pi

M, = | Rz vl §(2.7611+1j=1.5521
2y \p; v+l 10 4

S=Mja, = (1.5521)1,015.6656) = 1,576.3646m/s

Now at M; = 1.5521 from the shock relations

L 15500
Tl

T, = (%jn =(1.5500)(298) = 461.9000K
1

a, = [YRT, =/(1.6667)2077)(461.9) =1,264.4935m/s

Py = (p—szl = (2.7611)25) = 69.0275kPa
P

From Eq.(5.9)

2 2
Vz_z_slll_(a) ]wll(mJ ]_691,4717m/s
Y+

S 2.6667 1,576.3646
Finally the Mach number behind the shock is

Vo _ 6914717 o
ay 1,264.4935

Problem 15. — A normal shock moves down an open-ended tube with a velocity of

1,000 m/s (Figure P5.15). The ambient air (y = 1.4, R = 287 J/kg'K) pressure and
temperature are 101 kPa and 25°C, respectively. Determine the velocity of the first and
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last expansion waves that move down the tube after reflection of the shock from the open

end.
Ambient
Air
— —>
Incident Normal Shock on Open Reflected Expansion Waves

End of Tube
Figure P5.15

Shock: Fix the moving shock by defining a moving coordinate system

X
A% S S-V, S
—> «— || —
Gas at
rest 0} |6
Moving Shock in a Incident Normal Shock in
Stationary Coordinate a Moving Coordinate
System System

a; = /YRT, =/(1.4)(287)(298) = 346.0295m /s

M, =2 = 1000, eg99
a, 346.0295

From the shock relations at this Mach number we obtain

P2 95768, P2 37531, 12 -25517
P P1 T
Pp_ S 1000 _ 5753,

o, S—V, 1000-V,
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V,=733.5536 m/s

T, = (2.5517)(298) = 760.4066 K

a, =/YRT, =4/(1.4)287)(760.4066) = 552.7489 m /s

p, =9.5768(101)=967.2568 kPa

Expansion Waves:

\%! a— Vs
—’ 4_

OIS

Moving Expansion Waves

p3= 101 kPa

Velocity of first wave =a, —V, =552.7489-733.5536 = —-180.8047m/s

The minus sign means that it is moving to the right, i.e., because V, exceeds the speed of

sound, the disturbance is unable to move upstream. Because the flow in the expansion
fan is isentropic

2y /(y-1
(s "
P2 \32
yl 04 1
ag _[p3 |2 :( 101 jz.sz( 101 j720.7241
a, (p, 967.2568 967.2568
a; =2,(0.7241) = (552.7489)(0.7241) = 400.2705 m/s

Now for a left running wave,

Vz +L1a2 = V3 +La3
So
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V3=V, + (ilj(a2 —a;)= 733.5536 + 5(552.7489 — 400.2705)
’Y pa—
=1495.9458m/s

Velocity of last wave = a3 — V3 =400.2705-1495.9458 = -1095.6753m/s

Problem 16. — A shock tube is 10 m long with a 30-cm diameter. The high-pressure
section is 4 m long and contains air (y = 1.4, R = 287 J/kg'K) at 200 kPa; the low-
pressure section is 6 m long and contains air at 5 kPa. A test object is placed in the low-
pressure section, 3 m from the diaphragm. Both sections initially contain air at 25°C. The
diaphragm is suddenly ruptured, which causes a shock to move into the low-pressure
section. Determine the following:

(a) Shock velocity

(b) Contact surface velocity

(c) Mach number of air behind shock

(d) Time between passage of normal shock and contact surface over test object

(e) Reflected shock velocity

(f) Sketch a x-t diagram showing the initial shock, reflected shock, and contact

surface as functions of time.

p =200 kPa p=5kPa

(a) For a diaphragm pressure ratio = 40, we may use the method described in Example
5.6 to find that the shock pressure ratio is,

P2 _ 47726
P

With this pressure ratio and the speed of sound in Zone 1, (a; = 346.0295 m/s), we can
find the shock speed from Eq. (5.8)

S=711.9821m/s
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2
b) Vo= |- _2A7os)f, - [=453.1740 m/s
y+1{ s 2.4 (2.0576)

T, = [EJTl =1.7348(298) = 516.9704 K
T

(c)
ay = +/(1.4)(287)(516.9704) = 455.7480m /s
i _V, _453.1740 _ oo,
a, 455.7480
@ oA=L 3 S 006620 —.004214 = 0.002406

TV, S 453174 711.9821

(e) From Eq.(5.21)

2 2
Sp = —Vy+—22 4531744220748 =349.3752m/s
S-V, 711.9821-453.174
(H
t A reflected shock
Sk

contact surface

T

incident shock
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Chapter Six

OBLIQUE SHOCK
WAVES

Problem 1. — Uniform airflow (y = 1.4, R = 287 J/kg-K) at Mach 3 passes into a concave
corner of angle 15°, as shown in Figure P6.1. The pressure and temperature in the
supersonic flow are, respectively, 72 kPa and 290 K. Determine the tangential and normal
components of velocity and Mach number upstream and downstream of the wave for the
weak shock solution. Also find the static and stagnation pressure ratios across the wave.
How great would the corner angle have to be before the shock would detach from the
corner?

A=15°

Figure P6.1

For M; =3.0, 8=15°: Collar’s method (refer to Example 6.2 for details of the
method) is used to find the shock angle. The following provides the iteration details.

Collar's Method

A B C B-AC |[1"™ guess
8.0000 | 26.0447 3.1618 0.7503 2.8284

Newton-Raphson
Method
iteration Xold f fprime Xnew

1 2.8284 26.0447 | 33.8858 | 2.0598
2 2.0598 6.4264 17.7542 | 1.6979
3 1.6979 1.1765 11.3848 | 1.5945
4 1.5945 0.0871 9.7107 | 1.5856
5 1.5856 |6.3779E-04| 9.5684 | 1.5855
6 1.5855 |3.5182E-08| 9.5674 | 1.5855
7 1.5855 |0.0000E+00| 9.5674 | 1.5855
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cotO tan0 angle (deg)
weak | 1.5855 0.6307 32.24
strong | 0.0977 10.2387 84.42
neg root| -4.8450 -0.2064 -11.66

So for the weak solution, the shock angle is 32.24°
M, | = M sin 0 = 3sin(32.24°) = 1.6004

From the shock tables at this Mach number M ,,» = 0.6683, p2/p; = 2.8215, To/T; = 1.3882
and po2/po1 = 0.8950. From Eq.(6.9b)

__ My, 06683 oo

M~ = -
2" sin(0-38) sin(32.24-15)

Too be sure, these could also be computed from the oblique shock relations of this
Chapter [Egs.(6.10), (6.12), (6.13) and (6.17)].

From the isentropic tables at M; = 3.0, T/T, = 0.3571

290
Ty =Tor = =8121K

Also,
T, = (1.3883)T; = (1.3883)290 = 402.6K

So the speeds of sound may be computed as

a; = [YRT| =20.05+290 =341.4m/s

ay =[YRT, =20.051/402.6 = 402.3m/s

And the normal velocity components are

Vo =Mja; =1.6004(341.4) = 545.9 m/s

Vo =Mpa, = 0.6683(402.3) = 268.9 m/s
Also,

V| =Mja; =3.0(341.4)=1024.2 m/s
V, = Mjya, =2.2549(402.3) = 907.1m/s

The tangential velocity component can be computed from either Eq.(6.6a) or (6.7a)
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V, = V] cos® = 1024.2cos(32.24°) = 866.3 m/s

Vi =V, cos(0-8)=907.1cos(32.24 —15) = 866.3 m/s

v Ve 8663
47, 3414 7
\ .

My, _ Ve 8063, 4
a, 4023

From Table 6.4 for y = 1.4 and M, = 3.0, nax is found to be 34.07°.

Problem 2. — In a helium (y = 5/3) wind tunnel, flow at Mach 4.0 passes over a wedge of
unknown half-angle aligned symmetrically with the flow. An oblique shock is observed
attached to the wedge, making an angle of 30° with the flow direction. Determine the
half-angle of the wedge and the ratios of stagnation pressure and stagnation temperature
across the wave.

Method 1: Use of normal shock tables.
M, = 4sin(30°)=2.0

Using this value we can enter the normal shock table at a y =5/3 to find

T2 50781
T

Po2 _ 763
Po1
T2y
Tol

M,, = 0.607

Entering the isentropic flow table at M; = 4 we find that

i= 0.1579
ol

Thus,
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T, (T,)T
-2 (JJ[_lJ =(2.0781)0.1579) = 0.3281
Toz (Th \To1

Entering the isentropic flow tables with this temperature ratio provides the downstream
Mach number

M, =2.479

M .
sin(0—8) = M—nz = % = 0.2449
2 .

0-0=30-6=14.17°
Therefore, the deflection angle 6 = 15.83°.

Method 2: Oblique shock equations

Y M, 0 (5} P2/pi P2/p1 T,/T, Po2/Pot M,
1.6667 | 4.0000 30.0000 15.8241 4.7500 2.2857 2.0781 0.7630 2.4785

Problem 3. — A wedge is to be used as an instrument to determine the Mach number of a
supersonic airstream (y = 1.4); that is, with the wedge axis aligned to the flow, the wave
angle of the attached oblique shock is measured; this permits a determination of the
incident Mach number. If the total included angle of such a wedge is 45°, give the Mach
number range over which such an instrument would be effective.

Refer to Example 6.3. That example concerned the prediction of the minimum upstream
Mach number to produce an attached oblique shock. This is a similar problem; only here,
the half angle A = 45/2 = 22.5°. So for a deflection angle 6 of 22.5° and y = 1.4,
computations following Example 6.3 are as follows:

Iteration| 0 (deg) O(rad) 1(0) df/do Onew | O (deg) 1/M;* M,
1 45.00000 | 0.78540 [ 0.85858 [-1.41421] 1.39250 |79.78466| 0.13234 | 2.74886
2 79.78466 | 1.39250 | -0.64460 |-1.72985] 1.01987 |58.43444| 0.24273 | 2.02971
3 58.43444 | 1.01987 |3.2111E-01]-2.88069 ] 1.13134 [64.82124| 0.25692 | 1.97287
4 64.82124 | 1.13134 |-6.5888E-03|-2.92848 ] 1.12909 [64.69233| 0.25693 | 1.97284
5 64.69233 | 1.12909 |3.5501E-06]-2.93161] 1.12910 |64.69240| 0.25693 | 1.97284
6 64.69240 | 1.12910 |9.9343E-13]-2.93161] 1.12910 |64.69240{ 0.25693 | 1.97284
7 64.69240 | 1.12910 |0.0000E+00]-2.93161] 1.12910 [64.69240( 0.25693 | 1.97284

Thus as long as M; > 1.97284 the shock will remain attached to the wedge.
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Problem 4. — The leading edge of a supersonic wing is wedge shaped, with a total
included angle of 10° (Figure P6.4). If the wing is flying at zero angle of attack,
determine the lift and drag force on the wing per meter of span. Repeat for an angle of
attack of 3°. Assume the wing is traveling at Mach 2.5.

E—

Figure P6.4

Case I: Zero angle of attack:

First draw a figure (exaggerated) showing the forces acting on the surface:

- ¢ Yo-a

COSA
pA \A Lu
y

R A

X C— 100
Ly 10°

10°
Dy

Lift = ZFY =pAsinA—pAsinA =0

For M| =2.5, &=5° using Collar’s method we find 0 = 27.4227°. With this

shock angle and the Mach number we can determine the pressure ratio across the
shock to be

P2 _13799, peurtace =13799 poy

P1

Drag force = Z Fy =pAsinA+pAsinA =2pAsinA
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Thus,

Drag =2(1.3799p00)( 2 J sin 5°=0.4829p,,

cos 5
Case II: Angle of attack = 3 *:
For upper surface: 6 =2° and M; = 2.5, we find 6 = 25.0496°. So that
M, =M;sin0 =2.5sin 25.0496 =1.0585

Using the normal shock relations we obtain

PU _1.1405
Peo

For lower surface: 6 = 2° and M; = 2.5, we find 6 = 30.0053°. So that

M, =2.55in30.0053 =1.2502

PL _ 1 6568

Powo

Drag =py Asin 8°+py Asin 2°

= (1.6568p., ) sin 8°+(1.1405p,, ) sin 2°
cos5° cos5°

=0.4629p,, +0.0799p,

=0.5428p, with p,, in kPa, Drag in kN/m

. 2
Lift =pg. cos 8°—py cos 2°
cos5° cos5°

= (1.6568p., ) cos 8°—(1.1405p,, ) cos 2°

cos5° cos5°

=3.2939p,, —2.2883p,,

=1.0056p,, with p, in kPa, Lift in kN/m
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Problem 5. — An oblique shock wave is incident on a solid boundary, as shown in Figure
P6.5. The boundary is to be turned through such an angle that there will be no reflected
wave. Determine the angle f3.

M;=3.5

6 =45°

Figure P6.5

The given information M1 = 3.5, y = 1.4 and 0 = 45°is inserted into Eq.(6.18)

M12 sin? 01

Y;LIM% —(Mlzsinze—l)

tan® = cot©O

And we find that & = 28.1578°. If the wall is turned through the same angle then there
will be no need of a reflected oblique shock to turn the flow further.

Problem 6. — Explain in physical terms why the angle of incidence and the angle of
reflection of a reflected oblique shock are not equal.

Whereas each shock turns the flow through the same angle, the shocks are of
different strengths so the wave angles must be different.

Problem 7. —A converging-diverging nozzle is designed to provide flow at Mach 2.0.
With the nozzle exhausting to a back pressure of 80 kPa, however, and a reservoir
pressure of 280 kPa, the nozzle is overexpanded, with oblique shocks at the exit (Figure
P6.7). Determine the flow direction and flow Mach number in region R with air the

working fluid.
J—
Very Large
Reservoir
Po = constant R
—
R

Figure P6.7
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At the exit plane,

M, =M, =2.0, p, =p; = [p—ljpo = (0.1278)280 = 35.7840 kPa

Pol

Across shock, P2 = Pb _ 80

= =22356
pI pe 35.7840

Entering the normal shock tables at this pressure ratio we find, M; =1.4350

M, =M;sin0 so 0= sin_1(1'4350j = 45.8485°
Now at M,;
T—2 =1.2774 Also at M;=2.0 L =0.5556.

T To1

Therefore, T _ (T—zJ(ij[hJ =(1.2774)0.5556)(1.0) = 0.7097

Too \Ti A\ Tor A\ To2

At this static to total temperature ratio we can find M, = 1.4301

) M .
sin(0—-8) = an = (1) Zif)él‘ =0.5072
2 .

§=0—sin"1(0.5072) = 45.8485 —30.4800 = 15.3685° in R

Problem 8. —(a) Oblique shock waves appear at the exit of a supersonic nozzle, as shown
in Figure P6.8. Air is the working fluid. If the nozzle back pressure is 101 kPa,
determine the nozzle inlet stagnation pressure. The stagnation temperature of the flow is
500 K. Nozzle throat area is 50 cm?’, and nozzle exit area is 120 cm®. (b) Find the
velocity at the nozzle exit plane. (¢) Find the mass flow rate through the nozzle.
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Reservoir

Figure P6.8

Agit A
(a) o= %= 20 o4
Athroat A 50

At this area ratio, the Mach number at the exit plane is M, = M; = 2.3986, which
with a shock angle 6 = 30°, when used in Eq.(6.18), the deflection equation gives

5=6.6970°and PZ = 15114, Thus, p; = — 0 — 66.8255 kPa. Now at M; =
PI 1.5114
2.3986, 2L —0.0685. Therefore,
Pol
pop = 288255 _ 975 5549 kpa
0.0685

T T
(b) —2=04650 Thus, T, = (—GJTO =(0.4650)500 = 232.5000K
T T

() ()

a, =20.05,/T, =305.7214m/s

V. =M.a, =2.3986(305.7214) = 733.3034 m/s

(c) m= (pAV)throat
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m :[M}A M.a
R(T T |
~ (0.5283)975.5542)

= (50107 }1.0)20.05,/(0.8333)500
(0.287)(0.8333)500 © ) (0.8333)

~ (43100 kg/m® J50x10* m? [409.2607 mys)

= 8.8196 kg/s

Problem 9. — A supersonic flow leaves a two-dimensional nozzle in parallel, horizontal
flow (region A) with a Mach number of 2.6 and static pressure (in region A) of 50 kPa.
The pressure of the atmosphere into which the jet discharges is 101 kPa. Find the
pressures in regions B and C of Figure P6.9.

Figure P6.9

p, =101 kPa, P2 _ % =2.0200. At this pressure ratio we can find the normal

b1
component to the shock, Mpa = 1.3690. Thus, at M = 2.6 and M4, we can find
the shock wave angle,

0= sin_l(lz\/[/l—nAj = sin1(0.5265) = 31.7719°
A

M, =2.6, 0=31.7719° - 8 =11.0346° So second shock must turn flow back

by 11.0346°. With the flow angles and M,, the temperature ratio across the shock
is found to be

T Tg (Tg Y Ta YT
—B _12348 —B_ (—B)(—Aj(—lj = (1.2348)(1.0)(0.4252) = 0.5250
Ta To \TaA AT N\ T,

Using this value with the isentropic flow relations gives
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Mg =2.1269

For M =2.1269, 6=11.0346° — 0 =38.0563°

PC _1.8388 sopc =(1.8388)101 = 185.7188 kPa

PB

Problem 10. — For the two-dimensional diffuser shown in Figure P6.10, find V; and p,;,

M, =23
P =50 kPa

Figure P6.10

For an oblique shock with 6 =3°, M, =2.3 we can determine the shock wave

angle using Collar’s method: 6 = 28.0886°. Also at the freestream Mach number,
T/ T o = 0.4859 and po/po = 0.0800.

50
= —625.0000 kPa
Po =70200

There is enough information to determine the Mach number downstream of the

T
shock M, = 2.1823 as well as several other ratios, viz., —2 -1.0540 and
1

Po2 _ (9994, Across the normal shock, at M, = 2.1823, 293 _ 0.6362 and M;
Pol Po2

=M; =0.5495

poj = (p03 J(poz j{ Pol jpow =(0.6362)(.9994)(1.0)625.0000 = 397.3864 kPa

Po2 Pol Pow
T
Now at M; = 0.5495, T_ =0.9430
(6]
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T, .

T, | T
T, = [_IJ[T_OJTOO = (0.9430)(0 41859j273 =529.8189 K

a; =20.05,[T; = 461.5068m /s

V; = Mja; =(0.5495)461.5068 = 253.5980 m/s

Problem 11. — A two-dimensional supersonic inlet is to be designed to operate at Mach
2.4. Deceleration is to occur through a series of oblique shocks followed by a normal
shock, as shown in Figure 6.12. Determine the loss of stagnation pressure for the cases of
two, three, and four oblique shocks. Assume the wedge turning angles are each 6°.

Case I:
Two oblique shocks:
M, =2.1589
M, =2.
s=6° P02 _09948
Pol
M3 =1.9354
M, =2.1589
5= 6° Po3 _ 9959
Po2
Normal Shock
M; = 1.9354, Lot _ 7510
Po3
Pod _ Pod Po3 Po2 _ (4 7510)(0.9959)(0.9948) = 0.7440
Pol  Po3 Po2 Pol
Three oblique shocks:
My =1.7240
M3 =1.9354
5= 6° Po4 _ 9966
Po3
Normal Shock

M; = 1.7240, 205 _ 0 8457
Po4
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Pos _ Pos Pod Po3 Po2 _ (0 8457)(0.9966)0.9959)(0.9948) = 0.8350
Pol  Po4 Po3 Po2 Pol

Four oblique shocks:

Ms =1.5184

Pos _.9972

My = 1.7240}
Po4

0=06°

Normal Shock

Ms = 1.5184, 206 _ 9239
Pos

Po6 _ Po6 Pos Pod Po3 Po2 _ () 9239)0.9972)(0.9966)0.9959)(0.9948) = 0.9097
Pol  Po5 Po4 Po3 Po2 Pol

Problem 12. — Two oblique shocks intersect as shown in Figure P6.12. Determine the
flow conditions after the intersection, with y = 1.4.

Figure P6.12

At M, =22, 0=40°

T
§=13.9176°, M, =1.6691 2 =2.1664 T—2=1.2638
) I

At M, =1.6691, 6=13.9176°

T
M; =1.1402, 3 220253 -3 =1.2359

P2 T,

P3 _P3 P2 _(2.0253)2.1664)=4.3876
PI P2 PI
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P3
P

Ps p; =(4.3876)70 =307.1327 kPa

T; )T
Ty=| = (—OJTI - (0.7936)[ ! j270 = 421.7123K
T, \ Ty 0.5081

a3 =20.05,/T; =411.7395m/s

V3 =1.1402(411.7395) = 469.4653 m/s

Problem 13. — Show that the entropy increase across an oblique shock is given by,

(Ref. 7)
A 2 1 1 2 !
2 [—yMlzsinze—y j Lk 5>
Cy v+l v+ v+1 (y+1)Mfsin” 0
From Eq.(6.13)
v/(y=1) 1/(y-1)
_As LHM% sin” 0
Po2 —e R = 2 1
Pol 1+Y—_1M12 sin” 0 AM% sinze—y—_1
2 v+1 y+1

and since ¢y, = R/(y — 1), the above can be written as

_ 1/(r-1)
a1+ M2 sin 0 5 e
eR = +% {—YMIZ sinZO—Y—}
LM%sinze y+1 y+1
2
So
3 ¥
As 1 1+ 1Mlzsinze 1
—= In +21 ( Y Mlzsinze—y—}
R (y-1) LMlzsinze Y+ y+1
2
Or
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Y
E:ln (ﬂM%sinze—y_lj y—1+ 22 3
y+1 Y+ v+l (y+1)M7sin” 0

Problem 14. — Repeat the computations of Example 6.2. However, instead of using the
successive substitution method proposed by Collar, and described in Section 6.3, solve
the problem using the Newton-Raphson method.

Y M, A B C B-AC | 1™ guess
1.3 2.0 3.0000 2.9143 0.8870 0.2534 1.7321
Newton-Raphson Method
iteration Xoid f fprime X

1 1.7321 2.9143 9.0725 1.4108

2 1.4108 0.5945 5.4740 1.3022

3 1.3022 0.0591 4.3974 1.2888

4 1.2888 0.0009 4.2690 1.2886

5 1.2886 0.0000 4.2671 1.2886

Problem 15. — For the two-dimensional case shown in Figure P6.15, determine M3 and

P3. Y= 1.4.
50
....................... 1 50
p1 =10 kPa
p3=7?
- > M3 =7
M1 =228 — >
Figure P6.15
0 =24.6427°
M, =2.8
M, =2.5677
60=5°
P2 _1.4235
P1
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0 =26.7305°
M, =2.5677

M; =2.3542
§=5°

P3 _ 13895

p2

py =3 P2 (1.3895)1.4235)10 = 19.7795kPa
P2 Pi1

Problem 16. — Prove that: (a) at the minimum shock angle, M, = M; and (b) at the

maximum value of the shock angle, Eq.(6.17) becomes Eq.(4.9)

Y1 02
M} = M 4 Micos™0 (6.17)
’ 29 -1 1+ 7~ M2sin20 .

(a) at the minimum shock angle
The minimum shock angle is the angle of a Mach wave for which 6 = sin”'(1/M,).

Accordingly, (M;sinf)* = 1 and (M cos0)* = M,* — 1. Therefore,

y-1,2
1+7M1 M12—1
+

Y=1\,2
2 I+ o) Mj M12c0520 o)
Mz = 2.2, (Y=1) Y12 20 (v-1) y-1
yMisin“0— 1+ Misin“0  y-— 1+ —
2 2 2 2
2 e 2 o 2 e
y+1

y+1 y+1 y+1

(b) at the maximum value of the shock angle

At the maximum shock angle 6 = 7/2 so that (M;sinf)* = M;* and (M;cos0)* = 0

Therefore,
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y-1,.2 y-1,02
1+ ’ Ml M%COSze 1+ ) Ml

+0

M3 =

_I_ =
yM%sinZO—(ygl) 1+y;1M125in29 YM%_(Y;U

which is Eq.(4.9).

Problem 17. —Develop Prandtl’s relation for oblique shocks from conservation principles.

Begin by writing the energy equation, Eq.(6.5¢), as

h, =

2 2 2 2 2
a9 :( Y Jp_1+vnl+vt :( Y Jp_2+vn2+vt
(y-1) \y-1)p 2 v—1)p, 2

Thus,

_ag y -1 ( 2 2)
P2=P2|—"7| 5 Vo + Vi

v Y

2

a -1 2 2
P1=p1 —O—LY—](VM + Vi )

v\ 2y

From the momentum equation, Eq.(6.5b),

2 2
P2 —P1 =P1Val —P2Vn2

Combining these yields

2 2
P> a_O_(Y_HjVI%Z _(y_ljvtz =pi a_O_(Y_HjVI%I _[y_ljvtz
Y 2y 2y Y 2y 2y

Rearrangement gives
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2 2
P1Vnl —P2Vn2 _ 2 az_(v—ljvg
- (6]
P2 —P1 y+1 y+1

Using the continuity equation, Eq.(6.5a), the expression can be simplified to
obtain Prandtl’s relation for an oblique shock wave

2 o [v-1),2
V.iV.p =——a; —| — |V
nl Yn2 Y+1 0 (Y+1J t

Problem 18. — The largest deflection angle for the limiting upstream Mach number,
M, — o, can be found by differentiating Eq.(6.26), setting the result to zero and then
solving for 0. In other words, verify that Eq.(6.27) is correct.

From Example 6.4 it was shown that

tang =529 (6.26)
Y +c0s20

Therefore,

d(tan ) _ 2(y + c0s26)cos 26 — sin 26(—sin 26)2 _0

do (y + cos 26)2

Cancel the 2 and rewrite the numerator as

ycos29+cos2 20+sin” 20 = vYc0s20+1=0

Therefore,

cos29:cos2 9—sin2 0 =l—2sin2 6:—l
Y

So that
29 Y+l
2y

sin

Problem 19. — In general, the angle of incidence, 0;, and the angle of reflection, 0,, of an
oblique shock reflected from a flat surface are not equal. However, see Refs. 8 and 9,
there is an angle 0" such that the two angles are equal. Also, if ;< 0", then (0, — 8) < 6;,
and if 6; > 6*, then (0; — 8) > 6;. Computationally verify that for M; = 2, 3 and 4 at
v = 1.4, the angle of incidence and the angle of reflection of an oblique shock reflected
from a flat surface will be equal if
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At M; =2 and y = 1.4, the computations yield the following values

At M; =3 and y = 1.4, the computations

Y M; 8(deg) d(deg) M,
14 2.0 -39.2315 -9.9242 1.6433
M, 0(deg) &(deg) M;
1.6433 49.1557 9.9242 1.2910
incidence | reflection |= (0 -9)
-39.231520 | 39.231520

yield the following values

Note the flow in region 3 is just barely supersonic

Y M, 6(deg) d(deg) M,
14 3.0 -39.2315 -21.2229 | 1.9282
M, 0(deg) 6(deg) M;
1.9282 60.4544 21.2229 1.0221
incidence | reflection |=(0-9)
-39.231520 | 39.231520

At M; =4 and y = 1.4, the computations yield the following values

And as seen the incident and reflected angles are not equal. Also M3 is subsonic, which
is possible for a weak shock. However, when we use the shock shock solution instead,

the following is obtained

Y M; 6(deg) d(deg) M,
14 4.0 -39.2315 -25.6060 | 2.1656
M, 0(deg) 6(deg) M;
2.1656 64.3940 25.6060 0.9349
incidence | reflection |=(0-9)
-39.231520 | 38.788033

Y M, 6(deg) d(deg) M,
14 4.0 -39.2315 -25.6060 | 2.1656
M, O(deg) S(deg) M;
2.1656 64.8375 25.6060 0.9239
incidence | reflection |=(0-9)
-39.231520 | 39.231534
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Problem 20. — Complete the computations of Example 6.7, i.e., use the computed flow
angles to determine the deflection angles, and with M; and M,, determine all parameters
in regions 3 and 4 of Figure 6.18.

region 1 to region 3

Y M, o4 P2/P1 P3/p1 T5/T, Po3/Pot
1.4 2.0 0.00 1 1 1 1
13 0 P3/p1 P3/P1 T5/T, Po3/Po1 M;

-5.7977 | -35.0485 | 1.3723 1.2525 1.0957 | 0.9968 | 1.7928

region 2 to region 4

Y M, ap p2/p P2/p1 Ty/Ti | Por/Por
1.4 3.0 -10.00 1 1 1 1
S 0 p4/p2 p4/p2 TJT, Pos/Po2 M,

4.2023 | 22.5101 1.3723 1.2525 1.0957 | 0.9968 | 2.7889

85 | -57977) S| 42023

o 0.00000 o -10.0000

a3 -5.7977 o4 -5.7977
d13=03—0y 024=04—0ly

Problem 21. — Derive the pressure-deflection equation, i.e., Eq.(6.30).
The expression for the pressure ratio across an oblique shock, is given in Eq.(6.10)

P2 _ 2yM125in29_y—1
] y+1 v+1

This can be rearranged to obtain
MZsin20-1= (Y—“Ip—ij
2y \pi

The following identity is also used in this development
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-2 - 2 2 - 2
Cote:cos€)_i\/l—sm E)Zi 1 —sin 6:+ Ml(l—sm 9)—1+1
sin” 0

sin@  sin@ | MPsin?o-1+1

_ i\/(M% ~1)-[M7sin®0-1)

(M sin?6-1)+1
Now the deflection angle is connected to the shock wave angle and the upstream Mach

number by Eq.(6.18)

2. 20
Mj sin“ 0-1 6.18)
Ml —(Ml sin? 6 — 1)

tand = cot O
y+1
2

Dividing the expression on the right into two pieces

[Y 1}(1’2 1] (p2 1]
22
Mj sin“ 01 2y \pi P1

y_'_lMl—(Ml sin? 0 — l) L’HM%_ v+l P2 4 1+yM2 P2
2 2 2y A\ p1 P1

2 _q)-(r*Ly P2 _
Cote_+\/(M12—l)—(1\2/llzsin29—l)_+ (w7 -1) (zy J[pl 1}
(Ml sin 9—1)+1 (YHJ(pZ—IJH

(ZY )(M1 1) P2 (2V ]M%—V_l—pz
v+l P _, \v+l v+l py

B —1
P y+1 y+1 pg

=

Combining these two pieces yields the pressure-deflection equation
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2 -1
P2 4 ( v Mlz—y ]_p2
P1 y+1 v+1) p;

(1+yM12)—p—2 (HjerZ
P1 y+1) p;

tand = tan(oy — oy )=+ (6.30)

Problem 22. — Repeat the computations of Example 6.8 to find the angle the slip line
makes with the horizontal for y = 1.4 and 1.667. How does the angle vary with y?

Results of the computations for all three specific heat ratios (1.3, 1.4 and 5/3) is as

follows:
y=13
region 1 to region 2 to region
Y M, 812 012 P2/P1 p2/p1 Ty/Ti | Por/Por
1.3000 | 3.5000 10.0000 |23.9901 | 2.1587 1.7862 1.2085 | 0.9500
M, Or4 054 P4/p2 P4/p> TJ/T) | Pos/Pa2 M,

2.9976 | -14.8926 |-31.4440| 2.6339 | 2.0575 | 1.2802 | 0.9032 | 2.3580
region 1 to region 3 to region

Y M, 013 0:3 Ps/p1 P3/p1 T3/T1 | Pos/Por
1.3000 | 3.5000 | -15.0000 (-28.5011| 3.0227 2.2615 1.3366 | 0.8598
M; O35 035 ps/p3 Ps/P3 Ts/Ts | Pos/Pa3 M;
2.7361 10.1074 |29.1782 | 1.8810 1.6152 1.1646 | 0.9719 | 2.3422
IDownstream|
flow angles
8ps  |-14.8926| 8 10.1074
ol 10.00000 o3 -15.0000
Ol -4.8926 Os -4.8926
024=04—0l; d35=0ls—03

y=14

region 1 to region 2 to region

Y M, di2 ) P2/p1 P2/p1 Ty/T1 | Pe2/Poi
1.4000 | 3.5000 10.0000 |24.3840 | 2.2693 1.7675 1.2839 | 0.9463
M, 04 6y4 P4/P2 P4/p2 T4/Ty | Pos/Poz M,

2.9044 | -14.8780 |-32.8511] 2.7293 | 1.9905 | 1.3711 | 0.9042 | 2.1906
region 1 to region 3 to region

Y M, d13 013 P3/p1 P3/p1 T3/Ti | Pos/Por
1.4000 | 3.5000 | -15.0000 |-29.1916| 3.2331 2.2093 1.4634 | 0.8528
M; O35 635 Ps/P3 Ps/P3 Ts/T; Pos/Po3 M;

2.6053 | 10.1220 ]30.8502 | 1.9157 | 1.5784 | 1.2137 | 0.9726 | 2.1708
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10.1220

-15.0000

vy=15/3
Y M, 012 01 P2/p1 P2/p1 Ty/T1 | Pe2/Pot
1.6667 | 3.5000 10.0000 |25.4710| 2.5820 1.7211 1.5002 | 0.9366
M, 64 024 P4/P2 P4/p2 TJ/T) | Pos/Pa2 M,
2.6768 | -14.8530 |-36.9465| 2.9858 1.8528 1.6115 | 0.9057 | 1.8187
Y M, 013 613 p3/p1 P3/ps T3/Ti | Pes/Pat
1.6667 | 3.5000 | -15.0000 (-31.1387| 3.8446 2.0879 1.8414 | 0.8356
M; O35 035 ps/p3 Ps/Ps Ts/Ts | Pos/Pa3 M;
2.2982 10.1470 |35.7646 | 2.0052 1.5022 1.3349 | 0.9740 | 1.7900

10.1470

-15.0000

As can be seen, the angle of the slip line (o4 = as) is diminished slightly as v is increased.
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Chapter Seven

PRANDTL-MEYER
FLOW

Problem 1. — Use a trigonometric development to demonstrate that for an expansion flow
around a convex corner, Vp, > Vy; (see Figure 7.2 in Section 7.2).

Now
Vv
tan 0 = -0l
Vi
tan(@ + A) = h
Vio

The momentum equation in the tangential direction reveals that Vi, = Vy,. Therefore,
equating the above brings

_ tan(0 + A)

n2 tan O

nl

Since, tan(0 + A) > tan0, it follows that V,, > V.

Problem 2. — A uniform supersonic flow of air (y = 1.4) at Mach 2.6, with stagnation
pressure of 5 MPa and stagnation temperature of 1000 K, expands around a 20° convex
corner. Determine the downstream Mach number, the stagnation pressure and
temperature, and the static pressure and temperature.
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M| =2.6, v =414147°

vy = vy +20 =61.4147°

Using the solver developed in Example 7.1, we obtain

M, =3.6878
P02 =Po1 =5 MPa
T, =Ty =1000K

Now from the isentropic flow relations

12 _ 02688, so T,=2688K

02

P2 _0.0101, p,=5(0.0101)=0.0505 MPa =50.5 kPa
Po2

Problem 3. — Integrate Eq.(7.7). To accomplish this first use a transformation in which
x> = M? — 1 and then use the method of partial fractions to break the transformed
integrand into two groups of terms, which may be integrated using:

a®+b’u® b a
Now

YM? -1 |dM

M

do=—

1+Y—_1M2
2

Let x>=M?—1 or M* =1 + x* Therefore, 2MdM = 2xdx or

dM _ xdx
M 14x?
Perform the transformation of the terms on the right to obtain
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2
do = X xdx . 2X 1

TSI P NS B

Next use partial fractions to divide the right hand side into two groups of terms

A B 2x2
N _

(+D)+(-1x3] +x23) [(y+D+(-1x3]1+x2)

So,
A+Ax? +(y+1)B+(y—1)Bx? = 2x2

A+(y-1)B=2
A+(y+1)B=0

Solving this pair yields: A =y + 1 and B = —1. Thus, the transformed equation can be
arranged into two groups and leads to the following two integrals:

YM? -1 |dM y+1 1

- = — dx — d
I Ylez M Kv+U+W—4k2]X a+x2>x

- [ ax
[1+((V_3x2] (1+x%)
Y+

Making use of the given integral identity we get

—f IM? -1 dM=_{ Y_“tan—{ V—_I(Mz—l)}—tan—l( Mz—lj}

YL [ M y-1 y+1
2

Problem 4. — A reservoir containing air (y = 1.4) at 2 MPa is connected to ambient air at
101 kPa through a converging-diverging nozzle designed to produce flow at Mach 2.0,
with axial flow at the nozzle exit plane (Figure P7.4). Under these conditions, the nozzle
is underexpanded, with a Prandtl Meyer expansion fan at the exit. Find the flow direction
after the initial expansion fan. How does this turning angle affect the net axial thrust
forces exerted by the fluid on the nozzle?
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Figure P7.4
At M =2.0, P _ 0.1278,  v; =26.3798°
Pol
P2 101 °
—==——=0.0505, so M, =2.595, and therefore v, =41.3044
Por 2000

The angle through which the flow turned is:
o=V, -vy =41.3044 -26.3798 =14.9246°

The turning does not affect thrust, because the expansion occurs outside nozzle.

Problem 5. — Develop a computer program that will yield values of v and p versus M for
Prandtl-Meyer flow for y = 1.3 over the range M = 1.0 to M = 2.5, using Mach number
increments of 0.1.

A table of the Prandtl-Meyer function and wave
angle versus Mach number for y=1.3

M v(rad) | v(deg) | p(rad) | p(deg)
1.000 0.0000 | 0.0000 1.5708 | 90.0000
1.100 0.0244 | 1.4004 1.1411 | 65.3800
1.200 0.0654 | 3.7454 | 0.9851 | 56.4427
1.300 0.1138 | 6.5230 | 0.8776 | 50.2849
1.400 0.1665 | 9.5414 | 0.7956 | 45.5847
1.500 0.2215 | 12.6928 | 0.7297 | 41.8103
1.600 0.2777 | 159089 | 0.6751 | 38.6822
1.700 0.3341 | 19.1436 | 0.6289 | 36.0319
1.800 0.3903 | 22.3645 | 0.5890 | 33.7490
1.900 0.4459 | 25.5491 | 0.5543 | 31.7569
2.000 0.5006 | 28.6809 | 0.5236 | 30.0000
2.100 0.5541 | 31.7483 | 0.4963 | 28.4369
2.200 0.6064 | 34.7433 | 0.4719 | 27.0357
2.300 0.6573 | 37.6605 | 0.4498 | 25.7715
2.400 0.7068 | 40.4962 | 0.4298 | 24.6243
2.500 0.7548 | 43.2486 | 0.4115 | 23.5782
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Problem 6. — A uniform supersonic flow of a perfect gas with y = 1.3 and Mach number
3.0 expands around a 5° convex corner. Determine the downstream Mach number, ratio

of downstream to upstream velocity, and ratio of downstream to upstream stagnation
temperature.

T
For My =3, y=13, v; =55.7584°, and —L = 0.4255

ol

T
vy = v +5=60.7584°, so M, =3.2261, and T—2 =0.3904
02

—02 1.0, Vo (M |fay|_(My | T, _ 3.2261 /0'3904:1_0301
TOl Vl Ml al Ml Tl 300 04255

Problem 7. — For flow at Mach 2.5 and y = 1.4 over the symmetrical protrusion shown in
Figure P7.5, find M,, M3, My, T», T3, and Ta.

Figure P7.7
0 =33.8016°
M; =25 M, =2.0022
0=12° vy =26.4404°
D 04444 12 Z 5550
T01 T02

V3 = vy +8|_y =26.4404 + 24 = 50.4404°

M; =3.0356
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M3 =3.0356 | 6 =28.9964°

§=12° M, =2.4338
T—320.3517 T—4: 0.4577
03 T04

T 1
—T2:T3:T4:(A1)T1:( j300=675.0675K
o e e T, 0.4444

T, =0.5550(675.0675) = 374.6625 K
T; = 0.3517(675.0675) = 237.4212 K

T, = 0.4577(675.0675)=308.9784 K

Problem 8. — A uniform supersonic flow of a perfect gas with y = 1.4, Mach number 3.0
and an upstream static pressure of 100kPa flows over a geometry as shown in P7.8.
Determine the downstream static pressure for both profiles.

p1 = 100 kPa
M1 =3

(a) Expansion Fan-Oblique Shock Geometry (b) Oblique Shock- Expansion Fan Geometry

Figure P7.8

Divide the flow field of both cases shown in Figure P7.8 into 3 regions of uniform flow
with region 1 on the left and region 3 on the right.

Case (a)
From the isentropic and Prandtl-Meyer relations at y = 1.4 and M; = 3.0

PL _ 002722, v, =49.7573°
Po1
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Region 2 is reached by passing through an expansion fan in which the flow is turned 10°.
Therefore,

vy =v; +10=159.7573°, so M, =3.5783 andp—2=0.01174
Po2

Region 3 is reached by passing through an oblique shock in which the flow is turned back
10°. Therefore, using the oblique shock relations

M; =2.9653, 23 =23049 and Po3 = P03 Po2 _ (9 9433)(1)=0.9433
p2 Pol  Po2 Pol

;=23 P2 Poz Pol =(2-3049)(0.01174)(1)( : j100=99.4105kPa
P2 Po2 Pol Pl 0.02722

Case (b)
Region 2 is reached by passing through an oblique shock in which the flow is turned
through 10°. Therefore, using the oblique shock relations with y = 1.4, M; = 3.0 and
d=10°
M, =2.5050, 22 =2.0545 and P02 - 0.9631
P1 Pol

From the isentropic and Prandtl-Meyer relations at y = 1.4 and M, = 2.5050

P2 _0.05807, v, =39.2402°
Po2

Region 3 is reached by passing through an expansion fan in which the flow is turned 10°.
Therefore,

vy =vy +10=49.2402°, so Mj3 =2.9733 atndp—3 =0.02834
Po3

py=-t3 Pod P2 P2, =(0.02834)(1)( ! j(2.50545)100:100.2661kPa
Po3 Po2 P2 P1 0.05807

Problem 9. — A two-dimensional, flat plate is inclined at a positive angle of attack in a
supersonic air stream of Mach 2.0 (Figure P7.6). Below the plate, an oblique shock wave
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starts at the leading edge, making an angle of 42° with the stream direction. On the upper
side, an expansion occurs at the leading edge.

(a) Find the angle of attack, AoA, of the plate.

(b) What is the pressure on the lower surface of the plate?

(c) What is the pressure on the upper surface of the plate?

pPo= 50 kPa

»

M1:2

Figure P7.9
From the oblique shock relations,
0=42°r180—-42=138°
(a) 01, =—12.3589°
Ml = 20

(b) M, =M;sin0=2sin42°=1.3383

2.2 _ 2 B
p_zzp_2:2yMlsm 0 vy 1:2yMn_y 1=1.9228
Pi Pw y+1 y+1  y+1  y+1

p, =(1.9228)50 = 96.1383kPa

(¢) At M; we find, vi =26.3798° and since the flow on the top of the plate
must be turned through the same amount as on the bottom, we may write

V3 =Vy +8;_5 =26.3798 +12.3589 = 38.7387°

With this value of the Prandtl-Meyer function, we find

M3 =2.4836

Now because the flow through the expansion fan is isentropic, i.e., po1 =
Po3,

P _Po _ 1278 and 23~ = 0.06004

Por  Pol Po3
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Py _ b3 Po _ 0.06004
P DPo3 P 0.1278

=0.4698

p3 = (0.4698)50 = 23.4900kPa

Problem 10. — A two-dimensional supersonic wing has the profile shown in Figure P7 .7.
At zero angle of attack, determine the drag force on the wing per unit length of span at
Mach 2 and at Mach 4. Repeat for the lift force. Take the maximum thickness of the

airfoil to be 0.2m.
® % / @

=0.2
| t= f) m
— L2=12m f——

®

«— L=2.4m

Figure P7.7

M; = 2.0 computations

M, =20, 5=tan"!| - |=tan"1[ %2 ] = 9.46°
L2 12

At this Mach number and deflection angle, the shock wave angle is found to be § = 38.8°

andM, =1.6604, P2 _ 1.6604 . Furthermore, from the isentropic flow relations at My,

P1

P2

Po2

Now since the flow must be turned through 26 in passing from region 2 to 3, we may
write

V3 =V, +28 =16.6446 + 2(9.4623) = 35.5692°

we have —=— =(.2150 and the Prandtl-Meyer function at this Mach number is 16.6446°.

From this value we can determine the Mach number in region 3 to be M3 = 2.3518. At
this value we can return to the isentropic relations to find the static to total pressure ratio
in region 3 to be p3/po3 = 0.0737. We are now in a position to compute the pressure on the
rear side of the airfoil, i.e., ps.

137



FromGasDynamics,Third Edition, by Jame<. JohnandTheoG. Keith. ISBN 0-13-120668-0© 2006 PearsorEducation)nc.,
UpperSaddleRiver,NJ. All rightsreservedThis materialis protectedunderall copyrightlawsastheycurrentlyexist.No Portionof
this materialmaybereproducedin anyform or by anymeanswithout permissionin writing from the publisher.

B ( = j[p“ Ip‘)z j = (0.0737)(1)( 1 j = 0.3428
P2 Po3 A\ Po2 A\ P2 0.2150

P1 =P =20 kPa,

py = (p—sz 1 =(1.6604)20) = 33.208 kPa,
P

p3 = (p—SJpz =(0.3428)(33.208) = 11.3837 kPa
P2

Drag = (pz)($jsin5 ~(ps )($] sind = (py —p3 )t = (33.2080 — 11.3837)0.2

=4.3649kN/m

Lift = o1 H0)- (2

t t
S5— —_— d=piL-(py +p3)——
8jcos (p3)(sin8]cos P1 (Pz p3)cot8

L
=piL—-(ps +P3)E=
=(20)2.4)-(33.2080 +11.3837)1.2) = —=5.510kN /m

M, = 4.0 computations

At this Mach number and the deflection angle of 9.4623°, 0=21.7505°
andM, =3.3241, 22-23966. Furthermore, at M, 22 =0.016876and v, —
P1 Po2

55.6341°. Therefore,

V3 = vy +28 = 55.6341+2(9.4623) = 74.5587°

Hence, M3 = 4.7575. The static to total pressure ratio in region 3 is p3/po3 = 0.00252.
The pressure on the rear side of the airfoil, i.e., p3 is computed as

p3 { P3 j(p@ j{poz j _ (0.00252)(1)(;j o149
P2 \Po3 A\Po2 A\ P2 0.016876
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P] =Pow =20 kPa,

Py = (P_zJpl =(2.3966)(20) = 47.932kPa,
P1

p3 = (p—3jp2 = (0.14932)(33.208) = 7.1572 kPa

P2

Drag = (pz)($jsin5—(p3)($j sind = (py — p3 )t = (47.932-7.1572)0.2

=8.155kN/m

cotd

uft=<p1xL>—<p2{si;

t t
8jcosS —(p3 )(—] cosd=piL—(py +p3)—
sind

L
=piL—-(ps +P3)E=
=(20)2.4)-(47.932+7.1572)(1.2) = —18.107kN /m

Problem 11. In Problem 10, a compression occurs at the trailing edge, with the resultant
flows in regions (a) and (b) parallel (Figure P7.11). Is there any difference in pressure,
velocity, or entropy between regions (a) and (b)? Discuss.

Figure P7.11

The flow over the top of the wing has gone through two shocks, and an isentropic
expansion fan, whereas, the flow over the bottom has undergone no shocks. Therefore,

entropy (4) > entropy (5)
Consequently, a contact discontinuity or slip line separates the two regions. The flow

direction in the two regions is the same and there can be no pressure difference between
(4) and (5). However, there is a velocity difference between (4) and (5).
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Problem 12. — A reservoir containing air at 10 MPa is discharged through a converging-
diverging nozzle of area ratio 3.0. An expansion fan is observed at the exit, with the flow
immediately downstream of the fan turned through an angle of 10°. Determine the
pressure of the region into which the nozzle is exhausting, if the air can be assumed to
behave as a perfect gas with constant y = 1.4.

. . A . .
For the given area ratio: o =3.0 we can determine the corresponding Mach number

for the supersonic case to be M. = 2.6374. At this Mach number, the Prandtl-Meyer

function is found to be v, = 42.2498°. After the exiting flow is turned through 10° the
Prandtl-Meyer function is

Vp =V, +10=152.2498°
From this value, we can find the corresponding Mach number

M, =3.1325

Pr Pob Poe Py

Po _ ( Po j(pob J(poe] =(0.02234549)(1)1) = 0.02234549

pp = 0.02234549(10 MPa) = 223.4549 kPa

Problem 13. —Determine the value of y for which vy, = 180°.

From Eq.(7.15)

Ve = 180° =[ v+l —1]90°

y—1
So
oo v+l
y—1
or
g_r+tl
y—1

Solving we find that: 8y = 10 or y =1.25.
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Problem 14. — For the geometry shown in P7.15 along with the given values of the fan
angle and the deflection angle, determine M; and M.

b =30°
¥
— i
o) = 0
“(EX_Z_; OL]) =-—15°

M1

Figure P7.14

The solution of this problem requires a trial and error approach involving the following
two equations

¢=pp—pp +A
Vo =V| + A
Since ¢ = 30° and A = 15°, this pair of equations can be written as

15= Vo —Vq

IS=p—pp

Now since both p; and v; depend only on M; and since both p, and v, depend only on
M, then the above pair represents two equations with two unknowns. One procedure to
solve the pair is
1. assume an M;,
determine v; from the Prandlt-Meyer relation,
with v, use the first expression to compute v,
from v, obtain M,
with M, we can determine L1,
with 1, use the second expression above to compute L,
from p; determine M, and
repeat the process until the computed M, value in step7 agrees with the assumed
value in step 1.

PNk WD
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The following table contains some of the computations from this process

M; Vi V2 M, L2 L M;

2.0 26.38 | 41.38 |2.5984 |22.634 |37.634 | 1.6377
1.6377 1.4822
1.4822 1.4142
1.4142 1.3848
1.3848 1.3722
1.3722 1.3669
1.3669 1.3646
1.3646 1.3637
1.3637 1.3633
1.3633 1.3631
1.3631 1.3630
1.3630 | 7.9286 | 22.929 | 1.8768 | 32.196 | 47.196 | 1.3630

Therefore, M; = 1.3630 and M, = 1.8768.

Problem 15. — For the geometry of Figure P7.14, and for given values of the wall turning
angle, A, and the static pressure ratio across the expansion fan, p,/p;, define a process that
will yield M; and M,. Use the process to solve for these Mach numbers if p, = 0.4p; and
A=10° Takey=1.4.

The following outlines a computational process

assume an M,

determine pi/p, from the isentropic pressure relation,

compute pa/Po =(P2/P1)(P1/Po)s

obtain M; from p,/po,

determine v, from M,,

compute vi = vy — A,

determine M, from v;, and

repeat the process until the computed M; value in step7 agrees with the
assumed value in step 1.

S IRl e

The results of the computations are contained in the following table
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M, P1/Po P2/Po M, \p) Vi M,
2.0000 | 0.1278 |0.051122 | 2.5872 | 41.1251 | 31.1251 | 2.1767
2.5000 | 0.0585 |0.023411| 3.1011 | 51.6699 | 41.6699 | 2.6114
3.0000 | 0.0272 |0.010889 | 3.6318 | 60.5757 | 50.5757 | 3.0428
3.2000 | 0.0202 | 0.0081 | 3.8472 | 63.7088 | 53.7088 | 3.2134
3.3000 | 0.0175 | 0.0070 | 3.9554 | 65.1907 | 55.1907 | 3.2982
3.2982 | 0.0175 |0.007009 | 3.9535 | 65.1649 | 55.1649 | 3.2967
3.2967 | 0.0176 |0.007025 | 3.9518 | 65.1421 | 55.1421 | 3.2954
3.2954 | 0.0176 |0.007038 | 3.9504 | 65.1235 | 55.1235 | 3.2943
3.2943 | 0.0176 |0.007049 | 3.9492 | 65.1079 | 55.1079 | 3.2934
3.2934 | 0.0176 |0.007058 | 3.9483 | 65.0951 | 55.0951 | 3.2926
3.2926 | 0.0177 |0.007066 | 3.9474 | 65.0837 | 55.0837 | 3.2920
3.2900 | 0.0177 |0.007093 | 3.9446 | 65.0455 | 55.0455 | 3.2897
3.2895 | 0.0177 |0.007098 | 3.9441 | 65.0384 | 55.0384 | 3.2893
3.2891 | 0.0178 |0.007102 | 3.9436 | 65.0327 | 55.0327 | 3.2890

The method produces M; = 3.289 and M, = 3.9436, however, it converges very slowly.

Problem 16. — A gas (y = 1.44, R = 256 J/kg'K) flows towards a convex corner with
M; = 3 and T; = 300 K. Determine the downstream Mach number M, and the
downstream velocity V, if the wall is turned 15°. Repeat the calculations if the wall is
turned 30°.

Case (a) A=15°

M; =3.0, v| =47.7334°

vy =vy +15=62.7334°

Using the solver developed in Example 7.1, we obtain
M, =4.0021

Now from the isentropic flow relations

N 3356 12— o001,
Tol TOZ

Since the flow is adiabatic, T,; = To> and therefore,
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T, Tpp T
TZ:_2L2L1T1=(0_2211)(1)( 1 j300=197.6460K
Ty To; Ty 0.3356

ay =[YRT, =/(1.44)256)197.6460) = 269.9263m /s

V, = (My)(az) = (4.0021)(269.9263) = 1,080.2722 m/s

Case (b) A =30°
M; =3.0, v|=47.7334°
vy =vy +30="77.7334°

Using the solver developed in Example 7.1, we obtain
M, =5.6003

Now from the isentropic flow relations

T T
1 03356 —2 =0.1266,
Ty To2

Since the flow is adiabatic, T,; = T4, and therefore,

T, =T—2TL2hT1 :(0.1266)(1)( 1 J300=113.1704K
Tyr Ty T 0.3356

ay =[YRT, =/(1.44)256)113.1704) = 204.2527 m/s

V, = (My)(az) = (5.6003)(204.2527) = 1,143.8762 m/s

Problem 17. — Air (y = 1.4) at M; = 2 and p; = 150 kPa flows in a duct as shown in
Figure 7.15. The upper wall turns the uniform supersonic stream through 5° “away”
from the flow resulting in the formation of a Prandtl-Meyer fan at the corner. Waves of
the fan reflect off the lower surface of the duct. Determine the Mach number and
pressure downstream of the leading reflected expansion wave.
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The flow configuration is shown in the following

M; =2.0, v; =26.3798°
V) =V +A=26.3798+5=31.3798°

Using the solver developed in Example 7.1, we obtain
M, =2.1864,

Since the flow just downstream of the reflected leading wave was turned twice through
the expansion, we may write

V3 =Vy +A=v; +2A=26.3798+10 =36.3798°

So

M3 = 2.3849,

Now from the isentropic relations at M; and M3

PL_0126694 B3 —0.070239,
Pol Po3
Hence,
py =3 Po3 Pol ) (0,070239)(1)(;)150 = 83.1598kPa
Po3 Pol D1 0.126694

Problem 18. — When Theodor Meyer presented his dissertation in 1908, the Mach
number had not been named; it appeared 20 years later (see Ref. 2). Accordingly, at that
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time of Meyer’s thesis the static to total pressure ratio was used. Write the Prandtl-Meyer
function much like Meyer would have using the pressure ratio.

From Eq.(7.9) the Prandtl-Meyer function is written

V= Y—Htan_l{ Y—_I(Mz—l)}—tan_l( Mz—l)

y—1 y+1

The static to total pressure relation is

And so

MZ_lzi[Lj v _y+l
Y_l po

Replacing the Mach number in the Prandtl-Meyer expression brings

y-1 y-1

Problem 19. — Obtain the following pressure-Mach number relation from the continuity
and normal momentum equations applied to a control volume containing a Mach wave:

dp yM2 dM
2 M

p 1+—Y_1M
2

Integrate this relation to derive the expression for the pressure ratio across the Mach
wave, p2/p; in terms of M; and My, i.e., obtain Eq.(7.13).
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From the normal momentum equation,
dp+pVdV =0
Hence,

2
d_p:_yﬂvzd_V:_yV_d_V: M2 dv
p w Vv a’? VvV \

But from Eq.(7.6)

dav 1 dM
A 1 M2 | M
2
So that
dp —yM?  |dM  —yMdM

If

Take the logarithm and then differentiate to obtain

df _(y-MdM _ y-1dp

f 1+Y;1M2 vp

Integration produces

y/(y-1)
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Problem 20. — Repeat Example 7.5 for y=1.25.

The pressure-flow direction diagram obtained for this flow is

12 1

-60 -50 -40 -30 -20 -10 O 10 20 30 40

The numerical solution for the intersection of the two curves is contained in the following
table

iteration| youq y+A y-A f(y) f(y+4d) | f(y-A) | Af/Ay Yaew X X (deg)

1 2.0000 | 2.0001 | 1.9999 | -0.0380 | -0.0380 | -0.0380 | 0.2965 |2.12816|0.20459 | 1.7223
2 2.1282 | 2.1283 | 2.1281 | -0.0009 | -0.0009 | -0.0009 | 0.2826 |2.13137 0.20504 | 1.7478
3 2.1314 | 2.1315 | 2.1313 | 0.0000 | 0.0000 | 0.0000 | 0.2823 |2.13137]0.20504 | 1.7478
4 2.1314 | 2.1315 | 2.1313 | 0.0000 | 0.0000 | 0.0000 | 0.2823 |2.13137]0.20504 | 1.7478

Thus,

P3/Pret= Pa/Pret O3 = Qg
2.1314 | 1.7478
[Expansion Region|Shock Region

013 11.7478 024 11.7478
V3 41.7478 0,4 |28.2649
pa/p1_| 0.5328 | po/pr | 2.1314
pa/p1 | 0.6043 | pulp, | 1.8131
T3/T, | 0.8817 | TyT, | 1.1755
Po3/Po1 | 1.0000 | Pos/Poz | 0.9495
M; 2.3686 M, 2.5419

148



From GasDynamics,Third Edition, by Jame<E. JohnandTheoG. Keith. ISBN 0-13-120668-0© 2006PearsorEducation|nc.,
UpperSaddleRiver,NJ. All rightsreservedThis materialis protectedunderall copyrightlawsastheycurrentlyexist. No Portionof
this materialmaybereproducedin anyform or by anymeanswithout permissiorin writing from the publisher.

Chapter Eight

APPLICATIONS INVOLVING
SHOCKS AND EXPANSION FANS

Problem 1. — A supersonic inlet (Figure P8.1) is to be designed to handle air (y = 1.4,
R =287 J/kg-K) at Mach 1.75 with static pressure and temperature of 50 kPa and 250 K.
Determine the diffuser inlet area A, if the device is to handle 10 kg/s of air.

Figure P8.1

Using the oblique shock solution method we obtain

0=41.8715°
M, =1.5090
M, =1.
1=L750 P2 _ 405y
3=7° | ;M
12 11079
T

py = pl[p—zj = 50(1.4251) = 71.2550 kPa
pI

T
T, =T, (—2] =250(1.1079) = 276.9750 K
T

Subscript 2 represents conditions just upstream of the normal shock
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m=pyA,V, = (lszJAzMzaz = (lfTZ)AzqulyRTZ =10kg/s

2 2
So
71.2550
A (1.5090/(1.4)(287)276.9750) = 10
[0.287(276.9750)} 2(1:5090N(1.4)287 )
A 10kgs =0.0222 m?2

2= 3
(0.8964 kg/m-)(503.4015m/s)

Problem 2. — The diffuser in Problem 1 is to further decelerate flow after the normal
shock so that the velocity entering the compressor is not to exceed 25 m/s. Assuming
isentropic flow after the shock, determine the area A. required. For this condition, find
the static pressure p.. Take y = 1.4 and ¢, = 1.004 kJ/kg-K.

Ty 1
Toe = Ty = IZ[LJTl :( j250:403.0958K
e ot ol 0.6202

For M, = 1.5090, the Mach number downstream of the normal shock is found to be
M3 =0.6979. Hence, the area ratio for this Mach number can be obtained from the

A
isentropic flow tables, —2:1.0959. And since the flow downstream of the normal
Az

shock is assumed to be isentropic A: = Az. Now

2
(S
3 +CpTe =cpToe

2 2.2,.2
v
T, = Ty, — —2 = 403.0958 - 257m” /s
2¢, 2(1.004 kJ/kg - K {1000 J/kJ)
= 403.0958 — 0.3113 = 402.7845 K
\Y
M, = Ve _ 25 ~0.0621

a.  /1.4(287)(402.7845)

A
At this Mach number we can find — = 9.3405. Thus,

%

Ae
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* k
E:A_gA_gﬁﬁz@.Mos)(l)( 1 j(1)=8.5231
Ai Ae A3 A3 Ai 1.0959

A
A, = A{A—BJ =0.0222(8.5231)=0.1892 m>

1

Using the various Mach numbers that have been determined we can find the following
corresponding pressure ratios from isentropic flow and normal shock relations

M, =0.0621, ¢ = 0.9973
Poe

M; = 0.6979, 73~ = 0.7223
Po3

M, =1.5090,23 = 24899
P>

Thus,

po=Pe Poe Po3 B3, (0,9973)(1)(
Poe Po3 P3 P2

j(2.4899)(71.5) =245.8081 kPa
0.7223

Problem 3. — Compare the loss in total pressure incurred by a one-shock spike diffuser
with that incurred by a two-shock diffuser operating at Mach 2.0. Repeat at Mach 4.0 (see
Figure 8.5). Assume that each oblique shock turns the flow through an angle of 10°. Take

y=1.3.
o/ @ —
_v
—>
M; —
~
(a) One-shock inlet (b) Two-shock inlet

Figure 8.5 Flow Regions within the Spike Diffusers of Example 8.1
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From the oblique shock solver at y = 1.3, M; = 2.0 and 6 = 10°, the weak solution yields
0 = 38.8127°. Moreover the Mach number downstream of the shock is, M, = 1.6765. For

the one-shock diffuser,
[&J _ [u}(uj
Pol Jone-shock \Po2 /\ Pol

From the oblique shock relations at M; = 2.0, po2/po1 = 0.9861 and from the normal shock
relations at M, = 1.6765, po3/po2 = 0.8570. Hence,

(p03 j =(0.8570)0.9861) = 0.8451
Pol Jone—shock

For the two-shock inlet, M, = 1.6765. At the latter Mach number and & = 10°, the wave
angle for the weak shock solution is 6 = 47.3152°, po3/po2 = 0.9889 and M3 = 1.3533. At
M3 from the normal shock relations pos/po3 = 0.9677. Thus,

(pﬂ J _ (p04 J(pﬁ ](poz j — (0.967)(0.9889)(0.9861) = 0.9437
Pol Jtwo-shocks \Po3 /\Po2 /\ Pol

Now at M; = 4.0 and & = 10°, the weak solution yields 8 = 21.8411°, py2/por = 0.9301
and M, = 3.4050. From the normal shock relations at M, = 3.4050, py3/po2 = 0.1853.
Therefore, for the one oblique shock diffuser,

{pﬁ] - (@J [pij = (0.1853)0.9301) = 0.1723
Pol Jope—shock  \Po2 /\ Pol

For the two-shock inlet, M, = 3.4050. At M, = 3.4050 and & = 10°, 6 = 24.4808°,
Po3/Poz = 0.9533 and M; = 2.9186. Using M3 in the normal shock relations gives
Poa/Po3 = 0.3065. For this case,

(pﬁjtwo_ShOCks = (pO“ J(p 03 J(poz j =(0.3065)(0.9533)(0.9301) = 0.2718

Po1 Po3 J\ Po2 /\ Pol

Problem 4. — A converging nozzle is supplied from a large air (y = 1.4, R = 287 J/kg'K)
reservoir maintained at 600K and 2 MPa. If the nozzle back pressure is 101 kPa,
determine the pressure and Mach number that exist at the nozzle exit plane. Since the
nozzle is operating in the underexpanded regime, expansion waves occur at the nozzle
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exit. Determine the flow direction after the initial expansion fans and the flow Mach
number.

Since the nozzle is operating in the underexpanded flow regime, the nozzle is choked.
Accordingly, the Mach number at the exit is M. = 1.0 and the exit pressure to reservoir
pressure ratio is pe/po = 0.5283 for y = 1.4. Thus the exit pressure is

pe = 0.5283(2 MPa) =1056.6 kPa

The expansion fans turn the supersonic flow and reduce the pressure to that of the back
pressure. Now

Pb _ Pb Pe _ 1;'10.5283 =0.0505

Po Pe Po 10566
From this pressure ratio we can find the corresponding Mach number

My, =2.5951

Since the flow expands from M. =1 to M, = 2.5951, we need only determine the Prandlt-
Meyer function for the latter Mach number. This provides the angle through which the
flow is turned, i.e., vp — Ve =41.3044 — 0 =41.3044° = oy — Ole = Olp,

Problem 5. — An oblique shock wave occurs in a supersonic flow in which M; = 3. The
shock turns the supersonic stream through 10°. The shock impinges on a free surface
along which the pressure is constant and equal to pi, i.e., the pressure upstream of the
shock. The shock is reflected from the free surface as an expansion fan. Determine the
Mach number and the angle of the flow just downstream of the fan. Assume y = 1.4.

free surface p1=ps3

Figure P8.5

Using the oblique shock solution method we obtain
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0 =27.3827°
Ml = 30
M, =2.5050
§=10°
P2 _ 50545
P

In region 2 from the Prandtl-Meyer and isentropic relations

M, =2.5050, v, =39.2402° and P2 _0.05807
Po2
Because the flow across the expansion fan is isentropic po2 = po3 and because of the
constant pressure free surface p; = p3, thus we may form the following string of pressure
ratios

D3 P3P P2 Po2_ (1)( ! j(0.05807)(1)= 0.028265
Po3  P1 P2 Po2 Po3 2.0545

With this pressure ratio, using the static to total pressure-Mach number relation, we
obtain M3 = 2.9750 and therefore from the Prandtl-Meyer relation v; = 49.2727°. Finally
then, for this flow geometry

V3 —Vy =a3 —ay =49.2727-39.2402 =10.0325°
Accordingly,

o3 =0, +10.0325=10+10.0325 = 20.0325°

Problem 6. — A converging-diverging nozzle is designed to provide exit flow at Mach
2.2. With the nozzle exhausting to a back pressure of 101 kPa, however, and a reservoir
pressure of 350 kPa, the nozzle is overexpanded, with oblique shocks appearing at the
exit. Determine the flow direction, static pressure, and Mach number in regions ©,®, and
® of Figure P8.6.

Figure P8.6
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Consider the following geometry

From the isentropic flow relations at M, = 2.2

Pe _Pe _0.0935
Pr Do
Thus,
pe = 0.0935(350 kPa) = 32.7250 kPa

P 101 50563
pe  32.7250

From this pressure ratio, essentially p./pi, and the normal shock pressure-Mach number
relation, we can determine the upstream normal component to the oblique shock as

M. = 1.6698

And since the ratio of M, to M, is the sin® we can therefore determine the shock wave
angle

Mhe _ 1.6698 _ 0.7590 =sin6, hence 6 =-49.3761°

M, 220

With M, and 6, we can find the deflection angle to be 6 = —20.8875°. Accordingly, the
flow in @ is turned 20.8875° from the horizontal. Moreover, the Mach number in this
region is M; = 1.3596.

At this Mach number and for a flow deflection of +20.8875° there is no solution (see
Figure 6.6). Reflection must be as in Figure 6.14, i.e., a Mach reflection will occur.

Problem 7. — Determine the flow directions in regions @ and @ of Figure P8.6 if the
reservoir pressure were increased to 2 MPa.
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Because the nozzle is designed for an exit Mach number, M., of 2.2, it follows that the
static to total pressure ratio at the nozzle exit is

Pe _ 00035

Po
The back pressure is 101 kPa and the reservoir pressure is 2,000 kPa, therefore,

Py _ 101 _ 4 505
o 2000

Since pw/po < pe/Po, the nozzle is underexpanded for this back pressure-reservoir pressure
combination. The following provides nomenclature and a sketch of the flow field.

From the Prandtl-Meyer relation at M. = 2.2, we find that v. = 31.7325°. Since p, = p; in
region 1. Then, from the static to total pressure ratio, pi/p, = 0.0505, we find that
M, =2.5950 and therefore v; = 41.3044°. So the exit flow is turned through the following
angle as it passes into region 1

O —0le = V] — Ve = 41.3044 -31.7325 =9.5719°

Since a. = 0°, then it follows that o,; = 9.5719°. The flow in region 2 must be horizontal,
i.e., o = 0°, and since we must pass through another expansion fan, we may write that

—(az —ay)=vy -V
Hence,

vy = vy +aq =41.3044+9.5719 = 50.8763°

From this we find M, = 3.0587 and therefore p,/po2 = 0.0249. Since the flow is isentropic
across both expansion fans, po2 = po1 = po = 2,000 kPa. This enables us to determine
p2 = (0.0249)(2,000) = 49.8000 kPa. Now since ps = pp, = 101 kPa, we have the pressure
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ratio across the oblique shock, i.e., ps/p, = 101/49.8 = 2.0281. With this pressure ratio
and M, = 3.0587 we can first determine the shock angle from Eq.(6.10)

P2 _ 27M12sin29_y—1
p1 y+1 y+1

Hence

Sin0 == (2'0281)(2'4)+g'4 — +0.4484
(2.8)(3.0587)

From which we find that 6 = £26.6423°. With this angle and the Mach number we enter
the oblique shock solver to find 6 =+9.6362°. From this we see that a3 =—9.6362°.

Problem 8. — A plug nozzle is designed to produce Mach 2.5 flow in the axial direction at
the plug apex. Flow at the throat cowling must therefore be directed toward the axis.
Determine the flow direction at the throat cowling to produce axial flow at the apex.
Assume y=1.4.

My, =11to My, =25, o vy =39.1236-0=39.1236° = aryp — g =0ty

Problem 9. — A rocket nozzle is designed to operate with a ratio of chamber pressure to
ambient pressure (p./pa) of 50. Compare the performance of a plug nozzle with that of a
converging-diverging nozzle for two cases where the nozzle is operating overexpanded,
pe/pa = 40 and p./p. = 20. Compare on the basis of thrust coefficient; Cr = T/(p.Aw),
where T is the thrust and Ay, is the area of throat. Assume y = 1.3 and in both cases
neglect the effect of nonaxial exit velocity components.

For the design case,

From pe/po = pa/pec = 1/50 = 0.02, since in the design case the flow is isentropic, we can
determine the Mach number at the exit, i.e., Me = 3.1267 (see Eq. (3.15)), and therefore
To/To=Te/T. = 0.4054. Now from the definition of the thrust coefficient

Cp = (V) (PnAm Vin)Ve ( Pth ]Vthve :(pthJ[ Pe j[ T, ](Mthath)(Meae)

RTth Pc Pc RTO Tth Pc

PcAt PcAth

Because the nozzle is choked, My, = 1 and for y = 1.3,
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Y

Pth _ (—y - ljl‘“f = 0.5457
Pc 2

TLh - 2 =0.8696

T, 7y+1

Using these values and the values at the exit, we get

(C1 design = {R((Egg;g; JVOB,XR)IEO'%%)TC }(3.1267)\/(1.3)(R)(O.4054)TC

=1.5145

Note, R, p. and T, drop out of the above expression.

For the converging-diverging nozzle operating off design,

A - A
Cr= (CT)design +M:1.5145+—e[p_e_p_a]
Ahpe Am \Pe  Pe

where at M, = 3.1267, Ad/An = AJ/A* =5.9590. So for p./p, =40,

Ct =1.5145+5.9590 11 =1.4847
50 40

And for p./p. = 20,
Cr =1.5145+5.9590(0.02 —0.05) =1.3357

For the plug nozzle,
Flow in the plug nozzle does not continue to expand below ambient pressure, so there is
no pressure term in the expression for thrust.

Pe _40, M, =2.9918, and
Pa c

Now at =0.4269

— |@H
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2.9918,/1.3R(0.4269T,.)

g Ve _[ 0.5457p, } A y/1.3(R)0.8696T,
pcAth R(0'8696Tc) pcAth

1.4871

T
Whereas for po/p, =20, M, =2.5773 and —==0.5009

C
Cr =1.3876

When these results are compared to those of Example 8.4, it is seen that the effect of
changing y from 1.4 to 1.3 is relatively small.

Problem 10. — Compute the lift and drag coefficients for a flat plate airfoil of chord
length ¢ = 1m in supersonic flow through air (y = 1.4) at M, = 3 and o = §°.

Because this is a companion to Example 8.5 rather than repeat the same format, instead
the results of the spreadsheet program for a flat plate at an angle of attack are presented.

Input Parameters tFlow Regions|
M., 3.0000 @
a 8.0
Y 1.4 e —— -
c 1.0

Results
egion co: freestream
Y M., O V. |pvi/(2p.) P-/Pos
1.4 3.0 0 49.7573 | 6.3000 0.02722
Region 1: lower region behind oblique shock
Y M., 0 0 o4 M, Po1/Pox P1/P=
1.4 3.0 8.0 25.6114 8.0 2.6031 | 0.9799 1.7953
egion 2: upper region behind expansion fan
Y M., Voo (o] V2 M, P2/Po2 P2/Pe
1.4 3.0 49.7573 8.0 57.7573 | 3.4519 | 0.01404 0.51574
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egion 3: lower region behind expansion fan

Y M, d13 V3 M; Po3/Po1 P3/p1
1.4 2.6031 | 8.0233 49.5077 | 2.9871 1.0000 0.5565
Region 4: upper region behind oblique shock
Y Mz 824 924 M4 po4/ Po2 P4/ P2
14 3.4519 | 8.0233 | 22.8937 29812 | 0.9712 1.9372
Direction of trailing flow | Lift and Drag Coefficents
Olz = Oly CL CD
0.0233 0.2011 0.0283
L/(cp.) D/(cp«)
Mach numbers and pressure ratios 1.2671 0.1781
M, M, M, M; M,
3.0 2.6031 | 3.4519 | 29871 2.9812
Po/Pe PP | PafPr | P3/Pr | PP
1.0000 1.7953 | 0.5157 | 0.9991 0.9991

Problem 11. — Compute the drag coefficient for a symmetric, diamond-shaped airfoil
(Figure P8.11) with a thickness to chord ratio, t/c, equal to 0.10 flying at Mach 3.5 in air
(y=1.4) at 10 km at zero angle of attack.

M, =3.5 a f
> t
| !

C —»‘

Figure P8.11

For an oblique shock at the nose of the airfoil,

tanA=-=0.10, A=5=57106°
C

0 =20.7409°,

M, =
5= 5_71060} Pl _ 16257, My =3.1566, v; =52.6880, 2L =0.0216
Pwo Pol

vy =Vv] +2A=52.6880+114212 = 64.1092°
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Using this value of the Prandtl-Meyer function we find the corresponding Mach number
is M3 = 3.8760 and in turn the corresponding static to total pressure ratio is
P3/Po3 = 0.007781. Accordingly, we may form the following ratio

P3 _ P3 Po3 Pol _ (4,007781)(1)——— = 0.3609
P2 Po3 Pol P1 0.02156

Therefore,

py =1.6257po, p3 =23py =(0.3609)(1.6257p., ) = 0.5867p.,
P2

Because of the symmetry and the 0° angle of attack, the lift coefficient is zero. The drag
coefficient may be determined in the following way

D=(py —p3)t

(P2 —p3)t _ (1.6257-0.5867)

Cn =
D=7 2 1 2
EypooMooc 5(1.4)(3.5)

(0.1)=0.0121

Problem 12. Compute the lift and drag coefficients for the airfoil described in Problem
11 for an angle of attack of 5°.

Upper Surface
M, =3.5, vy =58.5298°
V) =Vg — 0y = 58.5298 —(0.7106) = 59.2404°
M, =3.5450
V4 =V +ay —0y =59.2404+(0.7106)—(~10.7106) = 70.6616°

M, =4.3961

P4 _ P4 Pot Po2 _ (40039371 —
0.003

- j:o.szol, P2 _9380
P2 Po4 Po2 P2 937

Powo

Lower Surface

161



From GasDynamics,Third Edition, by Jame<E. JohnandTheoG. Keith. ISBN 0-13-120668-0© 2006PearsorEducation|nc.,
UpperSaddleRiver,NJ. All rightsreservedThis materialis protectedunderall copyrightlawsastheycurrentlyexist. No Portionof
this materialmaybereproducedin anyform or by anymeanswithout permissiorin writing from the publisher.

M., =3.5, 0 = 25.0309°,
Sl =0+A=5+5.7106=10.7106°] M, =2.8623, v, =47.0292°

vy =Vvy +2A=47.0292 +11.4212 = 58.4504°, M5 =3.4950

P3 _ P3 Po3 Pol _ (0.01320)(1)( 1 J =0.3939, PL-23918
P1 Po3 Pol P1 0.03351 Poo

P % c0s(10.7106) p, % c0s(0.7106) | | ps % c0s(0.7106) py % c0s(10.7106)

cos(5.7106) ! cos(5.7106) - cos(5.7106) ’ cos(5.7106)
Cy = 1
(2 vpooMfocj
C, = (2.3918 -0.3003)0.9826) + (0.9382 — 0.9424)(0.9999) _ 0.1200
(0.9950)(1.4)3.5)?
oo _Pi sin(10.7106)+ p, sin(0.7106)— p1 sin(0.7106) — p 4 sin(10.7106)
P Po cos(5.7106)1.4)3.5)?

Cp = (2.3918 -0.3003)0.1858) +(0.9382 — 0.9424)(0.0124) _ 0.0228

(0.9950)(1.4)3.5)

Problem 13. — Compare the lift to drag ratio of the diamond airfoil in problem 12 with
that of a flat-plate airfoil for the same freestream Mach number of 3.5 and angle of attack
of 5°. Assume y = 1.4.

Flat plate airfoil
The various flow regions are numbered as follows

© /o

-
—
- -
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Upper Surface

Using the freestream Mach number

v,, = 58.5298°

From this and the angle of attack we can find v, from which we can find M,

Ve TOgp =Vy +Qo
S V9 =V + 0y — 0y =58.5298+ 0 —(—5.0000) = 63.5298°

and so M, = 3.8344. Furthermore using the Mach of the freestream and in region 2 we
can use the isentropic relations to determine the corresponding static to stagnation
pressure ratios. Since the flow from the freestream into region 2 is isentropic

P2 _ P2 Po2 Pow _ (0.008233)(1.0{;j ~ 0.6280
Po  Po2 Poxw Pw 0.013111

Lower Surface

Because the freestream flow must be turned through 5° as it passes through the oblique

shock
6 =20.1813°,
w =3
§=5° }Ml =3.1983 PL 15343
Poo
co_ (p —pa Jc)cos(ar)  (1.5343-0.6280)cos(5.0)  (0.9063)0.9962) 0.1053
L = - — — V.
1 1 2 8.5750
(2ypooMgocJ 5(1.4)(3.5) ( )
Cp = Cy tan(a) = (0.1053)(0.08749) = 0.00921
(C—LJ _ 01953y 4301 at S(C—LJ _01202 5719t 50
Cp flat plate 0.00921 D/ diamond foil 0.0228
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Problem 14. — Consider a flat-plate supersonic airfoil with a flap, as shown in Figure
P8.10. For a flap angle of 5°, an angle of attack 10°, and a flight Mach number of 2.2,
find the lift and drag coefficients of the airfoil.

\

C

c/3
10°

Figure P8.14

Except for the trailing edge phenomena, there will be two expansion fans on the top of
the plate and two oblique shocks on the lower portion. The regions for the calculations
are numbered as follows

From this and the angle of attack we can find v,, which will lead to M,

Vo TOep =Vo +0)
SV) = Ve 0l — 0y =31.7325+0—(~10.0000) = 41.7325°

and so M, = 2.6142. This process is repeated in passing through the expansion fan at the
corner of the flat plate and the flap

Vo +0y =Vyq +04y
S V4 =V 0y —oy =41.7325-10.0000 — (~15.0000) = 46.7325°
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and so My = 2.8478. Furthermore using M.,, M,, M4, we can use the isentropic relations
to determine the corresponding static to stagnation pressure ratios. Since the flows from
the freestream into region 2 and from region 2 to 4 are isentropic

P2 _ P2 Po2 Pow _ (0.04903)(1.0)( ! j: 0.5042
Pwo Po2 Pow Pw 0.09352

P4 _ P4 Pot Po2 Pox =(0.03426)(1.0)(1.o)( : j=0.3663
Pwo Po4 Po2 Pow Pwo 0.09352

Lower Surface
The freestream flow is turned through 10° as it passes through the first oblique shock.

Therefore,
0 =35.7855°,

M, =2.
s=10° [M,;=18228 PL_17641
Pwo
The stream in region 1 is turned through 5° as it passes through the second oblique shock

as it flows into region 3. Therefore,

6 =37.9098°,
M; =1.8228
5=5° } M3 =1.6502 23 -12967
Py
And so
P3 _P3 PL _(12967)(1.7641) = 2.2875
Pwo P1 P
¢, = Pi=pa)ecos(10) (ps3 ~pake/3)cos(1s)
1 1
WMo S WMo
_ (1.7641-0.5242)(0.9848) . (2.2875-0.3663)(0.9659)
(3.3880) (3.3880)(3)

=0.3604 +0.1826 = 0.5430
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Cpy = PL=P2fesin(10)  (ps —pa)e/3)sin(1)

1 1
EypooMozoC EypooMozoC
o =pakeosl0) g s —pakeeosts)
S WPuMie WP
=(0.3604)0.1763)+(0.1826)(0.2679) = 0.0635 + 0.0489
=0.1125

Problem 15. — Compute the lift and drag coefficients for the supersonic, symmetric

airfoil shown flying in air (y = 1.4) at Mach 2.5 at an angle of attack of 5° in Figure
P8.15.

50
\ >

I S S

\

Figure P8.15
Because the angle of attack and the wedge angle have the same value, the flow will
experience only one expansion fan on the upper surface where the slope changes and an

oblique shock on the bottom at the leading edge.

Upper Surface

Vo T 0o =V +09o
S V9 =V + 0 — 0y =39.1236+ 0 —(~10.0000) = 49.1236°

and so M, =2.9674.

P2 _ P2 Po2 Pox _ (0.02859)(1.0)( : j — 0.4885
P Po2 Pow P 0.05853

Lower Surface
The freestream flow is turned through 5° as it passes through the forward oblique shock.

Therefore,
0 =27.4227°,

w:
§ =50 }M1:2.2915 PL 13799
Peo
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PooC pac cos(lO)
5)— —
piccos(3) 2 cos(5) 2 cos(5)
Cp = ] 5
EypooMooc

(1.3799)(0.9962)— _ (0.4885)(0.9848)
(0.9962.) 2(0.9962)  _1.3747-0.5019-0.2415

(4.3750) 4.3750

=0.1443

pcsin(5)— pocsin(10)
Cr = 2 cos 5°
D

1 2
EypooMooC

_ (1.3747)0.0875) - (0.2415)(0.1763) _0.0178

4.3750

Problem 16. — A supersonic jet plane is flying horizontally at 150 m above ground level
at a Mach number of 2.5, as shown in Figure P8.16. The airfoil is symmetric and
diamond shaped, with 2A = 10° and a chord length of 4m. As the plane passes over, a
ground observer hears the “sonic boom” caused by the shock waves. Find the time
between the two “booms,” one from the shock at the leading edge and one from the shock
at the trailing edge. Ambient pressure and temperature are 100 kPa and 20°C.

Figure P8.16

The region numbering is shown in the following figure
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Only the lower surface need be considered. For the first shock wave

M, =2.5] 0,,_; =27.4227°,
§=5° M, =2.2915

For the expansion fan

Vi =34.0700°
M, =2.2915} v5 =34.0700 + 10 = 44.0700°
Mj = 2.7208

Finally for the second oblique shock wave,

Mj =2.7208) 0;_5 = 25.3093°,
§=5° Ms =2.4951

If the airfoil is H above the surface and if the distance between shocks at the surface is
called D. Then

150 150

D= Hcot(6 —A)—Hcot(0 =4 -
c+Heot(8;_, —A)-Hcot(0,,_;) +tan(2o,3093) tan(27.4227)

=4+403.3005 —-289.0989 =120.2016m

At = D _ D _ 120.2016 — 0.1401s

Voo Myag  (2.5)(1.4)287)293)
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Chapter Nine

FLOW WITH FRICTION

Problem 1. — Draw the T-s diagram for the adiabatic flow of a gas with y = 1.4 in a
constant diameter pipe with friction. The reference Mach number, M, for the flow is 3.0.

T — 44—
Following Example 9.1, T_O =1+ yTlMlz =1+ (%)(3)2 =2.8000
1

Equation (9.7) may now be written as
y-1

1
ﬁ:lln(lj_ky_lln(TO_T]:ln (TO/TIJY (TO/TIJ(TO/T_IJ 2y
cp v (i) 2y (To-T T, /T T,/T \T,/T; -1

In this expression there are two values of T,/T that will cause As/c, to vanish. Clearly,
both will cause the argument of the natural log function to be exactly equal to 1. One
value occurs at T,/T;, i.e., when T = T,. Because of the nonlinearity of the function
involving T,/T, the other value must be found numerically. This is readily accomplished
using a spreadsheet program to implement the Newton-Raphson method. Setting the
argument of the natural log function to unity gives

-1
To/Tl Wl’ To/Tl TO/T_I yzy_l
(TO/T] (TO/TJ{TO/TI_IJ )

Rearranging this produces

v+l
fTo|_To 1 fTo v
T T T

y—1. .2

—M
T _ 1

wherec:(O/Tl) 1: 2
y+1 v+1

In this problem ¢ = 0.003735. The results of the computations are
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T,/T f £ |(Ty/Daew| Muin
1.0000 | -0.0037 | 0.9776 | 1.0038 | 0.138219
1.0038 | 0.0000 | 0.9772 | 1.0038 | 0.138235
1.0038 | 0.0000 | 0.9772 | 1.0038 |0.138235
1.0038 | 0.0000 | 0.9772 | 1.0038 | 0.138235
1.0038 | 0.0000 | 0.9772 | 1.0038 | 0.138235
1.0038 | 0.0000 | 0.9772 | 1.0038 | 0.138235
1.0038 | 0.0000 | 0.9772 | 1.0038 |0.138235
1.0038 | 0.0000 | 0.9772 | 1.0038 |0.138235
1.0038 | 0.0000 | 0.9772 | 1.0038 | 0.138235
1.0038 | 0.0000 | 0.9772 | 1.0038 | 0.138235
1.0038 | 0.0000 | 0.9772 | 1.0038 | 0.138235

So
T —
(—Oj 10038 =1+1=tMm3
T As=0 2

or M pq_g = 0.1382

The coordinates for the Fanno-Line at this reference state are shown in the following
table. The figure shown below is a plot of this data.

M As/e, T/T,
0.1382 | 0.0000 2.7893
0.33 0.2327 2.7407
0.52 0.3366 2.6564
0.71 0.3886 2.5432
0.90 0.4099 2.4086
1.09 0.4104 2.2607
1.28 0.3959 2.1066
1.47 0.3702 1.9521
1.66 0.3363 1.8017
1.86 0.2963 1.6584
2.05 0.2518 1.5240
2.24 0.2042 1.3995
243 0.1546 1.2852
2.62 0.1036 1.1808
2.81 0.0519 1.0860
3.00 0.0000 1.0000
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3.00
2.75 [
2.50 F
T 225 }
T, 2.00 }
1.75 }

1.50 } /
1.25 /
1.00
0.75 }
0.50 }
025 }
0.00 1 1 1 1 1 1 i
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

As/cp

Problem 2. — Draw the T-s diagram for the adiabatic flow of a gas with y = 1.3 in a
constant diameter pipe with friction. The reference Mach number, M;, for the flow is 4.0.

Following the same procedure as indicated in Problem 1

Yo vz oy (13212 Z 28000
T 2 2

1

v+l
gl o) _To _j_fTo}rm
T) T T
y—1.2
(To/T1)-1 _ , Mi

where ¢ =

v+l v+l
(To/Tl)y—l (1+y_1M12]Y_1
2

In this problem ¢ = 0.0002021. The results of the computations are

T,/T £ df/dt  [(To/TDuew| Mmin

1.0000 | -0.0002 | 0.9985 | 1.0002 | 0.0367
1.0002 | 0.0000 | 0.9984 | 1.0002 | 0.0367
1.0002 | 0.0000 | 0.9984 | 1.0002 | 0.0367
1.0002 | 0.0000 | 0.9984 | 1.0002 | 0.0367
1.0002 | 0.0000 | 0.9984 | 1.0002 | 0.0367
1.0002 | 0.0000 | 0.9984 | 1.0002 | 0.0367
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1.0002 | 0.0000 | 0.9984 | 1.0002 | 0.0367
1.0002 | 0.0000 | 0.9984 | 1.0002 | 0.0367
1.0002 | 0.0000 | 0.9984 | 1.0002 | 0.0367
1.0002 | 0.0000 | 0.9984 | 1.0002 | 0.0367
1.0002 | 0.0000 | 0.9984 | 1.0002 | 0.0367

The coordinates for the Fanno-Line at this reference state are shown in the following
table. The figure shown below is a plot of this data.

M As/c, T/T,
0.0367 | 0.0000 3.3993
0.30 0.4736 3.3544
0.57 0.5896 3.2445
0.83 0.6326 3.0820
1.09 0.6373 2.8828
1.36 0.6173 2.6634
1.62 0.5800 2.4379
1.89 0.5308 2.2169
2.15 0.4732 2.0075
241 0.4102 1.8137
2.68 0.3437 1.6374
2.94 0.2752 1.4787
3.21 0.2059 1.3370
3.47 0.1366 1.2109
3.74 0.0678 1.0991
4.00 0.0000 1.0000

4.00

3.50
T 300 } v
1 250

2.00 F

1.50

0.50 F

0'00 A A A A A
0.00 0.10 0.20 030 040 0.50 0.60 0.70

As/cp
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Problem 3. — Air (y = 1.4) flows into a constant-area insulated duct with a Mach number
of 0.20. For a duct diameter of 1 cm and friction coefficient of 0.02, determine the duct
length required to reach Mach 0.60. Determine the length required to attain Mach 1.
Finally if an additional 75 cm is added to the duct length needed to reach Mach 1, while
the initial stagnation conditions are maintained, determine the reduction in flow rate that
would occur.

Using the Fanno flow and isentropic flow relations we have at the upstream location

fL
(ﬂj ~14.5333
D )
M, =02
1 PL _ 09725
y=14 Pol
T _ 9921
ol

and at the downstream location

M2 =06( (fLmax | _ 4908

Thus,
E _ fL max
D

] - (%] =14.5333-0.4908 =14.0425
D 1 D/,

Since f=0.02 and D =1 cm, L = (14.0425)(1)/(0.02) = 702.1250cm = 7.0213 m

To reach Mach 1 at the exit
Mj, =1.0| (L ax 0

L (Lomax ) (Tomax ) _145333-0.0 145333

Since f=0.02 and D = 1 cm, L = (14.5333)(1)/(0.02) = 726.6650 cm.

Thus,

Now if 75 cm is added to this duct length, the flow rate will be reduced (M; will be
reduced). To determine the reduced value of M g we compute
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=16.0333

(fLman _ 0.02(726.6650 +75) _ 0.02(801.6650)
D Jir 1

From this value we find that Mg = 0.1917. Note the subscript R has been added to
indicate the reduced value. Using the isentropic flow relations we have

(%) =16.0333
D IR

Mg = 0.1917} PIR _ (9747
y=14 Pol
TR _ 9927
ol

The original mass flow rate and the reduced flow rate may be written respectively as
m= plAVl = p—l AMIW’YRTl
RT;
jAMlR VIRTIR

. Pir
mp =pRAVIR = [RT
IR

Since the stagnation conditions are maintained we may write the following

(PIR j[ T j
1 R Pol (
J(“RJ

Pol
~(0.9747)0.1917 [0.9921 _ 0.9604

(0. 9725) 0.9927

So the % reduction is (1 —0.9604)100 = 3.9622%

Problem 4. — Air (y = 1.4 and R = 0.287 kJ/kg - K) enters a constant-area insulated duct
with a Mach number of 0.35, a stagnation pressure of 105 kPa, and stagnation
temperature of 300 K. For a duct length of 50 cm, duct diameter of 1 cm, and friction
coefficient of 0.022, determine the air force on the duct wall.

A force-momentum balance on a control volume within the duct reveals that
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p1A] —P2A2 — Fyationair = m(Vy = Vp)

Thus to compute the force we must first determine the entry and exit values of the static
pressure and velocity as well as the mass flow rate.

Using the Fanno flow and isentropic flow relations we have at the upstream location

fLL
[ﬂj =3.4525
D )

Pl _3.0022

P
M;=035|p, V*

. = =2.6400
PL_09188
Pol
l:0.9761
ol
fL max _ fL max _223_4525_w:2,3525
D ), D ), D 1

From this value we find that M, = 0.3976. Using the Fanno and isentropic flow relations
we have

P2 _27126
p

My =03976 |py _ V" _ 1200

y=14 pt V2 .
T
—2 = 0.9694
T02
Since po; = 105 kPa,
p =L por = (0.9188)105) = 96.4740 kPa
ol

_pap 27126
p* P 3.0022

P> 96.4740 = 84.6308kPa
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Because the flow is adiabatic: T, = Ty = 300 K.

T, = TT—IT01 =(0.9761)(300) = 292.8300 K

ol

V) =Mja; = 0.35,/1.4(287)(292.8300) = 120.0551m /s

Vv, :(ViJ Yoy =2 2Ly, =(2'6400J120.0551:135.9114m/s
vV, P2 | p 2.3320

h=piAV] :[%jAMI\/yR—T { ( (96.4740) }(50‘@(120.0551)

0.287)(292.83) |\ 4

=0.01082kg/s
Finally,
Fwallon air = plAl —p2A2 —Ih(V2 _Vl)

=(96.4740 — 84.6308)(%10‘4}03 %—(0.01082)(135.91 14 -120.0551)

=0.9302-0.1716 =0.7585N

Problem 5. — Hydrogen (y = 1.4 and R = 4124 J/kg - K) enters a constant-area insulated
duct with a velocity of 2600 m/s, static temperature of 300 K, and stagnation pressure of
520 kPa. The duct is 2 cm in diameter, and 10 cm long. For a friction coefficient of 0.02,

determine the change of static pressure and temperature in the duct and the exit velocity
of the hydrogen.

v
M Vi Y 2600

a;  ,yRT ) J1.4(4124)300

=1.9756

Using the Fanno flow and isentropic relations we have at the upstream location
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fL
[ﬂj =0.2977
D

PL - 0.4155
p
M, =1.9756 *
! PL_Y 6166
=14 |p* v
T
—L =0.6739
T
PL_ 1327
Pol
@ = % _E =0.2977 _M =0.1977
D ), D ), D 2
From this value we find that M, = 1.6712. Using the Fanno and isentropic flow relations
we have
P2 05251
p
M, =1.6712 *
2 P2 _ V6820
y=14  |p* VW,
T
—2 =0.7699
T
%
P2 _P2p _ 05251 e
pi p*pr 04155
%
T _ T, T 0769 1.1425

T, 1T, 0.6739

v, =(V2J A VAN A )V =(0'6166)2600=(O.9041)2600
v o2 ) o 0.6820

=2350.6745m/s
P1 Pol p1
=18.2033kPa
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T
T, -T; =T, (T—z - 1] =300(1.1425 -1) = 42.7500K
1

Problem 6. — A constant-area duct, 25 cm in length by 1.3 cm in diameter, is connected
to an air reservoir through a converging nozzle, as shown in Figure P9.6. For a constant
reservoir pressure of 1 MPa and constant reservoir temperature of 600 K, determine the
flow rate through the duct for a back pressure of 101 kPa. Assume adiabatic flow in the
tube with £=0.023.

Figure P9.6

First determine the exit pressure assuming the duct is choked. Therefore,

22(0023X25):O44z3:(ﬂ4maxj _(fLmax] :(fLmax] —O.OZ(fLmaxj
D (1.3) D ) D ), D ), D )

From this value we can determine that M; = 0.6129. At this Mach number using the
isentropic and Fanno flow pressure relations we may write that

*

Pe=py=p* = (p—Ip—ljpol - ( ! j(0.7761)1000 — 450.2001kPa

P1 pol 1.7239

Since the back pressure is well below this value the assumption that the duct is choked is
correct and we may proceed to determine the flow rate. Now at M;=10.6129,

T
T, = (T—1]T01 =(0.9301)600 = 558.0600 K

ol

p1 = (p—ljpol = (0.7761)L000 = 776.1kPa
Pol
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th = pAV] = (Rp—TlleMl JRT,
{( (776.1) }(20.0132j(0.6129)\/(1.4)(287)(558.06)

0.287)(558.06) |\ 4
=0.1867 kg/s

Problem 7. — Find the time required for the pressure in the tank filled with Nitrogen
(y=1.4 and R = 296.8 J/kg - K) shown in Figure P9.7 to drop from 1 MPa to 500 kPa.
The tank volume is 8 m® and the tank temperature is 300K. Assume the tank temperature
remains constant and the flow in the 3 m long, 1 cm diameter connecting tube is adiabatic
with £=0.018. The back pressure is 101 kPa.

[ \@ o

Figure P9.7

First determine the exit pressure assuming the duct is choked. Therefore,

% _ % —5.4000 = (ngaX jl - (ﬂgax jz - (%jl ~0.0= (%1

From this value we can determine that M; = 0.2979. At this Mach number using the
isentropic and Fanno flow pressure relations we may write that

P1 \Po1 )\ Pr 3.6451

py=p = [ﬁJ[p—l][pilJpr =[ 1 j(0.9403)(1)pr(t)= 0.2580p, (t)kPa

The lowest value of reservoir pressure is 500 kPa; therefore, the smallest value of p* is
(0.2580)500 = 129 kPa and since this value is above p, = 101 kPa, the duct is choked for
the entire process.

AtM;=0.2979,
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T
T, = (—1JT01 =(0.9826)300 = 294.7800K
T01
_| P1 _
SEEA N
ol

Thus,

m=p;AV] = (%TIJAMI JIRT
{ ( (0.9403)p, }(E0.012j(0.2979)\/(1.4)(296.8)(294.78)

0.2968)(294.78) |\ 4

= 8.8006x10 " p,
Now within the reservoir,
p;V, =mRT

Taking the time derivative of this expression gives

dt

dp, ( E} dm, (0.2968)300 dm, dm,

= =11.1300
v, ) dt 8 dt dt

From a mass balance on the reservoir,

dm,
dt

S—

Therefore,

dcll’tf = —(11.1300)(8.8006x10‘5 +=-9.7950x10*p,

Integration gives

In (po)r 122 _ 06931 = -9.7950x10 4t
(p,); 1000
Hence,
= 2653104 _ 70760525
9.7950
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Problem 8. — A converging-diverging nozzle has an area ratio of 3.3, i.e., the exit and
therefore the duct area is 3.3 times the throat area, which is 60 cm’. The nozzle is
supplied from a tank containing air (y = 1.4 and R = 0.287 kJ/kg - K) at 100 kPa at 270 K.
For case A of Figure P9.8, find the maximum mass flow possible through the nozzle and
the range of back pressures over which the mass flow can be attained. Repeat for case B,
in which a constant-area insulated duct of length 1.5 m and f = 0.022 is added to the

nozzle.
Case A Case B
Figure P9.8
Case A

The maximum flow rate will occur when the throat Mach number is 1. At this Mach
number, the throat static to total pressure and temperature ratios are: 0.5283 and 0.8333,
respectively. Accordingly, the flow rate is computed to be

Pt
— Do T
My =PtA Vi = P AMYRT; = Lo AM; [YR — T,
RT, R It To
T. ©

(o)

- { ( (0.5283)100) )}(60x10‘4kl)\/(1 4)287)0.8333)270

0.287)(0.8333)(270
=1.4760kg/s

For A/A* = 3.3, we can determine that the exit Mach number is 0.1787. At this value the
exit static to total pressure ratio is 0.9780. Thus, the maximum flow rate will occur for

0 < pp <(0.9780)100 = 97.7952kPa
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Case B

Here too, the maximum flow rate will occur when the throat Mach number is 1. At this
Mach number, the throat static to total pressure and temperature ratios are: 0.5283 and
0.8333, respectively. Accordingly, the maximum flow rate will be the same as that in
Case A, viz., 1.4760 kg/s.

Now for subsonic flow at the nozzle exit, and the duct inlet, M; = 0.1787.
@ =18.8522
D 1

The diameter of the duct is computed as follows

D= \/4—A = \/4(60—)(33) =15.8777cm
T T

Thus

=-——"—=0.2078

L (0.022)150
D 158777

(fLm_ax] :(_ﬂm%j ML 18.8500-02078 = 18.6444
D ), D ), D

So the exit Mach number is 0.1796. The exit pressure which is equal to the back pressure
is computed as follows

*
py = P_ip_P_lpo = (6.0808)( ! j(o.977952)100 =97.3183kPa
p P1 Pol 6.1106

Thus, the maximum flow rate will occur for

0<pp <97.3183kPa

Problem 9. — A 3-m’ volume tank, R, is to be filled to a pressure of 200 kPa (initial
pressure 0 kPa). The tank is connected to a reservoir tank, L, containing air at 3 MPa and
300 K, whose volume is also 3 m’. A 30-m length of 2.5 cm-diameter tubing is used to
connect the two vessels, as shown in Figure P9.9. Determine the time required to fill the
tank to 200 kPa. Assume Fanno flow with f= 0.02.
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® ©

Tank L = Tank R

Figure P9.9

Because R, the tank on the right, is evacuated, it may be safely assumed that M, = 1.

Therefore,
E: (002)(30):24():(ﬂ‘maxj _(ﬂ‘maxj :(fLmaxj —OOI(fLman
D  (0.025) ' D ) D ), D ). D )

From this value we find that M; = 0.1606. Using the isentropic flow relations we have

(i] ~0.98215
M; =0.1606 |\ Po J;

=14
! [lj =0.9949
i

0

Thus,

m=p;iA;Vj = [%)AiMi YRT;

1

(0.98215)p g (n 2j
= —0.025“ |(0.1606),/(1.4)(287 )(0.9949 k300
{(0.287)(0.9949)(300) 4 ( NIL4N287 f300)
=3.1302x10 "% p g
Now in order that there be Fanno flow, T, must remain constant. So for tank L
poLV =mpRT,

Differentiate this with respect to time to get

dt ° dt
So
d d . d d
My _ | Y |WPoL _ o~ 31302x10 4 py = PoL _ 03484 SPoL.
dt (RT, ) dt (0.287)300) dt dt
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Similarly, for the tank on the right

PorV = mgpRT,
Therefore,
dmR — V deR — l'he :ml - _ V deL
dt RT, ) dt RT, ) dt
Clearly,
dpor __ dpoL
dt dt
That is

200
poR|0 =200kPa =p,12 —PoLi

dpor  3.1302x107*
dt 0.03484

oL = —8.9845x10 3 p .

Integration brings

28MPa 10°  dpgp

At =-
3MPa 89845 p 1.

=1 11.30281n(ij =7.6791s
2.8

Problem 10. Find the mass flow rate of air (y = 1.4 and R = 0.287 kJ/kg - K) through the
system shown in Figure P9.10. Assume Fanno line flow in the duct and isentropic flow in
the converging sections; f=0.01.

2 c¢m in diameter

14

p=101 kPa /

T=20°C < ISm ——*

1.75 c¢m in diamete

Figure P9.10
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O ® G

S~

Assume that the system is choked so that M3 = 1, A3 = A*. So (A/A*) = (A)Aj3) =
(2/1.75)* = 1.3061, which yields M, = 0.5184. In turn, (fLye/D)>= 0.9287. Also, (fL/D)
=(0.01)(15)/(0.02) = 7.5; therefore,

fLL fLL
(ﬂj = (ﬂj +E =0.9287 +7.5 =8.4287
1 » D

D D

From this, we find that M; = 0.2506. Consequently, with M;, M, and M3 we are able to
compute the following static pressures

P = (p_l por =(0.95725)101 = 96.6823kPa
Pol

*
p2 | p 1
=| 22 | £ |, =(2.0585
P2 [p* pljpl ( )(4.3441

P3 || Po3 | Po2 1
_ — (0.5283)(1.0 45.8140 = 29.0708 kPa
P3 ( j[ j( jpz (0.5283) {0.83257}

j96.6823 =45.8140kPa

Po3 A Po2 \ P2

Since p3 = pe and since p. must be equal to or greater than py, the nozzle is not choked as
assumed. Therefore, ps = p. = 30 kPa and M3 = M, < 1.

Assume M3 = 0.9 and from the isentropic relations we find

A
3 _1.0089, 23— 059126

%

A Po3
Now
2
A :ﬁﬁz(ﬂj 1.0089 =1.3177
A* Az A* LTS

From this we find M, = 0.5119, from which we obtain

fL
( m_aXJ =0.9761, P2 _ 0.8363, p—‘:‘ =2.0860
D 2 p02 p
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fL fL
(ﬂj = (ﬂj L _0.9761+7.5=8.4761
D ) D ), D

From this, we find that M; = 0.2501. Consequently, with M;, M, and M3 we are able to
compute the following static pressures

p| = (p_l por =(0.9574)101 = 96.6974kPa

Pol
* 1
O L =(2.0860)( j96.6974:46.3373kPa
p* i 43531

Po3 A\ Po2 \ P2

o :[ P3 J(po3 J(Poz ]m - (0.59126)(1.0)(0 81363j46.6974 — 32.7602kPa

Too large; therefore M3 needs to be increased. After a few tries M3 = 0.973 and from the
isentropic relations we find

A
3 _1.0006, 2305450

A* - Po3
Now
2
A2 :ﬁﬁ:(ﬂj 1.0006 = 1.3069
A* As At LT

From this we find M, = 0.5180, from which we obtain

fL.
( max j =0.9316, P2 _ 0.8328, P_i =2.0602
D ), Po2 p

(fLm_ax] _ (Mj L 0931647584316

From this, we find that M; = 0.2506. Consequently, with M;, M, and M3 we are able to
compute the following static pressures

p| = [p—ljpol =(0.9572)101=96.6772kPa

Pol

186



FromGasDynamics,Third Edition, by Jame<. JohnandTheoG. Keith. ISBN 0-13-120668-0© 2006 PearsorEducationnc.,
UpperSaddleRiver,NJ. All rightsreservedThis materialis protectedunderall copyrightlawsastheycurrentlyexist.No Portionof
this materialmaybereproducedin anyform or by any meanswithout permissionin writing from the publisher.

*
p2 | p 1
=| = || — =(2.0602 96.6772 = 45.8521kPa
P2 [ ]{ jpl ( {4.3438)

p P1
o :[ P3 J(pﬁ j{Poz ]m - (0.5450)(1.0)( 1 j45.8521 —30.0082kPa
Po3 A\ Po2 A\ P2 0.8328

Slightly too high but close enough. Note from the isentropic relations at M, (T/T,); =
(0.9876)293 =289.3668K

: p
i =p;AV; = [ﬁJAMl JYRTy
1

i {(0 2(5?76).;;23)668}[20'022j0'2506\/ (1.4)(287)(289.3668)

=0.0313kg/s

Problem 11. — For the flow of air (y = 1.4 and R = 0.287 kJ/kg - K) from the reservoir at
650 kPa and 1000 K shown in Figure P9.11, assume isentropic flow in the convergent-
divergent nozzle and Fanno flow in the constant-area duct, which has a length of 20 cm
and a diameter of 1 cm. The area ratio A,/A; of the C-D nozzle is 2.9. Take the friction
factor to be 0.02.

(a) Find the mass flow rate for a back pressure of 0 kPa.

(b) For part (a), find the pressure at the exit plane of the duct.

(c) Find the back pressure necessary for a normal shock to occur at the exit plane

of the nozzle (2).
(d) Find the back pressure necessary for a normal shock to appear just

downstream of the nozzle throat (1).

Figure P9.11
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(a) For Ay/A; = Ay/A* =29, M, = 2.6015. Therefore, (fLia/D), = 0.45288. Now fL/D
=(0.02)(20)/(1) = 0.4. Hence, L < Lyax so the flow cannot reach M. = 1. To compute the
exit Mach number we have

fL fL
( —max j = (_max J —E =0.45288-0.4 = 0.05288
D e D 2 D

From which we find M., = 1.2636. Now at the nozzle throat, M = 1 so

Py = [p—tjpot =(0.5283)650 = 343.3950kPa

T
T, = (—tJTot =(0.8333)1000 = 833.3333kPa
T

ot

T (0.01?
A= 4T = 2.7083x10 > m?>

. p
m=pAVy = (ﬁjAtMt\/YRTt

t

_ { (0.25;‘)3(;3 935_;)333)}(2.708&10‘5 o)y 2)287)&33.3333)

=0.02250kg /s
(b)

Py = [p—zJpoz =(0.050001)650 = 32.5007 kPa
Po2

*
Pe | P 1
= = || =— =(0.7548 32.5007 = 89.3744kPa
Pe [ *J( ]pz ( {0.27448]

p AP2

(c) In this case a shock stands at the nozzle exit — station 2. We will call the duct inlet,
(on the downstream side of the shock), station 3. Now at M, = 2.60147, from the
normal shock relations M3 = 0.50374 and ps/p, = 7.7289. Therefore,

Py = (p—3]p2 = (7.7289)32.5007 = 251.1947 kPa
P2
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Also from the Fanno relations at Ms, (fLm.x/D); = 1.03895. Since fL/D = 0.4 it
follows that

fL fL
[ max_] = (—max j _fL =1.03895-0.4 = 0.63895
D . D ); D

From which we find M, = 0.5668.

*
pe =| 2 [ 2, =(1.87361)( ! )251.1947:221.8476kPa
" | p3 2.12146

(d) In this case a shock appears just downstream of the nozzle throat. Consequently,
subsonic flow exits the nozzle. For Ay/A; = Ay/A* = 2.9, M, = 0.2046. Therefore,
(fLmax/D)2 = 13.7780. Since, fL/D = 0.4, then (fLm./D). = 13.7780 — 0.4 = 13.3780
from which we find M., = 0.2072

*
Pe = p_: 2 (P_z](l%z Jpot = (5.26503{ ! j(0.97124)650 = 623.3990kPa
p P2 A\ Po2 A\ Pot 5.33181

Problem 12. — In which configuration of Figure P9.12, (a) or (b), will the high-pressure
tank empty faster? Explain.

High
Pressure
Tank

(a)
Do ad
High

Pressure
Tank

(b)

Figure P9.12
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Both (a) and (b) are choked at section 4, thus, My = 1. However, because of the loss of
total pressure, pos4 is smaller in (a) than in (b). This results in a smaller m for the tank in
(a); hence, tank (b) will empty faster than (a).

Problem 13. — Air (y = 1.4 and R = 0.287 kJ/kg - K) flows through a converging-
diverging nozzle with area ratio of 2.9 (Figure P9.13), which exhausts into a constant-
area insulated duct with a length of 50 cm and diameter of 1 cm. If the system back
pressure is 50 kPa, determine the range of reservoir pressures over which a normal shock
will appear in the duct. Let = 0.02 in the duct.

@ e

po=150 kPa

Figure P9.13

Now fL/D = (0.02)(50)/(1) = 1.0

Shock at Duct Inlet

For Ai/A; = Ai/A* = 2.9, M, = 2.6015. From the isentropic relations at this Mach
number we obtain p;/po; = 0.0500. From the normal shock relations at this Mach number

we obtain M, = 0.50374 and p,/p1 = 7.7289. From Fanno flow relations at M, we obtain
(fLimax/D)2 = 1.03895. Therefore,

fLL fL
Momax | _(Lmax | _fL _4 13895102 0.03895
D ), \UD ), D

From which we find M, = 0.8455. Consequently,

*
P2 | P !
—[P2 P s (212146 50 =87.5233kPa
P2 [p*](pe})e ( {1.21194)

Pol | P1 1 1
=pol =| | P2 =| = 87.5233)= 226.4832kPa
Pr = Pol ( PI J(Pz jpz (0.05)[7.7289]( )

Shock at Duct Exit
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Since, at M; = 2.6015, (fLnax/D)1 = 0.4529, we see that L > L.« , hence a shock will
exist within the duct for reservoir pressures that exceed 226.4832 kPa. Using the method
described in Example 9.5 we can determine that the shock will penetrate only 0.8097 cm
into the duct.

Problem 14. — A converging-diverging nozzle with area ratio of 3.2 (Figure P9.14)
exhausts air (y = 1.4 and R = 0.287 kJ/kg - K) into a constant-area insulated duct with a
length of 50 cm and diameter of 1 cm. If the reservoir pressure is 500 kPa, determine the
range of back pressures over which a normal shock will appear in the duct (f=0.02).

@ e

Po

Pr =500 kPa

Figure P9.14
Now fL/D = (0.02)(50)/(1) = 1.0
Shock at Duct Inlet
For Ai//A; = A/A* = 3.2, M; = 2.7056. From the isentropic relations at this Mach
number we obtain p;/po; = 0.04258. From the normal shock relations at this Mach

number we obtain M, = 0.4952 and p./p; = 8.3737. From Fanno flow relations at M, we
obtain (fLy.x/D), = 1.1090. Therefore,

(fL_max] :(—fLman —221.1090—1.020.1090
D J. D ), D

From which we find M. = 0.7645. Consequently,

p| = [p—ljpol = (0.04258)500 = 21.2900kPa
Pol1

Py = (p—szl =(8.3737)21.2900 = 178.2761 kPa

P1
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*
Pe | P 1
=|—= | — =(1.3559 178.2761)=111.9199kPa
Pe [*][ jp2 ( {2.1598J( )

p NP2

Shock at Duct Exit

Since, at M; = 2.7056, (fLinax/D)1 = 0.4729, we see that L > L.« , hence a shock will
exist within the duct for back pressures that are below 111.9199 kPa. Using the method
described in Example 9.5 we can determine that the shock will penetrate only 2.2360 cm
into the duct.

Problem 15. — A converging-diverging nozzle is connected to a reservoir containing gas
(y = 1.4). The area ratio of the nozzle is such that the Mach number is 3.5 exiting the
nozzle and entering a constant-area duct of length-to-diameter ratio, L/D, of 100 to 1 and
friction coefficient of 0.01. (a) Determine the normal shock location, if the Mach number
at the exit is 0.75. (b) With the shock at this location, how much longer can the duct be
made before choking occurs at the exit with no change of M;? Refer to Figure 9.19 for
the nomenclature.

(a) Determining shock location:
At M; = 3.5, (fLmax/D)i = 0.5864, and at M, = 0.75, (fLpax/D)e = 0.1273. For the duct

under consideration, fL/D = 0.01(100)/1 = 1.0; hence, L > (Lmax)i. To determine the
location of the shock for this case, first calculate the value of F(M,) from Eq.(9.29)

F(Ml){ngaXL _[mgaxl _ (%j{mgaxl _[ngaxl

=1.0+0.1273-0.5864 = 0.5409

The value of M, can be obtained by numerically solving Eq.(9.33) using a spreadsheet
program that implements the Newton-Raphson method. The following table contains the
history of the iteration process:

Iteration| M fOM)  [fM+AM)|fM-AM)| AUAM | Myen
1 2.0000 |-0.25799| 0.2878 | 0.2779 | 0.4960 | 2.5201
2 2.5201 [0.005189| 0.5510 | 0.5411 | 0.4959 | 2.5097
3 2.5097 |-5.3E-06| 0.5458 | 0.5359 | 0.4969 | 2.5097
4 2.5097 |3.76E-11] 0.5458 | 0.5359 | 0.4969 | 2.5097
5 2.5097 0 0.5458 | 0.5359 | 0.4969 | 2.5097
6 2.5097 0 0.5458 | 0.5359 | 0.4969 | 2.5097
7 2.5097 0 0.5458 | 0.5359 | 0.4969 | 2.5097
8 2.5097 0 0.5458 | 0.5359 | 0.4969 | 2.5097
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At M; = 2.5097, M; is found from Eq.(9.31) to be 0.5121. At these Mach numbers,
(fLimax/D)1 = 0.4340 and (fL./D), = 0.9749. The shock location is determined from
Eq.(9.34)

L L L
Ls (lj max | [ fomax | 19 5864 0.4340)=15.2397
p U b ), UDp J| oo

(b) Determining the duct length to accelerate the flow to Mach 1 for the same shock
location determined above.

Because M. = 1.0, (fLnx/D)e = 0.0. Also, because the shock location is fixed
F(M;) = 0.54085 and for the same inlet Mach number, i.e, M; = 3.5, (fLi.x/D); = 0.5864;

hence,
D D ), D )

(0.01)L

+0.0-0.5864

Therefore, L/D = 112.7280 or an additional 12.7280D must be added to the original
length to produce sonic conditions for the same M; and shock location as in part (a).

Problem 16. — Air (y = 1.4) enters a pipe of diameter 2 cm at a Mach number of M; = 3.0.
A normal shock wave stands in the pipe at a location where the Mach number on the
upstream side of the shock is M; = 2.0. The Mach number exiting the pipe is M, = 1.0.
For steady, adiabatic, one-dimensional flow in the pipe, i.e., Fanno flow, determine the
location of the shock and the total length of the pipe. Assume f= 0.02.

Now from the normal shock relations at M; = 2.0 and y = 1.4, we obtain M, = 0.577350.
At the various Mach numbers we can determine the corresponding fL,,,,/D ratios, which
are needed to locate the shock and determine the pipe length.

Mi = 3.0, (fLimax/D); = 0.522159
M, = 2.0, (fLynax/D); = 0.522159
M, = 0.577350, (fLimax/D); = 0.522159
M. = 1.0, (fLinax/D); = 0.522159

The shock location is determined from Eq.(9.34)
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LS:[BJ Momax | _(Memax | |~ 2 522159 -0.304997)
f)Up L Up )| o0

=21.7162 cm

The total length of the pipe can be readily determined from Eq.(9.29)

rou) =) () (5, ()

Hence,

= 0—%2(0.58761 —0.304997 — 0.0 +0.522159)

=80.5023 cm

Problem 17. — A rocket nozzle is operating with a stretched out throat, (L = 50 cm and
D = 10 cm) as shown in Figure P9.17. If the inlet stagnation conditions are p,; = 1 MPa
and T,; = 1500 K, determine the nozzle exit velocity and mass flow for a back pressure of
30 kPa. The diameter of the nozzle at the exit station is the same as at the inlet station:
30 cm. Treat the exhaust gases as perfect, with y = 1.4 and R = 0.50 kJ/kg - K. Assume

isentropic flow in variable-area sections and Fanno flow in constant-area sections with
f=0.22.

GD@ @@

Figure P9.17
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Assume the system is choked so that M, = 1 and (fL,.x/D)> = 0. Also, (p/po)2 = 0.5253
and p, = p*. Now fL/D = (0.022)(50)/(10) = 0.110 = (fLjnax/D);. The corresponding
Mach number to this value is M; = 0.7637. At this Mach number from the isentropic
relations: (p/po)1 = 0.67966 and from the Fanno flow relations: (p/p*); = 1.35745.

Now for an area ratio of 9, from the isentropic relations we find that M, = 3.8061. At this
Mach number from the isentropic relations: (p/po)e = 0.0.008558. Therefore,

e

=(0.008558)( 1 j(l.o)( : j(O.67966)1MPa

0.5283 1.35745
=8.1108kPa

If there is a normal shock at the exit, the pressure ratio across the shock is: (pea/per) =
16.7337. Therefore, pe2 = pp = 135.7230 kPa. Because this is well above the stated back
pressure of 30 kPa, p. = 8.1108 kPa and the flow is further compressed outside the nozzle
by oblique shocks.

At M, =3.8061 from the isentropic relations, (T/T,). = 0.2566. Hence,

T
T, =T, =(0.2566)1500 = 384.9000K
T

0

Ve = Mgae = Mo 4/YRT, =(3.8061)/(1.4)(500(384.9)) =1975.6189m /s

(8.11076)

. Pe T 2
m=p.A.V, = A Ve =| —~—————— [ =£0.37 |(1975.6189) = 5.8854kg /s
Peftete [RTej ©c {(0.500)384.9}(4 j( ) s

Problem 18. — Air (y = 1.4 and R = 0.287 kJ/kg - K) flows adiabatically in a tube of
circular cross section with an initial Mach number of 0.5, initial T; = 500 K, and
p1 = 600 kPa. The tube is to be changed in cross-sectional area so that, taking friction into
account, there is no change in the temperature of the stream. Assume the distance
between inlet and exit, L, is equal to 100 Dy, with D; = initial duct diameter; f = 0.02. Find
the following:

(a) Mach number M,

(b) Dy/Dy

(c) Static pressure p;

(a) Since T; = T, = 500 K and since the flow is adiabatic for which Ty, = Ty, it therefore
follows that M| = M, = 0.5, i.e., the Mach number remains constant as well.
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(b) From Eq.(9.42)
dp _ yM?
dx 4

Integration yields

2 2
D2 -0 <" Lo 24,

Hence,
D 2
D—2 —1+ 100f% =1+(25)0.02)(1.4)0.5)% =1.175
1

(c¢) Since both the static temperature and the Mach number are constant, then so are the
speed of sound and the velocity. Accordingly, p1A; = p2As. So that

2 2
A D

py=—Lp ==L p :(Lj 600 = 434.5858kPa
A, D, 1.175

Problem 19. — In a rocket nozzle of area ratio 8 to 1, combustion gases (y = 1.2 and
R =0.50 kJ/kg - K) are expanded from a chamber pressure and temperature of 5 MPa and
2000 K. For a nozzle coefficient Cy, equal to 0.96, determine the rocket exhaust velocity
in space.

From the isentropic relations with y = 1.2 and an area ratio, A/A* = 8, the supersonic
solution is M = 3.1219. The corresponding temperature ratio T/To = 0.5064.
Accordingly, the exit temperature is Te = (0.5064)(2000) = 1012.8 K. The exit velictiy is
readily determined as follows:

Ve = Mgae = Mo y/YRT, =(3.1219),/(1.2)(500)(1012.8) = 2433.6407 m /s

This is the exit velocity for isentropic flow. The actual exit velocity is related to this
speed by

2
1
Ch :[ ¥ exit actual }

Vexit isentropic

Hence,
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Ve actual =+/Ch Ve isentropic = v0.96(2433.6407)=2384.4712 m/s

Problem 20. — Air (y = 1.4) enters a constant-area, insulated duct (Figure 9.9) with a
Mach number of 0.50. The duct length is 45 cm; the duct diameter is 3 cm; and the
friction coefficient is 0.02. Use Euler’s explicit method on a coarse grid containing 11
grid points to determine the Mach number at the duct outlet. Compare the result obtained
to the value obtained using Fanno relations.

Exact Solution

From the Fanno relations at M; = 0.5, (fLp./D); = 1.0691. Also, from the given
information fL/D = 0.3. Hence,

fL fL
(ﬂj :(ﬂj M 10691-03=0.7691
D ), U D ), D

From this value we find that M, = 0.542923.

Numerical Solution
Proceeding as in Example problem 9.9, we have

dM

M )_vM3[2+(v—1)M2]
dx B

F(x,M 5 £
4(1-M*) D

The same grid in the example is used here in which the duct length is divided into 10
evenly spaced increments, i.e., Ax = 4.5 cm. The computations are straightforward and
the results from a spreadsheet program are

pt X M; F(x;,M;) Min
1 0.0000 0.5000 0.0008 0.5037
2 4.5000 0.5037 0.0008 0.5075
3 9.0000 0.5075 0.0009 0.5113
4 13.5000 0.5113 0.0009 0.5153
5 18.0000 0.5153 0.0009 0.5195
6 22.5000 0.5195 0.0009 0.5237
7 27.0000 0.5237 0.0010 0.5281
8 31.5000 0.5281 0.0010 0.5326
9 36.0000 0.5326 0.0010 0.5373
10 | 40.5000 0.5373 0.0011 0.5421
11 45.0000 0.5421
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Hence, the error between the results is (0.5421/0.5429 — 1)100 = -0.1429%.

Problem 21. —If the problem described in the above is solved on finer grids using the first
order Euler explicit method, the following results for the exit Mach number are obtained

n Ax M,

11 4.5 0.542147
21 225 ]0.542529
41 1.125 [0.542725
81 0.5625 [0.542824

Determine the error when compared to the exact value of the exit Mach number is
0.542923. Use Richardson’s extrapolation method to obtain improved values. Also,
compute the error of these values.

Richardson’s extrapolation for Euler’s explicit method is given by

Ry -R; R, -R;
Egyler =R - =R =2R) —Ry
1-(2) !
Using this relation, the following table is easily prepared
n Ax M. % error (M, (Extr)| % error
11 4.5 0.542147]| -0.1429
21 2.25 ]0.542529| -0.0726 |0.5429115] -0.0022
41 1.125 10.542725| -0.0366 |0.5429203| -0.0006
81 0.5625 10.542824| -0.0184 ]0.5429225| -0.0001

Problem 22. — Heun’s predictor-corrector method is 2™ order and the Runge-Kutta
method used in this Chapter is 4™ order. Obtain an expression for each of these methods
that could be used to perform Richardson’s extrapolation of results, R2 and R1 that were
determined on two grids that differ by a factor of two, i.e., Ax; = Ax;/2.

The extrapolated value, E, in Richardson’s extrapolation method, is given by

R, -Ry

n
1| A%
AX2

E=R, -
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where R; and R, are the values that have been computed using the same method on two
grids of known width, say Ax; and Ax,. Also, the accuracy of the method is of order n.
For this problem Ax; = 2Ax,. Thus,

Heun’s method: n=2

R, -Ry R, -R; 4R, -R,
T Ret =
1-(2) 3 3

Exeun =R

Runge-Kutta: n =4

Ry-Ri _p  Ry=R; _I6Ry-R
1-(2)* 15 15

Problem 23. — An airstream (y = 1.4, R = 0.287 klJ/kg-K) at Mach 2.0 with a pressure of
100 kPa and a temperature of 270 K, enters a diverging, linear, conical channel with a
ratio of exit area to inlet area of 3.0 (see Figure P9.23). The inlet area is 0.008 m” and the
length is 10.0 cm. The average friction factor is 0.03. Use Heun’s predictor-corrector
method on a coarse grid of 11 grid points to determine the back pressure, py, necessary to
produce a normal shock in the channel at 5 cm from the inlet. Assume one-dimensional,
steady flow with the air behaving as a perfect gas with constant specific heats. Compare
results to the pressure value obtained by assuming isentropic flow except across the
normal shock (see Example 4.3). Does friction significantly change the isentropic flow
results?

Figure P9.23

Solution Using Fanno Flow, Isentropic Flow and Normal Shock Relations
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The inlet diameter is D; = \/4Ai /7 =+0.032/m =0.1009m and the exit diameter is
D, :\/4Ae/n =4/0.096/7 =0.1749m . Since the shock is located at Ly = 5cm and

since the channel is linear, the diameter at the shock location is

,De=DiL _Dc+D; _0.1749+0.1009
L 2 2

D, = D; =0.1379m

Therefore the area at the shock is Ag = A; = nD52/4 =0.0149 m>. At M; = 2.0, from the
isentropic relations with y = 1.4,

Aj

L =1.6875
A1
Therefore,
AL (A A :
_i:(_lj — :(00149](1.6875):3.1477
A7 (A la)) Lo.008

Using the Newton-Raphson iterative procedure and taking the supersonic root because
the flow on the upstream side of the shock must be supersonic, we obtain M; = 2.6882.
Note the Mach number on the downstream side of the shock is found to be 0.4966. With
the upstream shock Mach number determined, ratios of properties across the shock can be
found from normal shock relations, which are then combined with Eq.(4.21) to give

*
A
Po2 _04278="1
Pol A,y
or
Ae (A A ) A]
i [_SJ —LI =L 1=(3.0)1.6875)(0.4278) = 2.1657
A2 Aj Al A2

Again, using the Newton-Raphson procedure, this area ratio produces the following
subsonic value at the exit: M. = 0.2800. We can now solve for the exit pressure, pe:

Pe _ ( Pe J[poz ][pol j(poi] - (0.9470)(0.4278)(1.0)( ! j =3.1700
Pj Po2 Pol Poi Pj 0.1278

With subsonic flow at the channel exit, the channel back pressure is equal to the exit
plane pressure, i.¢.,

pe=100(3.1700) = 317.0000 kPa = py

Solution Obtained by Solving ODE Using Heun’s Method and Normal Shock Relations
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The equation which governs the Mach number distribution within the channel when both
area variation and frictional effects are considers is

M _ ) {M[2 Ty —1)M2]} [_i((:]ij " ;YMz(éﬂ (9.52)

dx 2 (1-M?)

Since the nozzle is conical, the local cross sectional area is given by
A(x), = n[D(x)]*/4 = n[D; + (D, — D)x/L]*/4,

Thus the area term in Eq(9.52) can be written as

1 dA 2 dD L

W& - D(x)g - D(X)

Consequently, Eq.(9.52) becomes

M F(x,M) = {MD + (vz—l)Mz]} {_ Z(DeLD:i_);inz(fﬂ

dx

where D = D(x) = D; + (D — D;)x/L. Heun’s method is

Predictor step: M, =M; + F(xi ,M; )Ax
9.49)
F(Xi ’Mi )+ F(Xi+1 ’Mp)
2

AX

Corrector step: M1 =M; +

where M, is the predicted Mach number.

For this problem, we will divide L into 10 pieces of uniform length, i.e., the grid spacing
is therefore Ax =1 cm = 0.01 m.

First, we will assume that f = 0. Inserting M; and the given information into F(x,M) at

x = 0 results in F(0.0,2.0) = 17.5692 and for the grid spacing we can compute the
predicted Mach number, 1.e., M, to be 0.2.1757. This is then used to compute
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F(Ax,M;) = 15.4760. Hence, M, =2.1602. The static pressures at each x are computed
from
1

D2M; | 2+(y-1M? |2

2 2
Dy My | 2+ -1Mj,

Pi+1 = Pi

Across the shock located at x = 0.05 m, the normal shock relations are used, viz.,

M§+21

2 Y~

Mz =

67 2y
=L M2 -1
y—1

2
p_6:2yM5 y—1

Ps y+1 _y+1

The results of the calculations for f = 0 obtained from a spreadsheet program are
presented in the following

pt X D; M; F(x;;M)) M, F(xirMp) | Mgy pi Pi+1

1 10.0000|0.1009 | 2.0000 17.5692 2.1757 15.4760 | 2.1652 100 77.2967
2 10.0100(0.1083 | 2.1652 15.5185 2.3204 14.0379 | 2.3130 | 77.2967 | 61.3513
3 10.0200(0.1157| 2.3130 14.0569 2.4536 12.9317 | 2.4480 | 61.3513 | 49.6999
4 10.0300(0.1231 | 2.4480 12.9408 2.5774 12.0449 | 2.5729 | 49.6999 | 40.9315
5 10.0400|0.1305| 2.5729 12.0494 2.6934 11.3123 | 2.6897 | 40.9315 | 34.1775
6 10.0500(0.1379| 2.6897 0.4964 | 34.1775 | 282.7671
7 10.0500(0.1379 | 0.4964 -7.4092 0.4224 -5.1538 0.4336 |282.7671293.2710
8 10.0600|0.1453 | 0.4336 -5.6371 0.3773 -4.3793 0.3835 |293.2710|301.4360
9 10.0700|0.1526 | 0.3835 -4.4814 0.3387 -3.6142 0.3431 |301.4360 | 307.4827
10 [0.0800|0.1600 | 0.3431 -3.6748 0.3063 -3.0396 0.3095 [307.4827|312.0861
11 10.0900|0.1674 | 0.3095 -3.0789 0.2787 -2.5940 0.2811 |[312.0861 | 315.6645
12 10.1000|0.1748 | 0.2811 315.6645

The computed exit pressure is 315.6645 kPa, which differs from the value computed
from Fanno relations, i.e., 317.0000kPa by —0.4213%. This is very good for the
particularly coarse mesh used in the computations.

Repeating the calculations for = 0.03, we obtain,
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pt X D; M; F(xi,M;) M, F(XirMp) | My Pi Pi+1

1 10.0000|0.1009 | 2.0000 17.0698 2.1707 149773 | 2.1602 100 77.5617

2 10.0100]0.1083 | 2.1602 15.0239 2.3105 13.5300 | 2.3030 | 77.5617 | 61.7557

3 10.0200(0.1157| 2.3030 13.5524 2.4385 12.4090 | 2.4328 | 61.7557 | 50.1781

4 10.0300|0.1231 2.4328 12.4209 2.5570 11.5053 2.5524 | 50.1781 | 41.4465

5 10.0400|0.1305| 2.5524 11.5121 2.6676 10.7552 | 2.6638 | 41.4465 | 34.7072

6 10.0500(0.1379| 2.6638 0.4985 | 34.7072 | 281.5335
7 10.0500|0.1379 | 0.4985 -7.4504 0.4240 -5.1778 0.4354 |281.5335292.0486
8 10.0600(0.1453 0.4354 -5.6645 0.3787 -4.3986 0.3851 | 292.0486| 300.2143
9 10.0700(0.1526| 0.3851 -4.5016 0.3401 -3.6295 0.3444 | 300.2143| 306.2590
10 10.0800|0.1600 | 0.3444 -3.6906 0.3075 -3.0521 0.3107 | 306.2590| 310.8600
11 10.0900|0.1674 | 0.3107 -3.0917 0.2798 -2.6045 0.2822 | 310.8600| 314.4358
12 10.1000(0.1748 | 0.2822 314.4358

Friction has reduced the exit pressure from 315.6645 kPa to 314.4358 kPa, slightly less
than 0.4%. Therefore, an isentropic flow assumption would be acceptable for this
problem.

Problem 24. — Helium (y = 5/3) flows through a symmetrical, C-D nozzle with a circular
cross-section. The shape of the nozzle is given by

D=2 1+Lcof nX]|D,
2 L

The nozzle length is two times the throat diameter, i.e., L = 2D;. Assuming that the
nozzle is choked, determine the Mach number distribution for both subsonic and
supersonic flow in the diverging portion of the nozzle. Assume that the friction
coefficient is 0.4. Use the Method of Beans and the 4™ order Runge-Kutta method to

solve this problem on a grid in which Ax/L = 0.05.
Except for the value of y, this problem is exactly the same as Example 9.10.

First the location of the sonic point must be computed from,

[Xj 1 . 4 yfL
—| =-—sin | ——
Lsp T 4nDy

For y = 1.4, f = 0.4 and L = 2D,, we find that x,, = 1.0388L, (the correct angle that
appears in the profile equation is186.0907°). Moreover, Dy,/D; = 1.0056 and
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&
dx sp

SHE R —“—zcos[nﬁth =9.8139 1
dx* ), L L L

x D
~Zsin| =L D, = 03333
L L L

The slopes that are used to begin the solution at the sonic point must be computed. This is
accomplished by solving the following quadratic

2
a(d—Mj + b(d—Mj +c=0
dx sp dx sp

where

a= Y 16667

v+1
vt

b=|— =1.3258/L
D sp

2 2
c=— 2d°D +2(ld_Dj (v dD - -19.5176
D gx? D dx Jg, p? dx $p

With these coefficients, the two roots for (dM/dx)s, are computed to be

2
(d_Mj _—b+vb —4ac=3.1922
dx - 2a

(d_Mj ~b-+b* —4ac
dx Jgp 2a

The results of the computations are contained in the following tables

X; X; X; - AX/2 X;- AX/2 X;- AX
Mi Mi Mi - kle/2 Mi - szx/2 Mi - k3AX
pt | x/L Di/Dy M; | F(x,My) ky Kk, k3 Ky M.

22 11.0338 | 1.0056 | 1.0000 | 3.1922 | 3.1922 3.0024 3.2560 3.0355 ]0.8943
21 11.0000 | 1.0000 | 0.8943 | 3.0158 | 3.0158 2.8504 2.9446 2.7595 10.7496
20 10.9500 | 1.0123 | 0.7496 | 2.7239 | 2.7239 2.5400 2.5983 24077 |0.6212
19 1 0.9000 | 1.0489 | 0.6212 | 2.3930 | 2.3930 2.2005 2.2439 2.0529 |0.5101
18 10.8500 | 1.1090 | 0.5101 | 2.0442 | 2.0442 1.8566 1.8900 1.7094 | 0.4163
17 10.8000 | 1.1910 | 0.4163 | 1.7036 | 1.7036 1.5308 1.5568 1.3946 | 0.3391
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16 1 0.7500 | 1.2929 |0.3391 | 1.3905 | 1.3905 1.2387 1.2587 1.1192 | 0.2765

1510.7000 | 1.4122 | 0.2765| 1.1162 | 1.1162 0.9881 1.0033 0.8874 | 0.2266

14 1 0.6500 | 1.5460 | 0.2266 | 0.8853 | 0.8853 0.7804 0.7917 0.6979 |0.1872

13 10.6000 | 1.6910 | 0.1872 | 0.6964 | 0.6964 0.6125 0.6207 0.5463 | 0.1563

12 1 0.5500 | 1.8436 | 0.1563 | 0.5452 | 0.5452 0.4791 0.4850 0.4265 |0.1322

11 {0.5000 | 2.0000 | 0.1322 | 0.4258 | 0.4258 0.3741 0.3783 0.3326 |0.1133

10 | 0.4500 | 2.1564 | 0.1133 | 0.3322 | 0.3322 0.2918 0.2947 0.2591 | 0.0986

9 10.4000 | 2.3090 | 0.0986 | 0.2588 | 0.2588 0.2272 0.2292 0.2012 | 0.0872

8 10.3500 | 2.4540 | 0.0872 | 0.2010 | 0.2010 0.1761 0.1775 0.1553 ]0.0783

7 10.3000 | 2.5878 | 0.0783 | 0.1552 | 0.1552 0.1353 0.1362 0.1183 | 0.0715

6 10.2500 | 2.7071 |0.0715| 0.1182 | 0.1182 0.1020 0.1026 0.0879 | 0.0664

5 10.2000 | 2.8090 | 0.0664 | 0.0878 | 0.0878 0.0743 0.0747 0.0622 | 0.0626

4 [0.1500 | 2.8910 | 0.0626 | 0.0622 | 0.0622 0.0505 0.0508 0.0398 | 0.0601

3 10.1000 | 2.9511 | 0.0601 | 0.0398 | 0.0398 0.0293 0.0295 0.0194 | 0.0586

2 | 0.0500 | 2.9877 | 0.0586 | 0.0194 | 0.0194 0.0096 0.0097 0.0000 | 0.0581

1 10.0000 | 3.0000 | 0.0581

X; Xi Xit+ Ax/2 Xit+ Ax/2 Xi+ Ax

Subsonic decelerating
flow M; M; M; + kKiAX/2 | M+ kAx/2 | M;+ k3Ax
pt x/L Dy/D M; F(x;,M)) k; k, k; ky M
23 | 1.0338 | 1.0056 | 1.0000 | -4.0761 | -4.0761 -3.5747 -4.0292 -3.5432 | 0.9385
24 | 1.0500 | 1.0123 | 0.9385 | -3.9813 | -3.9813 -3.3956 -3.7328 -3.3190 | 0.7589
25 | 1.1000 | 1.0489 | 0.7589 | -3.1672 | -3.1672 -2.8402 -2.9343 -2.6295 10.6143
26 | 1.1500 | 1.1090 | 0.6143 | -2.6052 | -2.6052 -2.3246 -2.3823 -2.1245 | 0.4965
27 |1 1.2000 | 1.1910 | 0.4965 | -2.1125 | -2.1125 -1.8753 -1.9145 -1.6986 | 0.4015
28 | 1.2500 | 1.2929 | 0.4015 | -1.6916 | -1.6916 -1.4946 -1.5223 -1.3448 | 0.3260
29 | 1.3000 | 1.4122 | 0.3260 | -1.3403 | -1.3403 -1.1799 -1.1998 -1.0566 | 0.2663
30 | 1.3500 | 1.5460 | 0.2663 | -1.0536 | -1.0536 -0.9254 -0.9396 -0.8259 ]0.2196
31 | 1.4000 | 1.6910 | 0.2196 | -0.8239 | -0.8239 -0.7228 -0.7330 -0.6438 | 0.1831
32 | 1.4500 | 1.8436 | 0.1831 | -0.6425 | -0.6425 -0.5636 -0.5707 -0.5013 ] 0.1546
33 | 1.5000 | 2.0000 | 0.1546 | -0.5004 | -0.5004 -0.4392 -0.4441 -0.3902 | 0.1325
34 | 1.5500 | 2.1564 | 0.1325 | -0.3897 | -0.3897 -0.3421 -0.3455 -0.3036 | 0.1153
35 [1.6000 | 2.3090 | 0.1153 | -0.3032 | -0.3032 -0.2661 -0.2685 -0.2356 | 0.1019
36 | 1.6500 | 2.4540 | 0.1019 | -0.2353 | -0.2353 -0.2061 -0.2077 -0.1817 |0.0915
37 | 1.7000 | 2.5878 | 0.0915 | -0.1815 | -0.1815 -0.1582 -0.1593 -0.1383 | 0.0835
38 | 1.7500 | 2.7071 | 0.0835 | -0.1382 | -0.1382 -0.1193 -0.1200 -0.1027 | 0.0775
39 | 1.8000 | 2.8090 | 0.0775 | -0.1027 | -0.1027 -0.0868 -0.0873 -0.0726 | 0.0732
40 | 1.8500 | 2.8910 | 0.0732 | -0.0726 | -0.0726 -0.0590 -0.0593 -0.0464 | 0.0702
41 ]1.9000 | 2.9511 | 0.0702 | -0.0464 | -0.0464 -0.0342 -0.0344 -0.0226 | 0.0685
42 119500 | 2.9877 | 0.0685 | -0.0226 | -0.0226 -0.0112 -0.0112 0.0001 | 0.0679
43 ] 2.0000 | 3.0000 | 0.0679
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X X; X;+ Ax/2 X;+ Ax/2 X;+ Ax

Supersonic accelerating flow M M; M;+ ki Ax/2 | Mj+ kAx/2 | M;+ k3Ax

pt | XL | D/D, M; | F(xpMy k; k, k3 k4 M+
23 |11.0338| 1.0056 | 1.0000 | 3.1922 | 3.1922 3.3531 3.1553 3.2836 1.0525
24 11.0500| 1.0123 | 1.0525 | 3.2282 | 3.2282 3.3841 3.2681 3.3517 1.2182
25 |1.1000| 1.0489 | 1.2182 | 3.4150 | 3.4150 3.4503 3.4388 3.4513 1.3902
26 |1.1500| 1.1090 | 1.3902 | 3.4561 3.4561 3.4439 3.4463 3.4104 1.5623
27 11.2000| 1.1910 | 1.5623 | 3.4113 34113 3.3534 3.3617 3.2830 1.7300
28 |1.25001.2929 | 1.7300 | 3.2829 | 3.2829 3.1857 3.1965 3.0825 1.8894
29 |1.3000| 1.4122 | 1.8894 | 3.0820 | 3.0820 2.9533 2.9651 2.8234 | 2.0373
30 |[1.3500| 1.5460 | 2.0373 | 2.8227 | 2.8227 2.6699 2.6819 2.5196 | 2.1710
31 |1.4000| 1.6910 | 2.1710 | 2.5189 | 2.5189 2.3486 2.3604 2.1836 | 2.2887
32 |1.4500| 1.8436 | 2.2887 | 2.1830 | 2.1830 2.0008 2.0123 1.8260 | 2.3890
33 |1.5000| 2.0000 | 2.3890 | 1.8254 1.8254 1.6358 1.6469 1.4551 2.4710
34 |1.5500|2.1564 | 2.4710 | 1.4545 1.4545 1.2610 1.2717 1.0774 | 2.5343
35 |1.6000|2.3090 | 2.5343 | 1.0768 1.0768 0.8820 0.8922 0.6977 | 2.5787
36 |1.6500|2.4540 | 2.5787 | 0.6972 | 0.6972 0.5030 0.5128 0.3197 | 2.6041
37 |1.7000|2.5878 | 2.6041 | 0.3192 | 0.3192 0.1271 0.1363 -0.0543 | 2.6107
38 |1.7500|2.7071 | 2.6107 | -0.0547 | -0.0547 -0.2439 -0.2351 -0.4225 | 2.5987
39 |1.8000|2.8090 | 2.5987 | -0.4229 | -0.4229 -0.6087 -0.6005 -0.7845 | 2.5685
40 |1.8500] 2.8910 | 2.5685 | -0.7848 | -0.7848 -0.9673 -0.9595 -1.1404 | 2.5203
41 |1.9000| 2.9511 | 2.5203 | -1.1407 | -1.1407 -1.3204 -1.3131 -1.4917 | 2.4545
42 11.9500| 2.9877 | 2.4545 | -1.4920 | -1.4920 -1.6702 -1.6635 -1.8419 | 2.3712
43 12.0000| 3.0000 | 2.3712
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Chapter Ten

FLOW WITH HEAT
ADDITION OR HEAT LOSS

Problem 1. — Draw the T-s diagram for the flow of a gas with y = 1.4 in a constant
diameter pipe with heat addition or loss. The reference Mach number, M, for the flow is
3.0.

This is a companion to Example 10.2. In that problem the reference state is the same as
given here, however, y = 1.3. To draw the Rayleigh line for the given reference state we

have
T M? (1+yM12)2
)
T MP (1 pm2f
and
(v+1)
2 2
s—slzln[M] 1+yM7 | ¥
Cp M l+yM2

It should be noted that the entropy change is zero for M = M, and therefore at T = T;.
The second value is determined by setting the argument of the natural logarithm to 1 and
solving the nonlinear equation using the Newton-Raphson method. The function that is
solved and its derivative are

F(M)=cM® —yM? —1=0

dF —beMP! - 2yM
dM

where c:(1+yM12)/M? and b=2y/(y+1). For M; = 3.0 and y = 1.4 the solution

procedure yields M = 0.37307. The calculations to draw the Rayleigh line were
performed within a spreadsheet program and the results are contained in the following
table and figure
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M As/c, T/T,
0.3731 | 0.0000 2.0035
0.50 0.3861 2.8429
0.64 0.6026 3.3878
0.77 0.7167 3.6356
0.90 0.7667 3.6562
1.03 0.7757 3.5302
1.16 0.7581 3.3231
1.29 0.7236 3.0798
1.42 0.6782 2.8281
1.56 0.6259 2.5838
1.69 0.5696 2.3550
1.82 0.5111 2.1453
1.95 0.4516 1.9554
2.08 0.3919 1.7847
2.21 0.3327 1.6318
2.34 0.2742 1.4952
247 0.2168 1.3732
2.61 0.1606 1.2641
2.74 0.1057 1.1664
2.87 0.0522 1.0788
3.00 0.0000 1.0000

4.00

T, 350 F /
3.00 F
250 F

2.00 /

1.50 f

1.00

0.50 F

000 'l 'l 'l 'l 'l 'l
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

(s —si)/cp

Problem 2. — Draw the T-s diagram for the flow of a gas with y = 1.3 in a constant
diameter pipe with heat addition or loss. The reference Mach number, M, for the flow is
4.0.
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This is a companion to Example 10.2 and problem 1. In this problem the reference state
differs from these previous problems, however, y = 1.3. For M; = 4.0 and y = 1.4 the
solution procedure yields M = 0.2864. The calculations to draw the Rayleigh line were
performed within a spreadsheet program and the results are contained in the following
table and figure

M As/c, T/T,
0.2864 | 0.0000 1.9894
0.47 0.7287 3.9795
0.66 1.0527 5.2640
0.84 1.1809 5.7033
1.03 1.2057 5.5685
1.21 1.1742 5.1463
1.40 1.1123 4.6233
1.59 1.0341 4.0973
1.77 0.9481 3.6116
1.96 0.8588 3.1812
2.14 0.7691 2.8073
2.33 0.6806 2.4855
2.51 0.5941 2.2093
2.70 0.5102 1.9724
2.89 0.4290 1.7685
3.07 0.3507 1.5926
3.26 0.2752 1.4401
3.44 0.2026 1.3075
3.63 0.1325 1.1915
3.81 0.0651 1.0897
4.00 0.0000 1.0000

6.00
550 F

T/T 5.00 F /4
4.50
4.00 F / /
350 } / /
3.00

2.50 / /

2.00

150 f

1.00

0.50 }

000 'l 'l 'l 'l
0.00 020 040 0.60 0.80 1.00 120 1.40

(s —si)/cp
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Problem 3. — Air (y = 1.4 and R = 0.287 kJ/kg - K) flows in a constant-area duct of 5-cm
diameter at a rate of 2 kg/s. If the inlet stagnation pressure and temperature are,
respectively, 700 kPa and 300 K, plot T versus s for Rayleigh line flow. For the same
inlet conditions and mass flow rate, plot a T-s diagram for Fanno flow. From the points of
intersection of Rayleigh and Fanno lines, show the states on either side of a normal
shock. Assume the air to behave as a perfect gas with constant specific heats.

p01=700kPa :m:2kg/s

iy D=0.05m

Tor = 300K

The flow rate may be written as

: P
h=pAV| = (ﬁjAMl JIRT] =
1

So

m RTOI 2
=C=
V Y
1000( pol)( “Dz j _

This is a nonlinear algebraic equation that can be solved by the Newton-Raphson method.
The following is a table that presents the iterations to determine the two Mach numbers
by this approach. The function that is to be solved to determine the Mach numbers and its
derivative are

2
f(M):YT_lM4 +M? —cz(lﬂT_lejY‘l =0

v+l

Af N o s w2 vl vt
dM(M)—2(y )M +2M - 2yc M[1+ : Mj

where
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c= m IRTo1 _ 2 [(287)(300) 03600
’TDZJ v (250m)(700)(0.052 V14

e

The calculations performed on a spreadsheet are as follows:

n M fM) | dfidm | My, n| My £(M) df/dm | M.,
1 | 02000 | -0.0974 | 0.3299 | 0.4951 1 | 3.0000 | -150.5055 |-499.5166| 2.6987
2 | 04951 | 0.0751 | 0.8468 | 0.4064 2 | 2.6987 | -52.4180 |-195.1466| 2.4301
3 | 04064 | 0.0071 | 0.6864 | 0.3960 3 | 2.4301 | -17.6948 | -79.0430 | 2.2062
4 | 03960 | 0.0001 | 0.6679 | 0.3959 422062 | -5.5758 |-34.5185 | 2.0447
5 | 03959 | 1.85E-08 | 0.6677 | 0.3959 5] 20447 | -1.4866 |-17.6427 | 1.9604
6 | 03959 | 833E-16 | 0.6677 | 0.3959 6 | 1.9604 | -0.2525 |-11.9319 | 1.9393
7 | 03959 |-2.22E-16| 0.6677 | 0.3959 7 | 1.9393 | -0.0127 |-10.7471 | 1.9381
8 | 03959 |0.00E+00 | 0.6677 | 0.3959 8 | 1.9381 | 0.0000 |-10.6836 | 1.9381
9 | 03959 |0.00E+00 | 0.6677 | 0.3959 9 | 1.9381 | -3.31E-10 | -10.6834 | 1.9381
10 | 03959 | 0.00E+00 | 0.6677 | 0.3959 | | 10| 1.9381 | 0.00E+00 | -10.6834 | 1.9381

Thus, two possible Mach numbers are obtained-one subsonic and the other supersonic.
Since we seek to show that the intersection of the Rayleigh and Fanno lines correspond to
the states on either side of a normal shock, only the supersonic result needs to be
considered, i.e., the reference Mach number, M; = 1.9381.

Rayleigh line: Following the procedure of Example 10.2 we may write

T M? (1+yM12)2
T Mf (1+yM2)2

and

(-1 (v+1)

2

S=S1_ M2(1+yM12)2 (1+yM2) v _ln(Mj 1+yMf | v
N 2 2 B 2

Cp Ml (1+,YM2)2 (l-I-yMl) Ml 1+'YM

Incorporating these into a spreadsheet program results in the following table of data

M As/c, T/T,
0.5393 | 0.0000 | 1.5317
0.60 0.0992 | 1.6597
0.70 0.2117 | 1.7976
0.80 0.2775 | 1.8566
0.90 0.3104 | 1.8549
1.00 0.3197 | 1.8105
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1.10 0.3123 | 1.7386
1.20 0.2927 | 1.6509
1.30 0.2646 | 1.5555
1.40 0.2304 | 1.4582
1.50 0.1919 | 1.3624
1.60 0.1504 | 1.2705
1.70 0.1071 | 1.1836
1.80 0.0625 | 1.1025
1.90 0.0173 | 1.0272
1.9381 | 0.0000 | 1.0000

Fanno line: Following the procedure of Example 9.1 we may write

T, T
T - 2+ (y—1)M7? - 1|1 T
UG DU 1M12 L =) 12 > Sl:lln(l}ry 1ln 11
T 2 Ti 2+(y-1)M ¢, v \Ti) 2v | T,

T

Incorporating these into a spreadsheet program results in the following table of data

M As/c, T/T,
0.3959 | 0.0000 1.6980
0.40 0.0024 1.6969
0.50 0.0514 1.6679
0.60 0.0857 1.6336
0.70 0.1092 1.5949
0.80 0.1242 1.5525
0.90 0.1324 1.5071
1.00 0.1349 1.4594
1.10 | 0.1327 | 14100
1.20 0.1264 1.3597
1.30 0.1166 1.3089
1.40 0.1039 1.2581
1.50 0.0886 1.2078
1.60 0.0711 1.1582
1.70 0.0518 1.1098
1.80 0.0310 1.0626
1.90 0.0088 1.0170
1.9381 | 0.0000 1.0000
Plotting the data in a single figure results in
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To obtain the intersection point of the two lines we must obtain the value of T/T; from an
equation that includes Eq.(10.17) and Eq.(9.7), i.e.,

Tyl (1+yM12)+\/(1+yM12)2—4yM12(T/T1) (T
T, v 2 v Ty
1 T
1+Y—M12——
+1 " n 1 h =0
2y Y2 M2

For the given value of M; = 1.9381 we must iteratively solve to this nonlinear equation to
obtain T/T; = 1.6378. Using the normal shock relations at M1 = 1.9381, we find that
Tz/T] =1.6378.

Problem 4. — Air (y = 1.4, R =0.287 kl/kg - K and ¢, = 1.004 kJ/ kg - K) flows in a
constant-area duct of diameter 1.5 cm with a velocity of 100 m/s, static temperature of
320 K, and static pressure of 200 kPa. Determine the rate of heat input to the flow
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necessary to choke the duct. Assume Rayleigh line flow; express your answer in
kilowatts. Assume the air to behave as a perfect gas with constant specific heats.

The Mach number at the initial station is

Mlzﬁ: \% 100

= =0.2789
a;  JyRT;  /(1.4)287)(320)

At this Mach number from the isentropic relation (T/T,); = 0.9847. Thus, T, =
T,/0.9847 = 320/0.9847 = 324.9721K. Now using the initial Mach number in the
Rayleigh relation we find that T, /T,* = 0.3084. Hence, T,* = 324.9721/0.3084 =
1053.7356K.

The flow rate is given by

h=pAV; =| 2L AV, = __(200) (30.0152}00 =0.03848kg /s
RT, (0.287)320) |\ 4

The heat transfer rate for choked flow is

q=rc, (T[f ~Ty; ): (0.03848)(1.004)(1053.7356 —324.9721) = 28.1573kJ /s

=28.1573kW

Problem 5. — Air (y = 1.4, R =0.287 kl/kg - K and ¢, = 1.004 kJ/ kg - K) flows in a
constant-area duct of 10 cm diameter at a rate of 0.5 kg/s. The inlet stagnation pressure is
100 kPa; inlet stagnation temperature is 35°C. Find the following:

(a) Two possible values of inlet Mach number.

(b) For each inlet Mach number of part (a), determine the heat addition rate in kilowatts
necessary to choke the duct.

P1
(p jpol - T
APol/ (_DZJMI YR(_lJTol
T
R| — [T
I (Tolj "

. p oo
m = plAVI = (ﬁJAMl 'YRTl =
1
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[pl}oo .
i = 0.5kg /s = | Lol (EO.IZJMl (1.4)287) — [(308)

T 4 To1

0.287] —L [308

I Tot)

[leMl Ml\/{H(y_lelﬂ
Pol 2
= 3125622 ~3.1256

T, 1 2
- Y- 2 (y-1
TOI |:1 + (2 le :|

This is a nonlinear algebraic equation that can be solved by the Newton-Raphson method.
The following is a table that presents the iterations to determine the two Mach numbers
by this approach. The function that is to be solved to determine the Mach numbers and its
derivative are

f(M)=YT_1M4 +M? —c2(1+yT_IM2jy_l =0

v+1

A (M) = 2(y—1)M3 +2M — 2YCZM(1 JFVT_IMz}V‘1

dM

where ¢ = 0.5/(3.1256) = 0.1600.

Iteration | Mgy f(M) df/dm M,ew Iteration | M4 f(M) df/dm Mew

1 0.4000 | 0.1332 | 0.8166 | 0.2369 1 3.0000 | -9.3419 |-76.0257| 2.8771
0.2369 | 0.0291 | 0.4662 | 0.1745 2.8771 | -1.8595 |-47.5194 | 2.8380
0.1745 | 0.0039 | 0.3404 | 0.1630 2.8380 | -0.1408 |-40.4679| 2.8345
0.1630 | 0.0001 | 0.3173 | 0.1626 2.8345 | -0.0010 |-39.8816| 2.8345
0.1626 |1.75E-07| 0.3165 | 0.1625 2.8345 |-5.5E-08|-39.8773 | 2.8345
0.1625 [3.04E-13| 0.3165 | 0.1625 2.8345 |0.00E+00|-39.8773 | 2.8345
0.1625 |0.00E+00| 0.3165 | 0.1625 2.8345 |0.00E+00]-39.8773 | 2.8345

NN | AW
NN | AW

(a) So M; = 0.1625 and 2.8345 are the two possible initial Mach numbers for the given
conditions.

(b) At M; = 0.1625, from the Rayleigh relation we find that T,;/T,* = 0.1185. Hence,
To* =308/0.1185 = 2599.1561K.

The heat transfer rate for choked flow is
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q= rhcp(T: —T01)= (0.5)(1.004)(2599.1561—308) = 1150.1604kW

At M| = 2.8345, from the Rayleigh relation we find that T,,/T,* = 0.6702. Hence, T,* =
308/0.6702 = 459. 5643K.

The heat transfer rate for choked flow is

q =ric,, (T: — Ty ): (0.5)(1.004)(459.5643 —308) = 76.0853kW

Problem 6. — A. supersonic flow at p, = 1.0 MPa and T, = 1000 K enters a 5 cm diameter
duct at Mach 1.8. Heat is added to the flow via a chemical reaction taking place inside the
duct. Determine the heat transfer rate in kilowatts necessary to choke the duct. Assume
the air (y = 1.4, R =0.287 klJ/kg - K and ¢, = 1.004 kJ/ kg - K) to behave as a perfect gas
with constant specific heats; neglect changes in the composition of the gas stream due to
the chemical reaction.

At M, = 1.8 from the Rayleigh relation we find that T,,/T,* = 0.8363. Hence, T,* =
1000/0.8363 = 1195.7432K. Also from the isentropic relations at this Mach number
(T/To)1 = 0.6068 and (p/po)1 = 0.1740. Thus, T = (T +1)(0.6068) = 606.8 K and p; =
(po1)(0.1740) = 174.0 kPa.

The flow rate is given by

= pjAV] = [ jAMl\/— _{Lﬂ(go.oszj1.8¢(1.4)(287)(606.8)

(0 287 (606.8

=1.7436kg/s

The heat transfer rate for choked flow is

g =1hc,, (T;“ - T, ): (1.7436)(1.004)(1195.7432 —1000) = 342.6630kW

Problem 7. — Heat is added to airflow (y = 1.4 and R = 0.287 kJ/kg - K) in a constant-area
duct at the rate of 30 kJ/m. If flow enters at Mach 0.20, T;= 300 K, and p; = 100 kPa,
determine M(x), p(x), T(x), and po(x).

From isentropic relations at M; = 0.2, T;/To; =0.9921. Accordingly,

216



FromGasDynamics,Third Edition, by Jame<£. JohnandTheoG. Keith. ISBN 0-13-120668-0© 2006PearsorEducation/nc.,
UpperSaddleRiver,NJ. All rightsreservedThis materialis protectedunderall copyrightlawsastheycurrentlyexist.No Portionof
this materialmaybereproducedin anyform or by anymeansywithout permissiorin writing from the publisher.

Tolzhn:( ! j300=302.3889K
T, 0.9921

From the Rayleigh relations at M; = 0.2, Tol/T*o =0(0.1736. Hence,

L (Lj302.3889 =1741.8714K
T, 0.1736

The maximum length that the pipe may have without affecting the mass flow rate is
obtained when T, = T ,. Therefore from Eq.(10.10),

Amax = q’Lmax =Cp (T; - Tol)

Solving for the maximum length

max ’

B cp(T:_Tol): YR T, T, (1.4)(287)(1741.8714—302.3889
q y-1 ¢ 0.4

B - 30,000

=48.1987m

The distribution of T,(x) can also be determined from Eq.(10.10)

T,(x) =T, +LL(T;‘ —Tol): 302.3889 + 29.8656x

max
Hence,

T,(x) 302.3889 +29.8656x
T 1741.8714

(4]

=0.1736+0.017146x

Now for a given x, Eq.(10.14) may be used to determine M(x), i.e., letting t = To/T,*,
b=1-y(t —1)anda=1+7y"t—1) we have

_ b-+b%-at

a
Note the — sign in front of the radical is used to obtain a subsonic Mach number. With
this Mach number it is an easy matter to obtain the static pressure and temperature
distributions from Eqgs.(10.8) and (10.9), respectively.  The stagnation pressure
distribution can be obtained from

MZ
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A
Po(X) = pO—(X)p(X) = p(x)(] + ’Y__IMZJY_I
p(x) 2

The following table contains the results obtained from a simple spreadsheet program

x Ty/T, M p(x) T(x) Po(X)
0.00 0.1736 0.2000 100.0000 300.0000 | 102.8281
2.50 0.2165 0.2264 98.5268 373.3398 | 102.1090
5.00 0.2593 0.2514 97.0143 446.2152 | 101.3754
7.50 0.3022 0.2755 95.4574 518.6717 | 100.6256
10.00 0.3451 0.2990 93.8519 590.6699 99.8584
12.50 0.3879 0.3223 92.1929 662.1641 99.0723
15.00 0.4308 0.3456 90.4747 733.1003 98.2658
17.50 0.4737 0.3690 88.6906 803.4142 97.4371
20.00 0.5165 0.3929 86.8322 873.0279 96.5839
22.50 0.5594 0.4175 84.8894 941.8461 95.7037
25.00 0.6023 0.4429 82.8495 1,009.7494 94.7936
27.50 0.6451 0.4695 80.6965 1,076.5853 93.8497
30.00 0.6880 0.4977 78.4090 | 1,142.1534 92.8674
32.50 0.7308 0.5280 75.9582 | 1,206.1816 91.8409
35.00 0.7737 0.5610 73.3031 1,268.2839 90.7624
37.50 0.8166 0.5978 70.3821 1,327.8795 89.6212
40.00 0.8594 0.6403 67.0947 | 1,384.0193 88.4021
42.50 0.9023 0.6915 63.2538 | 1,434.9416 87.0806
45.00 0.9452 0.7595 58.4241 1,476.5406 85.6122
47.50 0.9880 0.8788 50.7381 1,491.2081 83.8824

48.1987 1.0000 1.0000 44.0000 | 1,452.0000 83.2889

Problem 8. — An airstream (y = 1.4 and R = 0.287 kJ/kg - K) passing through a 5-cm-
diameter, thin-walled tube is to be heated by high-pressure steam condensing on the outer
surface of the tube at 160°C. The overall heat transfer coefficient between steam and air
can be assumed to be 140 W/m>K, with the air entering at 30 m/s, 70 kPa, and 5°C. The
air is to be heated to 65°C. Determine the tube length required. Assuming Rayleigh line
flow, calculate the static pressure change due to heat addition. Also, for the same inlet
conditions, calculate the pressure drop due to friction, assuming Fanno flow in the duct
with f = 0.018. To obtain an approximation to the overall pressure drop in this heat
exchanger, add the two results.
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Steam, Ty = 433K

|h=14o W/m?-K
~70kPa | :
p1 v, =30ms v |
_:—> == I
T, =278K | D=005m 7 2 a3sk

e

Because the wall of the pipe is thin, assume the wall has a single temperature, i.e., is
radially lumped. Also, since the steam is condensing on the outside of the pipe, the pipe
temperature may be assumed to be equal to the Ts. The air is treated as a perfect gas, so

_ YR (1.4)87

C =
Pry—1 14-1

=1004.5J/kg-K

aj =4/yYRT; =4/(1.4)(287)(278) =334.2161m/s

_Vi_ 30

=——=0.08976
a; 334.2161

M,

At this Mach number we find from the Rayleigh relations for static pressure and
temperature and an isentropic flow temperature relation that

%] =2.3732
P
lj = 0.04538
T /i
1] = 0.9984
0/1

Now

LT T 338 04538-0.05517

From this temperature ratio, we may use the Rayleigh relations to find that M, = 0.09922.
At this Mach number, we find that (T/T,), = 0.9980 and that (p/p ), =2.3674.
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The mass flow rate in the pipe may be computed as follows

. P1 | T~2 70 T 2
—p AV =| 2L Ep2 v =0 T(0,05)2(30)=0.05168ke/
L (RTIJ(4 j ! (0.287)(278)4( y30) &

From an energy balance on a differential control volume
the,dT, =8q = hdA(Ty, - T,) = haD(T, — T, )dx
Rearranging

T, =§nD dx
T, -Ts mcy,

Integrating along the length of the pipe gives

Toi - Ts _ nDh

=——L
Too =Ty mc

In

p

Tol and To2 are computed from the given static temperatures and the values of the static
to total temperature ratios determined above

ro T 1

ol | = 278 = 278.4455K
T, 0.9984

T
T,=—02p -1 3353336774k
T, 0.9980

Solving for the pipe length and inserting the various parameters gives

_ ey i Yot = Ts _ (0.05168)(1004.5)1 (278.4455 — 433)

=—= = n =1.1657m
nDh T,y — T, n(0.05)140)  (338.6774—433)

Rayleigh flow pressure drop

*
py=22P - (2.3674)( 1 j(70)= 69.8289kPa
b pI 2.3732

The pressure drop is therefore,
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(AP)Rayleigh = P2 —P1 = 69.8289—70 =—0.1711kpa

Fanno flow pressure drop

At M; = 0.08976 from the Fanno relations

(%} =12.194
P

fL
(ﬂ] = 83.9637
D )

Inserting parameters gives fL/D =(0.018)(1.1657)/0.05 = 0.4197. Therefore,

fL fL
(ﬂj = (ﬂj ML 83,9637 -0.4197 = 83.5440
D ), D ), D

From which we find M; = 0.08998 and in turn (p/p*)z =12.1651. Thus,

P2 p* 1
==—==—p; =(12.1651 70)= 69.8324kPa

The pressure drop is therefore,

(AP)panno = P2 —P1 = 69.8324—70 = —0.1676 kpa

The combined pressure drop if added together is

(Ap) = (Ap)Rayleigh + (AP)panno = —0-1711-0.1676 = ~0.3387kpa

Problem 9. — Air (y = 1.4 and R = 0.287 kJ/kg - K) enters a turbojet combustion chamber
at 400 K and 200 kPa, with a temperature after combustion of 1000 K. If the heating
value of the fuel is 48,000 kJ/kg, determine the required fuel-air ratio (on a mass basis).
Assume Rayleigh line flow in the combustion chamber. What fuel-air ratio would be
required to choke the combustion chamber? The inlet velocity is 35 m/s.

The air is treated as a perfect gas, so
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YR (1.4)287

C = =
Pry—1 14-1

=1004.5]/kg-K

a; = /YRT; = 4/(1.4)(287)(400) = 400.8990m /s

_Vi_ 35

=—+——=0.087304
a; 400.8990

M;

At this Mach number we find from the Rayleigh relations that

l* = 0.04298
T )

L =0.9985
T, |

T

—9 | =0.03587
T, |

Now

T, T, T
L BN 1909, 04298)=0.1075
T T 400

From this temperature ratio, we may use the Rayleigh relations to find that M, = 0.14038.
At this Mach number, we find that (T/T,), = 0.9961. T,; and T,, are computed as follows

T

Ty =—2L T, = L 400 = 400.6009K
T 0.9985
T

Tyy =—22T, = L 1000=1003.9153K
T, 0.9961

From an energy balance we have
q=m,c,AT, =m¢HV
Therefore, the fuel air ratio is

e p(Toz =To1)  1.0045(1,003.9153 — 400.6009) 0.0126
i, HY 48,000 '
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To choke the flow Ty, = TO*, where

T 1
T, =| = [T, :[ j400.6009 —11,168.1322K
T, 0.03587

So

my _ cp(To —T01)= 1.0045(11,168.1322 — 400.6009) _ 02253
1, HV 48,000

Problem 10. - Air (y=1.4,R=0.287 kJ/kg - K and ¢, = 1.0045 kJ/kg - K) flows through
a constant-area duct is connected to a reservoir at a temperature of 500°C and a pressure
of 500 kPa by a converging nozzle, as shown in Figure P10.10. Heat is lost at the rate of
250 kJ /kg. (a) Determine the exit exit pressure and Mach number and the mass flow rate
for a back pressure of 0 kPa. (b) Determine the exit pressure and Mach number when a
normal shock stands in the exit plane of the duct.

q=250kl/kg
olRdEe
— 1 - ——
T prOkPa
D=0.02m

Figure P10.10

(a) Because the back pressure is 0 kPa and because heat is removed from the air, the
flow in the duct will be supersonic and accelerating. This will occur only if M; = 1.0.
Therefore, To1 = TO* = 773K. From isentropic flow relations, (T/T,); = 0.8333 and
(p/po)1 = 0.5283. So, T, = (0.8333)773= 644.1667K and p; = p = (0.5283)500 =
264.1500 kPa. From the energy balance on the duct

TOZ = TOI -|-i =773 - 250
¢ 1.0045

=524.1200K

Too _ 524.1200 _ 0.6780

T, 773
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From the Rayleigh relations we find, M, = 2.7613 and at this Mach number
p2/p =0.20557. Accordingly,

Py =Pe = [p—ﬁJp* =(0.20557)264.1500 = 54.3013kPa
p

Expansion waves occur outside the duct to allow the pressure to reach the 0 kPA back

pressure.

The mass flow rate is computed as follows

. p T 2
m=pjA;V) = [ﬁj{ZD le YRT,
1

= [(012872)?2425_1 . 67)}E(O.oz)z}[l.o\/ﬁ .4)(287)(644.1667)]: 0.2284ks—g

(b) The Mach number just upstream of the shock is 2.7613. From the normal shock
relations we find the Mach number on the downstream side to be 0.4910 and the exit
pressure is determined by multiplying the static pressure ratio across the shock 8.7289
times the pressure found in part (a), i.e., p. = (54.3013)8.7289 = 473.9906kPa = py.

Problem 11. — Consider flow in a constant-area duct with friction and heat transfer. To
maintain a constant subsonic Mach number, should heat be added or removed? Repeat
for supersonic flow.

With friction alone, in subsonic flow, M increases, therefore to maintain M constant,
remove heat.

With friction alone, in supersonic flow, M decreases, therefore to maintain M constant,
remove heat.

Problem 12. — For the system shown in Problem 10, determine the mass flow rate if 250
kJ/kg of heat energy is added to the flow in the duct. The duct diameter is 2 cm. Repeat
for a back pressure of 100 kPa. Working fluid is air (y = 1.4, ¢, = 1004.5J)/ kg - K and
R =0.287 kJ/kg - K).
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q=250kl/kg
© | o
pr =500 kPa >
——> —t—>
T, = 500°C T
Pv = 0 kPa
D =0.02m

Assume M; = 1 so that the duct is choked. Accordingly, Ty = T, . Therefore from an
energy balance

q *
—=Te =T =T, ~T;
C
p
T =T, +- 4 2773+ -2% _1021.8800K
¢ 1.0045

T
—ol —0.756449
T0

At this value, the Rayleigh relations reveal that M; = 0.5473 and therefore
pi/p = 1.6909. The isentropic relations at this Mach number provide

Pl _ 08158 and L =0.9435

Po1 Tol

Since po1 = pr = 500 kPa and T,; = T, = 773K, we can use these ratios to compute
p1=(0.8158)500 = 407.9000 kPa and T; = (0.9435)773 = 729.3255K. Furthermore,

*
* P 1
=D. =DPp =—D1 = 407.9000 = 241.2325kPa
P =Pe =Pb Pl P1 [1.6909]

Consequently, for p, < 241.2345 kPa the duct will be choked due to the heat addition. So
for ppb = 0 and 100 kPa the maximum flow rate will be realized, which is computed as
follows
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. Pi T2
m=pAV| = (_RT j(ZD j(Ml YRTI)
]

407.9
~ 0 285)(729)3255)%(0-02)2 (0.5473),/(1.4)287)(729.3255)
- 0181478

S

Problem 13. — A detonation wave (Figure P10.13) represents a shock sustained by
chemical reaction. Give the continuity, momentum, and energy equations for such a
wave, assuming that a chemical reaction taking place in the wave liberates heat q. Denote
properties of the unburned gas ahead of the wave by the subscript u and those of the
burned gases behind the wave by b. Write the equations for an observer traveling with the
wave.

Pb o Pu
Vo v,
+— || -—

Py 1R

1R Pu
Ty o T,

\_/ Detonation wave
(fixed with respect to observer)

Figure P10.13
Continuity Equation
PuVu =Pb Vb
Momentum Equation
Pu+PuVe =Pb+PpVy

Energy Equation

226



FromGasDynamics,Third Edition, by Jame<£. JohnandTheoG. Keith. ISBN 0-13-120668-0© 2006PearsorEducation/nc.,
UpperSaddleRiver,NJ. All rightsreservedThis materialis protectedunderall copyrightlawsastheycurrentlyexist.No Portionof
this materialmaybereproducedin anyform or by anymeansywithout permissiorin writing from the publisher.

2 2

V, V,
hy +—% +q=hp +—2
u 2 q b 2

Problem 14.— Develop a computer program that will yield values of p/p*, T/T*, T, /T;k ,

and p, / p:; for Rayleigh line flow with the working fluid consisting of a perfect gas with
constant y = 1.36. Use Mach number increments of 0.10 over the range M =0 to M = 2.5.

The governing relations are

£=—1+Y2 (10.11)
P* 1+yM
212
T _(ey) M7 (10.12)
T e
1+yM
Ty _ (+yM°[2+(y-1M?] (10.14)
To (1+yM2)2
2 ) 'Y/(V_l)
p 1+yM= | 2+ (y-1)M
= (10.15)

Po I+y y+1

The following is the spreadsheet computed values

M p/p* T/T* | To/To* | po*/po*
0.0 2.36000 | 0.00000 | 0.0000 | 1.2629
0.1 2.29633 | 0.10750 | 0.0914 | 1.2459
0.2 2.18486 | 0.28137 | 0.2410 | 1.2167
0.3 2.03484 | 0.48651 | 0.4210 | 1.1785
0.4 1.86321 | 0.68061 | 0.5971 | 1.1366
0.5 1.68491 | 0.83637 | 0.7464 | 1.0960
0.6 1.51097 | 0.94328 | 0.8588 | 1.0602
0.7 1.34831 | 1.00299 | 0.9344 | 1.0318
0.8 1.20042 | 1.02352 | 0.9783 | 1.0120
0.9 1.06845 | 1.01467 | 0.9975 | 1.0016
1.0 0.95205 | 0.98562 | 0.9988 | 1.0009
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1.1 0.85012 | 0.94381 | 0.9879 | 1.0100
1.2 0.76116 | 0.89483 | 0.9692 | 1.0289
1.3 0.68363 | 0.84266 | 0.9459 | 1.0578
1.4 0.61603 | 0.78995 | 0.9203 | 1.0969
1.5 0.55699 | 0.73843 | 0.8939 | 1.1464
1.6 0.50532 | 0.68913 | 0.8677 | 1.2067
1.7 0.45998 | 0.64262 | 0.8423 | 1.2786
1.8 0.42005 | 0.59918 | 0.8182 | 1.3626
1.9 0.38479 | 0.55886 | 0.7954 | 1.4596
2.0 0.35355 | 0.52160 | 0.7741 | 1.5707
2.1 0.32577 | 0.48727 | 0.7542 | 1.6969
2.2 0.30099 | 0.45569 | 0.7358 | 1.8396
2.3 0.27881 | 0.42666 | 0.7188 | 2.0002
24 0.25890 | 0.39999 | 0.7031 | 2.1802
2.5 0.24098 | 0.37547 | 0.6885 | 2.3814

Problem 15. — Oxygen (y = 1.4 and R = 0.2598 kJ/kg - K) is to be pumped through an
uninsulated 2.5-cm pipe, 1000 m long (Figure P10.15). A compressor is available at the
oxygen source capable of providing a pressure of 1 MPa. If the supply pressure is to be
101 kPa, determine the mass flow rate through the system and the compressor power
required. Assume isothermal flow at T = 15°C.

p=1.0 MPa -
p=101kPa [ : p= 101 kPa
| compressor i
E «
Figure P10.15
Now from Eq.(9.46)
fL1-yM7  1-yM3 +lnM12
D ymMf M3 M3

The relation between the pressures and the Mach number is contained in Eq.(9.48), i.e.,

p_M
p2 M
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Calling the ratio pi/p, p and replacing M, in the fL/D equation yields after a small
amount of algebra

fL. (1-yM? | (1-yp>M?} M? p? -1 )
D 2 |- 2 T 2 Tl oo e
D yMj PMj p°Mi ) \vw"Mj

Solving for M

-
ypz(%—i—ln(})z)j

Since fL/D = (0.018)(1000)/(0.025) = 720, (pi/p2)*> = (1000/101)* = 98.0296 and y = 1.4,
substitution produces M; = 0.0312. The mass flow rate is computed as follows:

. p
m= plAVI = (ﬁjAMl ’YRTI
1

- {(10—00)}(5 0,0252j0.03 12,/(1.4)(259.8)(288)

(0.2598)288 |\ 4

=0.0662 kg/s

For isothermal compression:

wi_o =RTIn| P2 | = (0.2598)(288)1n( 101 j: _171.5404kJ / kg
P1 1000

The power required is found by multiplying the work by the mass flow rate:

P =mw,_, = (0.0662)171.5404 = 11.3642 kW

Problem 16. — Natural gas (assume the properties of methane: y = 1.32 and
R =0.5182 klJ/kg - K) is to be pumped over a long distance through a 7.5-cm-diameter
pipe (Figure P10.16). Assume the gas flow to be isothermal, with T = 15°C. Compressor
stations capable of delivering 20 kW to the flow are available, with each compressor
capable of raising the gas pressure isothermally to 500 kPa (inlet compressor pressure is
to be 120 kPa). How far apart should the compressor stations be located? Assume
isothermal compression in each compressor, with f = 0.017.
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compressor compressor

—r —= =— =

Figure P10.16

For isothermal compression:

Wiy = RTIn| 22| = (0.5182)(288)in[ 122 | = -212.9851 kJ /kg
-2 Pl 500

The power required is equal to the work times the mass flow rate. Therefore, we can
determine the mass flow rate as follows:

P 20

m= = =0.0939kg/s
Wi-2 212.9851
h  RTym : :
y, = M _RTym _ (0.5182)(288)(0.0939) 63441 m/s
PiA - PIA (500) " 0.025>
4
Therefore,
M= M 631409
a;  YRT  /(1.32)(518.2(288))
Now from Eq.(9.48)
M, =L, :ﬂ(o,o1429)= 0.05956
| %) 120

From the isothermal relations at M; and M,, we find (fL,.x/D); = 3700.6762 and
(fLimax/D)2 = 207.1945, thus,
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fL fL
L _(Momax | [ Momax ) _ 3 7006762 207.1945 = 3,493.4817
D D ), L D ),

L =(3,493.4817 b =(3,493.4817 0075 _ 15 412.4192 m
f 0.017

Problem 17. — Develop a computer program that will yield values of p/p’, fLumax/D,
T,/ T: ,and p,/ pz for isothermal flow with the working fluid consisting of a perfect

gas with constant y = 1.34. Use Mach number increments of 0.10 over the range M = 0.1
to M =2.5.

The equations that govern this flow are

To [ v _ 2

. (3y _1)[2+ (y—1)M ] (10.53)
p 1

= (10.54)

fLIn;aX _! ;1341\242 + ln(yM2 ) (10.55)
e
p_ ) ﬁ{(syy— ) S ]}H (169
Spreadsheet computation produces,
M p/p* T/T* | po*/Po* | fLmax/D

0.100 | 10.8075 | 1.1680 | 5.8600 | 69.9953
0.200 5.3900 | 1.1621 | 2.9817 | 15.2311
0.300 3.5783 | 1.1524 | 2.0461 | 5.5670
0.400 | 2.6681 | 1.1390 | 1.5974 | 2.4315
0.500 | 2.1188 | 1.1223 | 1.3446 | 1.1291
0.600 1.7500 | 1.1025 | 1.1912 | 0.5199
0.700 1.4846 | 1.0800 | 1.0961 | 0.2211
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0.800 1.2840 | 1.0552 | 1.0390 | 0.0770
0.900 1.1268 | 1.0284 | 1.0091 | 0.0155
1.000 1.0000 | 1.0000 | 1.0000 | 0.0000
1.100 | 0.8955 | 0.9704 | 1.0082 | 0.0107
1.200 | 0.8079 | 0.9399 | 1.0314 | 0.0362
1.300 | 0.7333 | 0.9089 | 1.0687 | 0.0700
1.400 | 0.6691 | 0.8776 | 1.1195 | 0.1080
1.500 | 0.6133 | 0.8463 | 1.1839 | 0.1477
1.600 | 0.5643 | 0.8152 | 1.2624 | 0.1876
1.700 | 0.5210 | 0.7846 | 1.3557 | 0.2267
1.800 | 0.4826 | 0.7544 | 1.4650 | 0.2645
1.900 | 0.4482 | 0.7250 | 1.5913 | 0.3006
2.000 | 0.4173 | 0.6964 | 1.7364 | 0.3348
2.100 | 0.3894 | 0.6687 | 1.9020 | 0.3672
2.200 | 0.3642 | 0.6419 | 2.0902 | 0.3977
2.300 | 0.3412 | 0.6160 | 2.3031 | 0.4263
2400 | 0.3204 | 0.5911 | 2.5434 | 0.4531
2.500 | 0.3013 | 0.5673 | 2.8139 | 0.4782

Problem 18. — A subsonic stream of air (y = 1.4, R = 0.287 kJ/kg - K and
c, = 1.0045 kJ/kg - K) flows through a linear, conically shaped, nozzle, i.e.,
D = D; + (D. — Dj)x/L. The diameter at the inlet is 2 cm and the diameter at the exit is 5
cm. The nozzle is 10 cm long. The entering Mach number is 0.6. Heat is added to flow
at a rate so that the stagnation temperature varies linearly with distance. The stagnation
temperature at the inlet is 300K and increases 30K per meter of nozzle. Use Heun’s
predictor-corrector scheme on a coarse grid that includes 11 grid points to determine the
Mach number distribution within the duct. To verify the computations determine the exit
Mach number for the case when the heat transfer is zero and compare it to the value
determined from isentropic flow computations.

This problem is the same as that described in Example 10.6 with two important
exceptions: there is no shock in this problem and the inlet Mach number is subsonic.
Accordingly, there is no need to rewrite the governing equation. Only the results of the
computations will be shown here.

Exact solution for the adiabatic case
Here we will determine the exit Mach number against which we can contrast the

computed value. To obtain this value we follow the usual procedure in which we use the
inlet Mach number to find (A/A); and then determine (A/A ). from the following

2
SRWANEA

AY AiA* (D) A
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Now at Mi = 0.6, we find (A/A"); 1.1882 and for De = 0.05m and Di = 0.02m, we obtain
(A/A).=7.4263. At this value we find Me = 0.07821.

Numerical solution for the adiabatic case

Here the grid is divided into 10 pieces, i.e., AX = 0.01m and the results from applying
Heun’s method are contained in the following table

pt X M; F(xi,M;) M, |F&ia,Mp)| My

1 0.0000 | 0.6000 |-30.1500| 0.2985 | -8.7010 | 0.4057
2 0.0100 | 0.4057 |-13.0878| 0.2749 | -6.9652 | 0.3055
3 0.0200 | 0.3055 | -7.9202 | 0.2263 | -4.9848 | 0.2410
4 0.0300 | 0.2410 | -5.3540 | 0.1874 | -3.6675 | 0.1958
5 0.0400 | 0.1958 | -3.8479 | 0.1574 | -2.7800 | 0.1627
6 0.0500 | 0.1627 | -2.8803 | 0.1339 | -2.1606 | 0.1375
7 0.0600 | 0.1375 | -2.2213 | 0.1153 | -1.7144 | 0.1178
8 0.0700 | 0.1178 | -1.7534 | 0.1003 | -1.3843 | 0.1021
9 0.0800 | 0.1021 | -1.4104 | 0.0880 | -1.1344 | 0.0894
10 0.0900 | 0.0894 | -1.1525 | 0.0779 | -0.9415 | 0.0789
11 0.1000 | 0.07894

Thus, the accuracy is (0.07894/0.07821 — 1)100 = 0.93%. However, using a grid
containing 161 grid points produces M, = 0.07822 , which differs by only 0.012%.

Now introducing heat transfer into the computations on a coarse grid of 11 grid points

yields

pt X M; F(x;,M;) M, F(xis,Mp) | My
1 0.0000 | 0.6000 |[-30.0744| 0.2993 | -8.7093 | 0.4061
2 0.0100 | 0.4061 |[-13.0727| 0.2754 | -6.9632 | 0.3059
3 0.0200 | 0.3059 | -7.9144 | 0.2268 | -4.9838 | 0.2414
4 0.0300 | 0.2414 | -5.3516 | 0.1879 | -3.6675 | 0.1963
5 0.0400 | 0.1963 | -3.8472 | 0.1578 | -2.7805 | 0.1632
6 0.0500 | 0.1632 | -2.8804 | 0.1344 | -2.1615 | 0.1380
7 0.0600 | 0.1380 | -2.2220 | 0.1157 | -1.7155 | 0.1183
8 0.0700 | 0.1183 | -1.7543 | 0.1007 | -1.3855 | 0.1026
9 0.0800 | 0.1026 | -1.4115 | 0.0885 | -1.1356 | 0.0898
10 0.0900 | 0.0898 | -1.1536 | 0.0783 | -0.9427 | 0.0794
11 0.1000 | 0.07936

This exit Mach number differs from the adiabatic value by only (0.07936/0.07894 —
1)100 = 0.53%. Therefore, heat transfer in this flow is not important.

233



FromGasDynamics,Third Edition, by Jame<£. JohnandTheoG. Keith. ISBN 0-13-120668-0© 2006PearsorEducation/nc.,
UpperSaddleRiver,NJ. All rightsreservedThis materialis protectedunderall copyrightlawsastheycurrentlyexist.No Portionof
this materialmaybereproducedin anyform or by anymeansywithout permissiorin writing from the publisher.

Problem 19. — A supersonic stream of air (y = 1.4, R = 0.287 kJ/kg - K and ¢, = 1.004
kJ/kg - K) flows through a linear, conically shaped, nozzle, i.e., D = D; + (D. — D;)x/L.
The diameter at the inlet is 2 cm and the diameter at the exit is 5 cm. The nozzle is 10 cm
long. The entering Mach number is 3. Heat is added to flow at a rate so that the
stagnation temperature varies linearly with distance. The stagnation temperature at the
inlet is 300K and increases 30K per meter of nozzle. The pressure is such that a normal
shock wave stands half way down the nozzle. Use Euler’s explicit method to determine
the Mach number distribution within the duct.

This problem is the same as Example 10.6 except that it uses Euler’s explicit method
instead of Heun’s. As a demonstration of the expected accuracy, the adiabatic problem
with no shock is solved on a variety of grids and the results are compared to the value
obtained using isentropic area relations, i.e., 5.071544. The results are also compared to
the results obtained by using Heun’s method.

Euler’s Adiabatic Results Heun’s Adiabatic Results

Pts Ax M (x=10)| % error Pts Ax M (x=10)| % error
11 0.01/5.167509| 1.8922 11 0.01/5.076171| 0.0912
21 0.005[5.118790| 0.9316 21 0.005(5.072687| 0.0225
41]  0.0025(5.094975| 0.4620 41/ 0.0025|5.071820| 0.0054
81| 0.00125[5.083206| 0.2300 81| 0.00125(5.071603| 0.0012

161| 0.00625/5.077357| 0.1146 161| 0.00625/5.071550( 0.0001

As can be seen, Heun’s method, which is a 2™ order method produces more accuracy for
the same grid size. Euler’s results are not great particularly at larger grid sizes.
Nonetheless, the following are summary results for the problem using Euler on the
smallest grid in the table above.

Euler Heun
pt X M; F(xp; M) | My M % diff
1 0.0000 | 3.0000 | 31.5000 | 3.0197 | 3.0191 0.02
17 0.0100 | 3.2958 | 27.6569 | 3.3131 | 3.3034 0.29
33 0.0200 | 3.5587 | 24.8735| 3.5742 | 3.5541 0.57
49 0.0300 | 3.7970 |22.7378 | 3.8112 | 3.7792 0.85
65 0.0400 | 4.0161 |21.0331 | 4.0292 | 3.9837 1.14
81 0.0500 | 4.21964 0.4295 | 0.4309 | -0.33
82 0.0500 | 0.4295 | -9.3608 | 0.4236 | 0.4251 -0.35
98 0.0600 | 0.3509 | -6.4740 | 0.3469 | 0.3490 | -0.61
114 0.0700 | 0.2946 | -4.8037 | 0.2916 | 0.2940 | -0.80
130 0.0800 | 0.2520 | -3.7168 | 0.2497 | 0.2521 -0.95
146 0.0900 | 0.2186 | -2.9593 | 0.2168 | 0.2192 | -1.09
162 0.1000 | 0.1918 0.1941 -1.21
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Problem 20. — A supersonic stream of air (y = 1.3, R = 0.287 kJ/kg - K and ¢, = 1.004
kJ/kg - K) flows through a linear, conically shaped, nozzle, i.e., D = D; + (D. — D;)x/L.
The diameter at the inlet is 2 cm and the diameter at the exit is 5 cm. The nozzle is 10 cm
long. The entering Mach number is 3. Heat is added to flow at a rate so that the
stagnation temperature varies linearly with distance. The stagnation temperature at the
inlet is 300K and increases 30K per meter of nozzle. The pressure is such that a normal
shock wave stands half way down the nozzle. Use Heun’s predictor-corrector method to
determine the Mach number distribution within the duct.

This problem is the same as Example 10.6 except that it uses y = 1.3 instead of y = 1.4.
The computed results follow

pt X M; F(x;;M5) M, [Fis,Mp) Miy
1 | 0.0000 | 3.0000 |25.8779 | 3.0259 | 25.4577 | 3.0257
17 | 0.0100 | 3.2397 | 22.2699 | 3.2536 | 22.0810 | 3.2536
33 | 0.0200 | 3.4485 | 19.6154 | 3.4608 | 19.4719 | 3.4608
49 | 0.0300 | 3.6340 | 17.5579 | 3.6450 | 17.4442 | 3.6450
65 | 0.0400 | 3.8010 | 159031 | 3.8110 | 15.8101 | 3.8110
81 | 0.0500 | 3.95303 0.4072
82 | 0.0500 | 0.4072 | -8.5469 | 0.4019 | -8.3413 | 0.4020
98 | 0.0600 | 0.3354 | -6.0469 | 0.3317 | -5.9303 | 0.3317
114| 0.0700 | 0.2831 | -4.5404 | 0.2802 | -4.4655 | 0.2803
130| 0.0800 | 0.2430 | -3.5386 | 0.2408 | -3.4869 | 0.2408
146| 0.0900 | 0.2113 | -2.8311 | 0.2096 | -2.7938 | 0.2096
162 0.1000 | 0.1857
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Chapter Eleven

EQUATIONS OF MOTION
FOR MULTIDIMENSIONAL FLOW

Problem 1. — Prove that for a perfect gas
(@) p=p(y—1e

a’ V3
(b) e,

Ty(+D) 2

(a) For a perfect gas

p=pRT (1)
e=c, T (2)
0= ©)

Combine Egs. (2) and (3) and rearrange to get

RT=e(y-1) (4)
Substitute Eq. (4) into Eq. (1) to the result for part (a)

p=p(y—1e

(b) The definition of the total (internal) energy is

e, =e+—
Combining this with Eq. (4) brings
RT V?
e =——+—
y—-1 2

Substitute a*> = yRT in the above equation to obtain the result for part (b)

a’ V?

€, =
yoy+1) 2
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Problem 2. — According to the generalized continuity equation given by Eq. (11.1), for
steady, incompressible, one-dimensional flow, du/0x=0, or, in other words, u is equal

to a constant. Previously, for incompressible flow, however, it has been customary to
assume that, for steady, one-dimensional flow, the product of velocity and cross-sectional
area (AV) is a constant. Explain this seeming contradiction.

Quasi one-dimensional flow is a one-dimensional approximation to a class of flows that
are three-dimensional in actuality. This approximation is realized by assuming a uniform
axial velocity in each cross section. Equation (11.45) describes the original three-
dimensional flow. The approximation, however, cannot be made by simply letting v and
w vanish in Eq.(11.45), because this would obviously cause a mass imbalance. The
eliminated v and w velocity components should be compensated for by bringing about
changes in u, at different cross sections. This is performed by integrating Eq.(1.21) over a
control volume that is constrained between two cross sections of interest, and this leads to
VA = constant, as explained in previous chapters.

Problem 3. — The continuity equation for steady two-dimensional flow is

2w 9V _,
0x oy

A function y (the compressible stream function) may be defined so that this equation is
automatically satisfied. Show that the following accomplish this

g P OV 4, P OV

p dy p Ox

where p_ is a constant that is inserted so that the stream function has the same units as
the incompressible flow stream function. What are the units of the stream function? What

are the units of the velocity potential, ¢ ?

Differentiation of the above equations yield

opw__ oy
ox * oyox

oev) _ | 0%y
oy *©oxdy
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Therefore

opw) , V) _ ( Oy Oy
0x oy “\0x0y 0yox

But for a continuous stream function with continuous derivatives

oty B oty
0x0y 0yox

and, hence, the continuity equation is automatically satisfied.

The dimensions of both the stream function and velocity potential are: L*T.

Problem 4. — Expand Eq.(11.10) into the three component equations, and show that
Eqgs.(11.7), (11.8), and (11.9) result.

Equation (11.10) can be written as

_l @iﬁ-@jﬁ-a—pk :6_ui+a_vj+6_wk+
p\ox 0Jy 0z ot Ot ot

{(ui+vj+wk)0(ii+ij+ikﬂ(ui+vj+wk)
ox 0y 0z

or
_l[a_pi_F@ '+@k}:a_ui+a_vj+a_wk+

olox oy oz )T ot ot o
ou ou ou ov ov ov ow ow ow
U—+v—+w— |i+|u—+Vv—+w—|j+|u +V
X 0y z ox y z ox oy 0z

This implies that
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Problem 5. — Show that

(1

he)
o<
LS}
—
Il
(=)

and

2

S
+
<
o<
N—
g

are equivalent.

Take the dot product of Eq. (2) with the differential displacement vector,

dr =dxi+dyj+dzk to get
2
[V_mv[v_ﬂ.dr_o
p 2

2
1—(Vpcdr)+V[V J odr =0
p 2

or

which can also be written as

1 a—pi+@j+a—pk o(dxi+dyj+dzk)+
plox 0Oy 0z

2 2 2
SN A O j+i Vo o(dxi+dyj+dzk)=0
ox\ 2 oy\ 2 oz\ 2
or
2 2 2
1 a—pdx+a—pdy+@dz + oM dx+i A dy+i A dz|=0 3)
plOx oy o0z ox\ 2 oy\ 2 oz\ 2
Since Egs. (1) and (2), have been derived for steady flow, it follows that

dp =@dx +a—pdy+@dz
ox oy 0z

and
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2 2 2 2
2 ox\ 2 oy\ 2 oz\ 2

Substitution of these into Eq.(3) produces Eq. (1).

Problem 6. — Derive Eq.(11.8), i.e., prove that

%— q _{_E
P Dt P4 Dt
Consider the continuity equation
D
P pVeV=0
Dt
or
D
vev-_LDp (1)
p Dt
Also since h=e+2 or e=h-— ﬁ, then differentiation yields
P p
De _Dh D fp
Dt Dt Dtlp
or
De ~Dh pDp/Dt-pDp/Dt
Dt Dt p’
or

De Dh D D
p—=p— Dy PP
Dt 'Dt Dt p Dt

2

Substitution of Eqgs.(1) and (2) in Eq.(11.17), then leads to

Dh D D . D
o0 Dp pDp .. pDp
Dt Dt p Dt p Dt

which simplifies to give Eq.(11.18).
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2
Problem 7. — Under what conditions can it be assumed that p+pv7 is equal to a

constant?

2

Consider the dot product V eV [B + VTJ . It can be expanded as follows
P

2 2 B 2
V.V B+V_ :V.V R +V.V V_ =Ve M +V.V V_
p 2 P 2 p? 2

2
=V.[V_p+v(v7ﬂv.&

p p2

But using the vector form of Eq.(11.34)

2
V_pW[V_J:O
p 2

for irrotational, steady, frictionless flow with no external forces except pressure.
Therefore the dot product introduced above becomes

2
VeV B + V_ =—Ve pvl
p 2 p2
p V°
This means that, if the right hand side term is zero for a flow, then V| =+ BN LV, in
p

2
P, V? = Constant along a streamline. Now, in order for the term V o pVZp
p p

to vanish, we must have either Vp =0 or Vp L V. The former is a constant density flow

other words,

(for our steady assumption), and we can show that the latter also leads to a constant
density flow:
The continuity equation

Ve (pV) =0

can be expanded as

pVeV +VeVp=0
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Using this, the assumption Vp L V| which implies VeVp =0, leadsto VeV =0. This
is again the continuity description of a constant density flow.

Problem 8. — Show that Crocco’s equation along a streamline can be written as

2
l@V =TVeVs—-VeVh .
2 ot
Now
Voa—V=(ui+Vj+wk)o 8_ui+6_vj+6_wk
ot ot ot ot
du  Ov  Ow 18(2 5 2) 1oV?
=u—+V—F+w—=—-—--_Uu +v W= ——
ot ot ot 20t 2 Ot

Take the dot product of Eq.(11.39) with the velocity vector to get

TVeVs—VeVh, :VO%—2V0(V><(0)

By definition, the product V x@ is perpendicular to both vectors V and ®. Therefore,
Ve (Vx®)=0, and the above equation becomes

TVeVs—VeVh, :V.%

Combining the two previous expressions produces

1oV?
2 ot

=TVeVs—VeVh,

Problem 9. — Using the substantial derivative operator within Crocco’s equation,
Eq.(11.39), develop the following equation for the entropy

Ds 3. vevs=B i Lyafvn +¥
Dt ot o T at

Under what conditions will the entropy remain constant along a streamline?

As in problem 8, take the dot product of Eq.(11.39) with the velocity vector to get
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TVOVS—VOVhO=V0%—2VO(me)

By definition, the product V x® is perpendicular to both vectors V and ®. Therefore,
Ve(Vx®)=0, and the above equation becomes

TV'VS—V'Vh():V.% (1)
or
VOVS=1V0(VhO +8—Vj 2)
T ot
Now add Js/ét to both sides of Eq.(2) to get
E:§+V0Vs: §+lVo Vh, +6—V 3)
Dt ot ot T ot

Now consider Eq.(2) again. For a steady adiabatic flow VeVh =0 and %—Y:O.

Therefore, for a steady adiabatic flow, the right hand side of Eq.(2) vanishes, i.e.,
VeVs=0
Put this into Eq.(3), along with the steady flow assumption, to obtain

&=§+VOVs= 0
Dt ot

which indicates that for steady, adiabatic flow, entropy is constant along a streamline.

Problem 10. — From vector mechanics it is known that the curl of a gradient (V xV{ ) is
identically zero. Demonstrate that this is true and use this face to prove that if a velocity
potential (V =V ¢ ) exists the flow is irrotational.

By definition
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i i k
ox 0y 0z
or ot ot
ox 0y 0z

o*f o't ). (o*f o't ). [ o*f  @*f

= - i- - it - k=0
0z0y 0yoz 0z0x 0x0z oyox 0x0y

The rotation vector is defined as @ = %(V x V). If V =V¢, the rotation vector becomes

®:%WXV@:O

The flow is, therefore, irrotational.

Problem 11. — The velocity components for a possible flow field are given by
u=-3x>+2y and v=2x+2y. Is the flow irrotational? If so, determine the velocity
potential.
i i k
o=Lwxv)=L2 9 o _Lfow 0Ov), (Ou 0w\, [OV_0ou)
2 2/0x Oy 0z| 2|\ 0y 0z 0z 0Xx o0x 0y
u v w

Since the flow if two-dimensional, the above relation simplifies to

1{0v Ou
o=—|—-—Ik
2\0x 0Oy
ou ov

But — =2 and — = 2. The rotation vector then becomes
oy 0x

1
==(2-2)k=0
0=10-2)

Therefore, the flow is irrotational.
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¢ ¢

Based on definition of the velocity potential, Eq.(11.4),u = T and v = v Therefore,
X y
b= judx+F(y)=j(—3x2 +2y)dx+F(y)
or
¢:—X3+2yx+F(y) (D)
Differentiation with respect to y produces
24y, dF o
dy dy
But
@ =v=2x+2y
oy
Substitute this into Eq.(2) to get
aF
dy
Integration then gives
F(y)=y’ +c (3)

where c is a constant. Finally, substitute Eq.(3) into Eq.(1) to obtain

¢=—X3+2yx+y2+c

Problem 12. — Show that the velocity potential equation, Eq.(11.47) can be written in
two-dimensional form as

(l_ﬁJa_%_zﬂﬁ{l_ﬁjﬁ:o

a’ |ox? a? 0x0y a’ 8y2

Equation (11.47), in two dimensions, can be written as

2 2
2 0%, %] |(20) 2% (00) %0 |_,0000 &% _,
ox? oy? ox) ax? \0y) oay? 0x 0y 0x0y
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Rearrangement leads to

2| .2 212 2
az_(@j %% , az_(@j 070 _,000¢ 0% _,

0x ) |px? dy) |oy? 0x0dyoxdy

Divide the above equation by a* and use the definition of the velocity potential to get

2 2 2 2 2
a” )o0x a® 0x0y a” )oy

Problem 13. — Consider a steady, uniform flow of air (y = 1.4, R = 0.287 klJ/kg.K) with

velocity components u = 120 m/s and v = w = 0. Determine the velocity potential,
substitute into Eq.(11.48), and find the resultant difference between static and stagnation
temperature.

Using the definition of the velocity potential and the above velocity components, we get

90 _1p9

X

Since the other velocity components are zero, the velocity potential is a function of x
only. Therefore

$=120 x+¢
and
V=120 i
Since
ag =a’ +YT_1V(1)OV(|)
we get
-1
a2 -a? =yR(T, —T):VTvq)ovq)
Therefore
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(1.4-1)

(2)(1.4)(287)

T,-T= ;’ VooV = (120)> = 7.1677K
TR

Problem 14. — Using the stream function, as defined in Problem 11.3, develop the
following expression for steady, two-dimensional, irrotational flow

2\A2 2 2\ 42
L LA TS P i
a’ ) ox? a? Oxdy a’ 8y2

From irrotational flow

ov_ou_,
ox 0Oy
and from the definition of the stream function
P, OY
p Oy
__ P2 OV
p Ox

Hence,

i(_p_ma_ﬂ_i[p an 0
ox\ p 0x) Oy\ p 0Oy

P00y p. 30y _p. (6 wﬁzwjzo

p’ Ox ox p*oydy p’lox® oy’

Oy 0w _P. POy p.Op Oy
“\ox* ay*) poxox  p dydy

Now for isentropic flow
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» POy P.OPOY __Op Vv  Op
dy a

p@x@x p Oydy oOxa’

From Euler’s equations

u
2

—-u u—+vﬁ = E@
ox 0Oy p Oy
So
2
—u2@+V2@+uV@—uV@=a— —@—2 8p X
o0x oy O0x dy p\ Oxa aya
Thus,
8Xa2 6Ya2 a2 ox oy ox oy

_ uz{a(pV) GPJ Vz{a(pu) op |
=——|——-V— |+— -u—
a?l Ox ox] a%l Oy oy |
uv{@(pu) @}_ﬂ 8(pv)_V6_p_
a’l Ox ox] a2 oy oy

- o = + — + — _
0x a2 a}’az a2 ox a oy a 0x oy |
u? 82\|/ 2 82\|/ uv 82\|1 az\v
=P T TP T P oy
a“ ox a a” | Ox0y Ox0y

Rearranging produces the result

1__ 82\|1 2uv oy l—ﬁ 62\|1_0
ox> a’ axé‘y a’ ) oy’
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Problem 15. — Use the technique presented in Example 11.4 to write (a) the velocity
components in terms of the velocity potential in spherical coordinates and (b) the steady
energy equation for three-dimensional, adiabatic flow in cylindrical coordinates.

a)
u =r h =1
u, = h, =r
u;, =0 h; =rsin6
V:(VI,VZ,V3):V¢:iﬁeI+iﬂe2+i@e3
hl 61’11 h2 auZ h3 auS
V, =V, _ %
or
1 0
V,=V, =——
7 ro0
V,=V, = 1 %
rsinf O

b) From Eq.(11.14)
pVeVe +Ve(pV)=0

vV, =V h, =1
V, =V, h, =r
V,=V, h, =1
pVeVe, +Ve(pV)=0
de; pVp Oey ey 1{@ 0 0 }
\Y + +pV, —+—| —(prV; )+ —(pVy )+ —I(prV,)[=0
pVr — e+ pVy — | —(prVe )+ — (Ve )+ —(prV, )
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Chapter Twelve

EXACT SOLUTIONS

Problem 1. — The velocity potential equation can be written in a variety of forms. For
example, Taylor and Maccoll, Ref. 23, used the following forms for problems in
Cartesian coordinates

2 2 2 2
6(5+6(E:L2 8_(p8V+8_(p8V (0
ox~ 0Oy~ a“|\0x) 0x oy ) 0y
Derive this expression and then show that it may be written as
2 2 2 2 2 2
09 0o _ 1100 T (00 00) 00 (0] O @)
0x° 0Jdy~ a |[\0x) 0x 0x \ 0y )0xdy \0y) Oy

Equation (11.47), in two dimensions, can be written as
2 2
2970 %) |[09]) d% (d¢) &9 | ,0¢d¢ ¢ _,
ox* 0y’ ox ) ox*> \ody) oy’ 0X 0y 0x0y

2 2 2 a2 2 a2 2
agﬁ(g:LZ 99 6_<g+8_@ 8_<g+28_¢8_¢6_@ 3)
ox” o0y~ a“|\0x) 0Ox oy ) Oy 0X 0y 0Xx0y

or

Note Egs. (2) and (3) are identical. Further

2
ov :i(uz-i-vz)=2ua—u+2vﬁ
0x 0x 0x 0x
and
2
ov =i(uz+vz)=2u—u+2vﬁ
oy 0Jy oy oy
therefore

which leads to
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,0u L,o0v 1 oV? ov? ov Jdu
uv—+v —=—|u +Vv —uv|—+—
ox Jdy 2\ 0x oy ox 0y

Using the definition of velocity potential, the above equation becomes

00 2% (20) S0 _1(200V" 090V') 2909, &%
ox) ox* \dy) oy® 2(ox ox 0y oy ox 0y\ 0x0y

Substitution of this into the right hand side of the Eq. (3) then yields Eq. (1).

Problem 2. — Show that polar velocity components v, and vy are related to the Cartesian
velocity components u and v by
v, =ucos0+vsind

Vv, =—usin0+ vcosO
Find the inverse of these, i.e., develop expressions for u = u (v;, vp) and v =v (v, vp).

Consider the following figure

v

where €, and ¢, are the unit normal vectors of the polar coordinate system. These unit

vectors are related to the Cartesian unit vectors, iandj, through a counterclockwise
rotation of angle 6. In other words

e, cos® sin0O]i
L= , (1
€4 —sin® cos0 || ;

Now consider the velocity vector expressed in both coordinate systems
V=V, 8 +V,8 =ui+Vj )

Substituting for the polar unit vectors from Eq. (1) in the above yields

v, (cos9i+sin63)+ \A (—sin9i+cos63)=ui+vfi
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which after equating components gives

u=v, cosf—-v,sin0

v=v, sin0+v, cosO

Taking the inverse of Eq. (1) leads to
_|cos® —sin0 | €,
“|sin®  cosH | &,

Using this and substituting for the Cartesian unit vectors in Eq.(2)

> =)

Vv, 8, +V, &, =u(cosBé, —sinB&,)+ v(sin0&, +cosOe, )
which after equating components gives

v, =ucosO+vsin0

Vo, =—usin0+vcos0

Problem 3. — For a uniform flow in the +y direction, show that the expressions for the
velocity components in the previous problem give

v=V, u=0, v, =VsinO and vg=VcosH

Obtain expressions for the velocity components for a uniform flow that is directed at an
angle /2 + A.

Now
v=Vsina

u=Vcosa

at oo = m/2, it is obvious that v =V and u = 0. Substituting these into the relations of the
previous problem produces

v, =ucosO+vsin®=0cos0+Vsinb=Vsin0

Ve =—usin®+vcos0=0sin0+VcosO=VcosO

For a uniform flow that is directed at an angle of oo = /2 + A
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V= Vsin(g+Aj =VcosA
T )
u :Vcos(5+Aj =—-VsinA

Substituting these into the relations of the previous problem produces

v, =ucos®+vsin®=—VsinAcos®+ VcosAsin® = Vsin(A—0)
Vv, =—usin@+ vcos® = Vsin Asin 0+ Vcos Acos® = V cos(A — 0)

Problem 4. — Prove that as the limit line for radial flow is approached the acceleration of
the flow approaches .

Flow acceleration is composed of an unsteady and convection terms

DV_V  jevy
Dt ot

Since the flow is steady and purely radial dV/6t = 0 andV =v. & . In cylindrical

ror

coordinates
vee 215, e O
or 100 oz
Now
Vovioy Moy Neg _y Wiy

The radial derivative of the Mach number is

dM _d(V/a) d(v,/a) _ldv, v,da_v,dv, Mda

dr dr dr adr a’dr Mdr adr

But

SO
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a= ao(l—i-y—_lej ’
2
Take the logarithmic derivative of this to get

lda_ 1 (y-)M dM
a dr 2(1+y;1M2j dr

Insert this into the expression for the radial derivative of the Mach number and obtain

dM _v,dv, 1 (y-1M* dM
dr M dr 2(1+y;1M2j dr

Hence,
d_M_&dVr+l (y-1)M? dM
d| M dr 2(1+Y;IMZJ dr

Rearranging gives

dv, M dM

Vv =

dr (1+y;1M2j dr

The radial derivative of the Mach number can also be obtained from Eq.(12. 7), i.e.,

dr T M? -1

dM n(1+y;1M2jM

Therefore,

dv. n M’

A% =

Tdr ot (M2 —1)

Asr — r* M— 1, hence, the convective acceleration is infinite.
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Problem 5. — Starting from the concept that the streamlines are straight for radial flow

and therefore have the form y = ¢ = ctan '(y/x), develop an equation for the velocity
field of a compressible fluid.

As defined in Problem 11.3

g P OV
p Oy
_ Pt O
p Ox
Now y = ctan™'(y/x), s0
oy 1 cX
E:C T ) 2
y X X“+y
1+X—2
M_ L |Zy_ -9
ox yox? xP+y’
1+;

Hence,
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Problem 6. — Sketch the ellipse of Eq.(12.13) in the first quadrant. Indicate roughly
subsonic and hypersonic regimes. Use the sketch to explain which effect, thermodynamic
or inertial, dominates in subsonic and hypersonic accelerations.

Equation (12.13)

a2 V2
> +
(a3) ( 2 azj
(0]
y—1

is plotted for a y = 1.4 in the figure below. The y axis may be regarded as the
thermodynamic axis since it contains the speed of sound ratio a/a,. The x axis may be
regarded as the kinematic axis since it contains the speed ratio V/a,. Lines for two Mach
numbers are shown on the plot. To the left of the M =1 line the flow is subsonic; to the
right supersonic.

=1

Because the ellipse is relatively flat in the subsonic regime, this indicates that Mach
number changes within this regime are largely due to changes in V. On the other hand,
because the ellipse becomes flat in the very high Mach number regime (hypersonic), this
indicates that Mach number changes within this regime are largely due to changes in the
thermodynamics, i.e., temperature.

M=1
0.8 —~
ala, 06 p
0.4 M=10
02 P
0.0 a a a a
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Problem 7. — Develop expressions for the flow variables, To/T, po/p and p,/p in terms of
the radius, r, for the irrotational vortex.

We may start from the following
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T _
oo oM
T 2
p, — 1+y_1M2 ﬁ
p 2

1
LI PP Sl VER [
p 2

For the irrotational compressible vortex we have shown [Eq.(12.16)] that

r 2 1

= 1+

Tmin y—1 NI2

ES
ro /y+1
Tmin y-1

Y_IMZ 1

2 _vH(rJZ_l
y—1r’

Replacing this term in each of the ratios and defining R = r/r* produces the desired
expressions

soatM =1

Combining these and solving gives

T, (v-1)
T (y-1)-(y+1)R*
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Problem 8. — Plot the incompressible flow equiangular spiral from 6 = 0 to 6 = 4 .
Assume that the constant c is unity, i.e., C = 0. Select the ratio of Q/I" so that r = 4 at
0 =4n.

The equation for an incompressible flow equiangular spiral is

@c Qg
r=e ' =ce! =el
At 6 =4 1t r = 4 therefore,
g41'[
4=¢l
So
1
g=—ln4
I 4=
Hence
8
r:44n

The corresponding x and y coordinates are x = rcosf and y = rsinf. A plot of these with
0 as the parameter provides the following

w

/I
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Problem 9. — Use the hodograph transformation to obtain a solution for the case in which
v =y(V). Show that for this case ¢ = ca.

Elimination of the velocity potential from the Chaplygin-Molenbroek equations,
Eqs.(12.52) and (12.53) was shown to produce

2\ A2
Vﬁ P_OVG_\V _|_p_0 1_V_ 8_\“:0
ovip aV) p a’ )oa’

Since for this problem y = y(V), this expression reduces to

d(pydv)_,
dvip dV

Integration brings

Poydv _ -

p dVv
But from Eq.(12.52)

9 _po Ay _ -
oo p dV

Hence,
¢ =Ca

Problem 10. — Another method to obtain the hodograph equations is to make use of the
Legrendre transformation, Zwillinger, Ref. 24. In this approach a function, ®(u,v), in
the hodograph plane is related to the velocity potential, ¢(x,y), by

O=xu+yv-9¢
Use this relation to show that

oD oD
a) —=x and — =
(a) -~ Y
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2 2
® < 2% 1d%0

0%p 10°®

_2:] 2
&y~ o

)] ()
where J=| " w

uv @ \A%

(c) Finally, show that Eq.(12.27) is transformed into the following linear equation

u2 62(13 uv 62<I> V2 62<I>
U N s wewe il e o
a“ ) ov a” oudv a“ )ou

0P _ X sy 000X 09Oy
ou ou 0OxOu Oyou
. . .. 0 o
But from the definition of the velocity potential — =u and — =v, so the above
X
reduces to
R, SR C AV X S S . SRS AP S
ou ou ou 0OxOu Oyou ou ou ou Cu

Similarly differentiate @ = xu + yv—¢(x,y) with respect to v and obtain

ov ov ov 0x0v 0Oyov ov ov ov Ov

Similarly using 0®/0v =y we obtain
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®Vu ZYU
®VV ZYV
Now use the chain rule and write
o 0u_ o) _ale)ax d)dy g Ly g
ou ou ox Ou 0y ou Y

Likewise

o _00) _db)ox )y _\ g 4 g g
v  ov  ox ov oy ov ’

The above pair may be written in matrix-vector form as

(Duu CI)Vu q)xx _ 1
s

Solving this for ¢y« and ¢y yields

1 @,
(I)XX ) q)uu ®VLl ) q)uu ®VLl
q)uv ®Vv q)uv ®Vv

o, 1
(I)XY B uu q)Vu ) q)uu (Dvu
(Duv ®VV q)uv (DVV

Following the same procedure

_@ _ 6((])y) _ 5(¢y)5_x+ a(q)y)@ = (I)ychuv 'HI)yy@VV =1

=22 = =
ov ov  ox ov By ov

Likewise

261



From GasDynamics,Third Edition, by Jame<E. JohnandTheoG. Keith. ISBN 0-13-120668-0© 2006 PearsorEducationJnc.,
UpperSaddleRiver,NJ. All rightsreservedThis materialis protectedunderall copyrightlawsastheycurrentlyexist.No Portionof
this materialmaybereproducedin anyform or by anymeanswithout permissiorin writing from the publisher.

p=2r 2o Ab)or Aoy _y o 1y 0~
ou ou  ox au oy ou c

The above pair may be written in matrix-vector form as

(Duu CI)Vu q)YX _ 0
(Duv (va ¢YY _|:1:|

Solving this for ¢yx and ¢,y yields

®Uu
q)yy - ®UU ®Vu
®LIV @ \A%
B ®Vu
¢yx - ®UU ®Vu
®UV @ \A%
Because of irrotationality
ov Ou
-~ A~ O = (I)yx (I)xy
ox 0y

_q)uv _q)vu
(I)Xy - (DUU (DVU _(I)yx ®llLl ®VLl
(DUV q)VV q)uv (DVV

Finally then we obtain the expressions requested i.e.,
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29 _10’°0
ox2 T ov?
0% 10%®
oxdy  J dudv
29 _10°@

(c) Equation (12.27)

may be written as

S
a’ Jox® a’|oxdy oOyox a’ )oy’

(l‘ﬁj 9 uVﬁ{l_ﬁJ@j:o

a’ Jox?  a? oxdy a’ ) oy’

The derivatives of the potential may be replaced by using the expressions from part (b)

2 2 2 2 2
[l_u_]la ® _,uvld cp+(1_v_j1a L

a’ )7 ov: " a?Joudv a’ T ou?

Assuming that J # 0 this becomes

u2 82(13 uv 82613 V2 82613
1—— —2+2—2—+ 1——2 —2:0
aZ | ov a” ouov a“ | ou

Problem 11. — Prove Eq.(12.49).

Start with Eq.(12.48)
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1
dfpe |1 (_y=1V? o _y-n¥
dv{ p y—1 2 al ! a’

-1

Buta’ =a’+-—V? or
L ol A4
a. 2 al
Hence,
a_(_y-1viY)
a’ 2 al
Finally then

Problem 12. — In the solution of problems using the hodograph equations, the resulting

expressions often contain the following two parameters: T = (V/Via)® and p = 1/(y — 1).
Show that
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(@) *-=(1-f
Po

2 _ 2Bt
(o) M? ==

From a’ =a’ + YT_lvz when a= 0, V = V; therefore V__ :( il]ao :
y_
(a) So
2 2
A% a
SN R
[Vmaxj (aOJ
But
2 v-1
al_T_[p
a() TO pO
Hence,

v-1
Po

P _ (1—17)ﬁ
P,

Finally then with B = 1/(y — 1)

(b) From static to total density relation and the result of part (a), we have

Po | _ Y-l 0 ﬁ_ 10 ﬁ_ 1
(?j_(H 2 M) _(”mMj "oy

Thus,

PR L
-7

2p

and so

M? ZQB(L_Ijzz_BT

1-7 -7
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Problem 13. — Using Eq. (12.79), show that Eq.(12.77) can be written as

2 2 2 2
dv, v, + v, =—Y_1 V2 o—vi- av, v, +c0‘[6dVr +2v,
do do’ 2 do do’ do

Verify that this is identically satisfied by a uniform stream given by v, = Vcos6.

Equation (12.77), the Taylor-Maccoll equation is

2 2 2
a’ — dv, d—Vzr+(a2 cot@)%Jr 2a’ —(%) v, =0
do do do do

Rearranging

20 42 2
dv, | [dy, +v, [—a’ d V; —a’ co‘[9%—2azvr =0
de do’ de do

or

dv, ? d’v, o[ dv, dv,
—+v, |[=a’| —5-+coth +2v,
do do de de

Next combine Eq.(12.78)

and Eq.(12.79)
2 =Rz, - v = AV, - (2 4

max

2
L AR R Rt
2 do

Using this to replace the a” in the above gives the desired expression

2 2 2 2
dv, v, + d’v, =_Y—1 V2 —vi- dv, v, +cot9dVr +2v,
do do’ 2 de do’ do
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Now suppose v; = VcosO. So dv,/dd = —Vsin6 and d*v,/d6? = —Vcosd . Substitution into
the above brings

(- Vsin8)* (Vcos®—VcosH)

= YT_I[Vnzmx —V?cos’ 9—(—Vsin 9)2][—Vcos9+ cotB(—Vsin9)+ 2Vcos@]

or
V2 sin? 0(0) = %(Vni ~v?)0)

0=0

Problem 14. — A steady, two-dimensional, supersonic flow, uniformly streams along a
horizontal wall that is aligned with the x-axis. The stream encounters a sharp corner
located at x = 0. Show that the maximum angle through which the flow may turn is given
by /2b — n/2, where b* = (y — 1)/(y + 1). Also show that the maximum angle can only
occur if the original flow is sonic.

From Eq.(12.66)

v:(6+6ref)—(g—uj:%tan_l(b Mz—lj—tan_l( Mz—l]

= Y—-Htan_1 Y—_I\/Mz—l —tan_l( Mz—lj
y—1 y+1

The maximum value of v will occur at M — oco. As Mach number goes to infinity the
argument of the inverse tangent becomes infinite, i.e., tan™'(c0) = /2. Therefore, the
above becomes

The angle through a flow is turned may be expressed as
A=v,—v,

The maximum turning angle will occur when v, =vyax and vi = 0. As shown above Vi,
occurs when M, — oo; The upstream Prandtl-Meyer function, v; i.e.,
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v, :%tan’l(b M; —1)— tan’l(W/Ml2 —1)

1s seen to vanish when M; = 1.

Problem 15. — Uniform supersonic flow at Mach 3.0 and p = 20 kPa passes over a cone
of semi-vertex angle of 20° aligned parallel to the flow direction. Determine the shock
wave angle, the Mach number of the flow along the cone surface, and the surface
pressure. Take y=1.3.

Except for the ratio of specific heats this is identical to Example 12.8.

Iteration of shock angles is used until a value of 0, = 29.24443" produces the desired cone
half angle of 6, = 20°. At the free stream Mach number, M; = 3, and this shock angle,
using Eqs.(12.85), (12.86), (12.87), (12.81) and (12.82), we find Ma, V2, &, v; and v,

respectively
M, tan(6,) O (deg) A\ Vr Yo
2.4641 0.2228 12.5614 0.6904 0.6613 0.1982
Spreadsheet calculation results for the first five increments of A® = 0.1° for

0 = 29.24443°, M; =3 and y = 1.3 are as follows

No. | 6(deg) | (vp [FI(VDu(Vekill (Vodo [FI(Ve)ps(Vedpl| (Vi) ir1 | (Vo) A4 M | 8 (rad)

29.2444 0.6613 -0.1982 0.6613 | -0.1982 | 0.6904 | 2.4641 | -0.2912
29.1444 0.6617 -1.2765 -0.1960 -1.2686 0.6617 | -0.1960 | 0.6901 | 2.4620 | -0.2879

29.0444 0.6620 -1.2686 -0.1938 -1.2612 0.6620 | -0.1938 | 0.6898 | 2.4600 | -0.2847

28.9444 0.6624 -1.2612 -0.1916 -1.2545 0.6624 | -0.1916 | 0.6895 | 2.4580 | -0.2815

28.8444 0.6627 -1.2545 -0.1894 -1.2482 0.6627 | -0.1894 | 0.6892 | 2.4561 | -0.2784
28.7444 0.6630 -1.2482 -0.1872 -1.2424 0.6630 | -0.1872 | 0.6889 | 2.4542 | -0.2752

[ W LV, I I SN ROS I NS e

Spreadsheet calculation results near the cone surface for A = 0.1°, 0, = 29.24443°,
M; =3 and y= 1.3 are contained in the following table

No.| 6(deg) | (v, [FI(VDuOoll| (Vo) [FIVp®edoll ()it | ()iy | V| M | 8(rad)
92 | 20.1444 | 0.6775 -1.3397 |-0.0034 | -1.3459 0.6775 | -0.0034 | 0.6775 | 2.3786 | -0.0050
93 | 20.0444 | 0.6775 -1.3459 |-0.0011 -1.3522 0.6775 | -0.0011 | 0.6775 | 2.3786 | -0.0016
94 | 19.9444 | 0.6775 -1.3522 | 0.0013 -1.3587 0.6775 | 0.0013 | 0.6775 | 2.3786 | 0.0019
95| 19.8444 | 0.6775 -1.3587 | 0.0037 -1.3654 0.6775 | 0.0037 | 0.6775 | 2.3786 | 0.0054

Since the velocity at the surface is equal to the radial velocity component, we may readily
compute the Mach number from Eq.(12.84) and the static pressure on the surface.
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ec (deg) Mc Vc Vr Vo Ps
20.0000 | 2.3786 | 0.6775 | 0.6775 0.0000 53.0308

Problem 16. — Uniform supersonic flow at Mach 4.0 and p = 20 kPa passes over a cone
of semi-vertex angle of 20° aligned parallel to the flow direction. Determine the shock
wave angle, the Mach number of the flow along the cone surface, and the surface
pressure. Take y = 1.4.

Except for the upstream Mach number this is identical to Example 12.8.

Iteration of shock angles continued until a value of 65 = 26.4850° produced the desired
cone half angle of 6, = 20°. At the free stream Mach number, M; = 4, and this shock
angle, using Eqs.(12.85), (12.86), (12.87), (12.81) and (12.82), we find M,, V,, 0, v; and
Vo, respectively

M, tan(6,) O (deg) A\ Vr Yo
2.9698 0.2574 0.2519 0.7989 0.7813 0.1668

Calculation results near the cone surface for A =0.1°, 6 =26.4850°, M; =4 and y = 1.4.

No.| 6(deg) | (Vo [FI(VDu(Vedill (Voo [FI(Vi)ps(Vedpl| (Ve)it1 | (Vo) ira v M | 3 (rad)
64 | 20.1850 | 0.7908 | -1.5610 |-0.0051| -1.5680 | 0.7908 | -0.0051 | 0.7908 | 2.8891 | -0.0064
65 | 20.0850 | 0.7908 | -1.5680 |-0.0023 | -1.5752 0.7908 | -0.0023 | 0.7908 | 2.8890 | -0.0030
66 | 19.9850 | 0.7908 | -1.5752 | 0.0004 | -1.5827 0.7908 | 0.0004 | 0.7908 | 2.8890 | 0.0005
67 | 19.8850 | 0.7908 | -1.5827 | 0.0032 | -1.5905 0.7908 | 0.0032 | 0.7908 | 2.8890 | 0.0040

Since the velocity at the surface is equal to the radial velocity component, we may readily
compute the Mach number on the surface from Eq.(12.84).

0. (deg) M. V. Vy Vg Ps
20.0000 | 2.8890 | 0.7908 | 0.7908 0.0000 [80.12361

Problem 17. — Uniform supersonic flow at Mach 3.0 and p = 20 kPa passes over a cone
of semi-vertex angle of 30° aligned parallel to the flow direction. Determine the shock
wave angle, the Mach number of the flow along the cone surface, and the surface
pressure. Take y = 1.4.

Except for the cone angle this is identical to Example 12.8.
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Iteration of shock angles continued until a value of 65 = 39.7841° produced the desired
cone half angle of 6, = 30°. At the free stream Mach number, M; = 3, and this shock
angle, using Eqs.(12.85), (12.86), (12.87), (12.81) and (12.82), we find M, V,, o, v; and

Vo, respectively

M, tan(ss) 8s (deg) vV, Vr Vo
1.9038 0.3974 0.3783 0.6483 0.6161 0.2015

Calculation results near the cone surface for AO = 0.1° for 0, = 39.7841°, M| = 3 and
v = 1.4 are as follows

No.| @(deg) | (vo)p [FI(vIu(Velll (Ve)p [FI(V)ps(Vadoll (Vi) ira | (Ve)inn |V M | §(rad)
97 | 30.1841 | 0.6335 | -1.2566 |-0.0041| -1.2602 | 0.6335 | -0.0041 | 0.6336 | 1.8310 | -0.0064

98 | 30.0841 | 0.6335 | -1.2602 |-0.0019| -1.2639 | 0.6335 | -0.0019 | 0.6335 | 1.8310 | -0.0029
99 | 29.9841 | 0.6335 | -1.2639 | 0.0003 | -1.2677 0.6335 | 0.0004 | 0.6335 | 1.8310 | 0.0006
100| 29.8841 | 0.6335 | -1.2677 | 0.0026 | -1.2716 0.6335 | 0.0026 | 0.6335 | 1.8310 | 0.0041

Since the velocity at the surface is equal to the radial velocity component, we may readily
compute the Mach number on the surface from Eq.(12.84).

ec (deg) Mc Vc Vr Vo Ps
30.0000 | 1.8310 | 0.6335 [ 0.6335 0.0000 92.4554

Problem 18. — A supersonic diffuser contains a conical spike of semi-vertex angle 5°; the
spike is aligned with the flow (Figure P12.18). Determine the Mach number of the flow
along the cone surface and the static pressure at the surface of the cone. Altitude = 5 km
and y = 1.4.

—
——
M,=30 — 5°
—
—

Figure P12.18

At an altitude of 5 km the local static pressure is 54.05 kPa.
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Iteration of shock angles continued until a value of 6; = 19.75086° produced the desired
cone half angle of 6, = 5°. At the free stream Mach number, M; = 3, and this shock angle,
using Eqs.(12.85), (12.86), (12.87), (12.81) and (12.82), we find M, V, d;, v: and vy,
respectively

M, tan(d,) O (deg) Vv, A Vo
2.9788 0.0072 0.0072 0.7997 0.7546 0.2648

Calculation results near the cone surface for AG = 0.1° for 6, = 19.75086°, M| = 3 and
vy = 1.4 are as follows

No.| 6 (deg) (Vr)n F[(vr)is(ve)i] (V('))D F[(Vr)m(v('))n] (Vr) i+l (Ve) i+l A4 M 5 (rad)
145] 53509 | 0.7904 | -1.5086 |-0.0043 | -1.5351 0.7904 | -0.0043 | 0.7904 | 2.8851 | -0.0054
146| 5.2509 | 0.7904 | -1.5353 |-0.0016 | -1.5634 | 0.7904 | -0.0016 | 0.7904 | 2.8851 | -0.0020
147] 5.1509 | 0.7904 | -1.5637 | 0.0012 | -1.5936 | 0.7904 | 0.0012 | 0.7904 | 2.8851 | 0.0015
148] 5.0509 | 0.7904 | -1.5939 | 0.0040 | -1.6258 | 0.7904 | 0.0040 | 0.7904 | 2.8851 | 0.0051

Since the velocity at the surface is equal to the radial velocity component, we may readily
compute the Mach number on the surface from Eq.(12.84).

0. (deg) M. V. vy Vg Ps
5.1938 | 2.8851 0.7904 | 0.7904 0.0000 64.2781
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Chapter Thirteen

LINEARIZED FLOWS

Problem 1. — The lift coefficient versus angle of attack for an airfoil, as measured in a
low-speed wind tunnel, is given in Figure P13.1. Sketch this curve for the same airfoil at

a Mach number of 0.45.
Co

1.2 = /

1.0 4

08 /

0.6 4

04

0.2 <+

—0b-6 . . a. (degrees)

-4 -2 0 2 4 6 8

Figure P13.1
From the Prandtl Glauert similarity rule, we can write

2
CL My=0 =CrLy1-Mg

Therefore,

CLMyp=0 CLMy,=0

C, = -
- JI-M2 \1-0.452

=1.1198 C \_, -0

Using this result and the values of C,, _, from Figure P13.1 we can sketch the lift

coefficient versus angle of attack for the same airfoil at a Mach number of 0.45
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CL

T T T o (degrees)
8

Problem 2. — Using the potential equation

02 029, o2
¢2p (l—Mgo)-f- ¢2p + ¢2p
ox oy 0z

develop the Goethert similarity rules for three-dimensional potential subsonic flow.

=0

The equation

=0

>4y (1 Mz) %9y %0y

_+_
ox 2 oy>  0z°

is for small-perturbation, linearized compressible three-dimensional flow. We transform
this flow to an incompressible flow. Let

x; =kix
vi =koy
z; =ksz
b;i =ky40
Uooi = kSUoo

and substitute into the potential equation:

NERCAIIN X ¢1 K3 0% _

axf k4 ay k4 azf

K (i
ky
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Multiplying this equation with k, /k,k, we obtain:

2 2 2
B B
k,k, Tox> k, oy>  k, oz

i

In order to transform the potential equation for compressible flow into Laplace’s
equation, it follows that

The boundary conditions for the three-dimensional compressible flow are:
2
dx b Uoo

(Ej _ Ve
dx b Uoo

where
0
oy
8¢p
Yo T,

Transforming the boundary conditions to the incompressible flow, we have:

ki(dyj) _ 1 9ip kyks
U

ko dxj wi 0Yi ky
ky(dzi) _ 1 9ip ksks
k3 dXi Uooi 8zi k4

To satisty the boundary conditions for the incompressible flow, it is necessary that

k; _ koks
ky kg
k; _ ksks
ky k4

274



From GasDynamics,Third Edition, by Jame<E. JohnandTheoG. Keith. ISBN 0-13-120668-0© 2006PearsorEducation|nc.,
UpperSaddleRiver,NJ. All rightsreservedThis materialis protectedunderall copyrightlawsastheycurrentlyexist. No Portionof
this materialmaybereproducedin anyform or by anymeanswithout permissiorin writing from the publisher.

For the incompressible flow, the Bernoulli’s equation is:

1 2 1 2 2 ]
Pooi +EpU001 =Dpi +5p[(UOOI +upi)2 +Vpi +Wpi

1 2u,; ug ) v ¥ (Wi )
2 i i i i
Pi —Posi == PU S LU e L (N IO L B A o
2 Uooi Uooi Uooi Uooi

Introducing this equation into

or

1 1 2
Eonol

and dropping the smaller terms, we receive

2U
Cp =- pl
! Uooi

For the compressible flow we have

C e I .S kiks _Kiks
- - - - 1
P, Uy Ugwi kg ky P
or
1
C,=——C,
P e P

Problem 3. — Tests run at M = 0.3 show that the lift coefficient versus angle of attack
for an airfoil is given by C, =0.1(0L+1) with o in degrees. Using the appropriate
similarity laws, derive an expression for C, versus o for this airfoilat M =0.5.

Using the Prandtl Glauert similarity rule

2
CLMy=0 =CrLy1-Mg

we obtain
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[ 2
Crmyp=0 =CLm,=03V1-0.3

and
[ 2
CLMyp=0 =CLM,=05V1=0.5
Therefore,
C C 1-037 C 1.10
LMy=0.5 =CLMy,=03 T7———=CLM,=03 !
” Z T V1-0.52 ”
But

CL My=0.3 = 01(0(,+1)
and the expression for C, versus o at M =0.5 is

CL M, =05 =0.1(a+1)1.10=0.11(c. +1)

Problem 4. — For the airfoil of Problem 3, plot Cp. versus M, from M, = 0 to M, = 0.60 at
angles of attack of 0°,2° and 4°.

From the Prandtl Glauert similarity rule we have

[ 2 / 2
CL My=0 =CLy1-Mg =Cyp v =03V1-03

or
V1-0.32 V1-0.32 (o +1)
Cp =Cp M, =03 ~——— =0.1 (00 +1)———=— = 0.095394
J1-M2 J1-M2 1-M2
Therefore,
1
C . =0.095394——
L a=0 1—M2
o0
1
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C o =0.47697 ——=
L

o=4

0.6 .Cr -

0.5 - —_—

0.4 4

0.3494 . i TT et a=2

0.2 4

0.1 -

Problem 5. — During the testing of a two-dimensional, streamlined shape, it is found that
sonic flow first occurs on the surface for M = 0.70. Calculate the pressure coefficient at

this point and also the minimum pressure coefficient for this shape in incompressible
flow.

The pressure coefficient in the point in which the sonic flow occurs is

i _ v/(-1) ]
5 [1+Y21MfO ,tj
Cr1
ComM=1 = -1
p M=l 2 v/(-1)
yMoocrit 1+L_1
i 2
[ B 1.4/(1.4-1)
1+ 14716 72
2 2

=-0.779

N 14072 ( 1'4_1j1.4/(1.4—1)
1+

The minimum pressure coefficient in incompressible flow is calculated from the Prandtl
Glauert rule

Cont. o =Cpy /1-M2 =-0.779y1-0.7" =-0.556
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Problem 6. — Two-dimensional subsonic linearized potential flow takes place between
two wavy walls as shown Figure P13.6. Solve for ¢, and determine the pressure

distribution along the centerline.

>
<
o fe—

//\\//_\ /\\
. (2w
i _,i._._.____?d__ y=Asm(Tjid

Figure P13.6

The potential equation for two-dimensional compressible flow is

(1-m2 )+ 6;1)21) =0

2
070,
GXZ

For subsonic flow, the solution of this equation can be obtained using the method of
separation of variables

2 2
o, = (C1 cos kx + ¢, sin kx c3emky " c4emky)

The constants ¢y, c,, 3, ¢4 can be determined from the boundary conditions. For y=d,
the boundary condition is

b

dx U,
where
Gd)p
Vp (Xb > d) =
oy

Introducing the relationships for y, and for ¢, into the boundary condition we receive a

condition between the constants ¢, ¢,, C3, C4

278



From GasDynamics,Third Edition, by Jame<E. JohnandTheoG. Keith. ISBN 0-13-120668-0© 2006PearsorEducation|nc.,
UpperSaddleRiver,NJ. All rightsreservedThis materialis protectedunderall copyrightlawsastheycurrentlyexist. No Portionof
this materialmaybereproducedin anyform or by anymeanswithout permissiorin writing from the publisher.

. )/7 ~M2 —\1-M2 2nU,A (2
(01 cos kx + ¢, sin kx l—Mozok c3€ =Mz kd—c4e 1-Mg; kd ZRTOOCOS(TRXJ

Similarly, for y = -d we have

[gj _ vplxp,—d)
b

dx Uy,

or

. —J1-M2 M2 21U, A 2
(cl coskx +cy skaHI—MOZOk c3e =Mz kd—c46 1-Mg kd =RTOOCOS(TRXJ

From the two relations between the constants ¢y, ¢y, €3, ¢4 We obtain

21 fiom2 2 oMy
e —e M
U, A 2
(I)p = = 5 2 COS(—X
1-M2 [ Pim2 a -1M2 d A
e +e A

Along the centerline we have

8¢p
_0=| — =0
up y=0 ( aXJ
y=0

which implies
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C 24p 0
=0 —=
Py Uw
Because
| )
*ono

2

we obtain that along the centerline the pressure is constant

P=Ps

Problem 7. — Consider two-dimensional, supersonic, linearized flow under a wavy wall,
as shown in Figure P13.7. Solve for the velocity potential of the flow and pressure
coefficient along the wall. Derive an expression for the lift and drag per wave length.

pr o

Figure P13.7

The general solution of the linearized potential equation two-dimensional, supersonic
flow under a wall is

o, =f(x+1/Mi -1 y)

The boundary condition is

BRER
dx J, U, y=0 Uy, | Oy y=0

For the wavy wall, this boundary condition becomes
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2mA cos(z—7T x] ! df M2 -1
A U / ”
®© d(x + Mgo -1 yj
y=0

df U, 2rA COS( 2n Xj

d(me/Mgo—ly) M2 -1 A
y=0
or, any y,

2 —
df U, 2rA 275()( +4yMZ -1 yj

= COS

d(me/Mozo—ly) M2 -1 A »
Integrating, we obtain

2_
U A . 2n(x+ﬁMm ly)

f= sin + constant = ¢,

JM2 -1 A

The perturbation velocity u is

2_
_8¢p_ U-A 2n 2n(x+ﬂMw lyj

up = =
ox  fy2 g2 A

With u we can compute the pressure coefficient C  along the wall

o - ( 2up j _ 4zA COS( 2n X)
p=|——— - - =°
U y=0 M;Mfo -1 A
The differential lift dL is given by

1 2
dL=C, Eyprwdx +p.dx
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where lift is defined to be positive upward.

Integrating from 0 to A, we obtain the lift force per wave length

1 2 ¢ A by
L ZEYPOOMOO'[O dex+j0 Poodx =

1 4TA A 2n 3
EypooMozo T IO cos(ijdx +poo_[0 dx = poA
MM —1
The differential drag is

1 2 dy dy
dD=-C,— M., —dx - —dx

where drag is positive in the flow direction. Integrating from 0 to A, we have the drag per
wave length

1 2 ¢h dy 3 dy),
D= _E'YpooMooJ.O Cp &jdx - J.O (poo &jdx -

1yp M2 4nA (ZnAjjxcosz(an}jx b (2nAjIxCOS(2nX}jX_
-4 0 wo| 0 A “Poo| 4~ 0 A -
2 % /Mfo R A A A

M2 4nA (2nij_
oo Vtoo| T ~
2 MmM2 —1 N A2
2n2A? M2
P =
M -1

Problem 8. — A wing has the shape of a sine wave, as shown in Figure P13.8. Compute
the lift and drag for supersonic flow. Assume linearized, two-dimensional flow above and
below the foil.

. 2mx
RO A VA VA VA VA VLA Asm(_j
—’ }\’
Chord = 5\

Figure P13.8

P —
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For a wing with a shape of a sine wave we have

dy, ) _(dy, =2nACOS[2nxj
dx ), dx ), A A

Introducing these relations in the expression of the lift for an airfoil, we have

1 2 (¢ 2 dyp, dyp,
L==yp M - +| —| pdx =
3 Moo N { dx ), Udx ),
o0
1 2 ¢ 5h 2 2nA 2nx
—YPoo M 0 |~ 2 cos( jdx=
2 /Mozo 1 A A
1 2 2 4mA 51 21X
—YPoo M| — jo cos(—]dx:o
2 /Mgo 1] > A

For the drag, in the same manner we have
1 27c 2 { dyy, ? dyy, ? ¢/ dyp dyy,
DZEYPOOMOO 0 +| — dX+PmIO - dx =
’Mgo -1 L dx u dx 1 dx u dx L

2
1 2 2 5M 4| 2TA 27X
—YPu M5 j 2{ cos( H dx =
2 0
2 ,Moo 1 A A

2 242 2
M, 8n°A SX{COS(Z%H dx —

TP
2 0
JM2 -1 X

Mgo 8n’A2 Sh_

TPoo
2
M2 o1 A 2
M2 20m2A2
Voo = "
M2 -1

Problem 9. — Using thin airfoil theory, find Cy and Cp for a two-dimensional, flat plate
airfoil with deflected flap in supersonic flow of Mach number M... Plot C. versus a for
various o for F=0.25 (Figure P13.9).
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<+«——— Chord=c¢ >

Figure P13.9

For the airfoil from Figure P13.9 we can distinguish two different regions:

0<x<(1-F (ﬂjlz(ﬂ]uz_a

dx dx
(1-F<x<c (%]l{%]u:_(ms)

We substitute these relations in the general expression of the lift for an airfoil

1 2 (¢ 2 dy dy
L=—vyp,My - {(_j + (_j }dx =
2 J-O ’Mgo -1 dx 1 dx u

1 2 2 cAf dy
I T
2 Mgo -1 dx 1

1 4

EypooMga —ﬁ {jél_F)"(— o kx + J(CI—F)C [~ (o0 + 8)]dx} =

1 4

2
_YpooMoo
2
2 JM2 1

%ypooMgoc L (OL + 8F)

[(x(l - F)c + ((x + B)Fc] =

Therefore, the lift coefficient Cy is

Cp = L ___4 (o0 + 8F)

: _
EvpooMfoc M2 -1

Particularly, for F=0.25 Cy is
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CL= +(a +0.253)
MZ -1

For the drag we get

2 2
1 2 (¢ 2 dy dy ¢ ( dy dy
D=—yp, M —_ [—J +(—j dx +p K— dx =
20" OOJ.O ,Mgo—l ] dx ), \dx); OO'[O dx J, \dx)

2
2 ¢ dy
— M2 = [ 2| dx =
2ypoo 0 '—MOZO_I'[O (Xm X
1 2 4 (1-F)e 2 c ) _
EYPooMoo m(]o a dX+J(l_F)C(0L+8) dxj_
1 4
LM (- P+ o o Fe]-
M7 -1

lypOOMozocL(oc2 +8°F + 2(18F)
2 2
Mg -1

and the drag coefficient Cp is

Cp =~ b __ 4 (a2+82F+2a5F)
EypooMgoC MOZO_I

Consequently for F=0.25 Cp is

Cp =2 (0 +0.255 +0.508)
2
M2 -1

o0

Problem 10. — Consider uniform supersonic flow over a wall in which there exists a
bump, as shown in Figure P13.10. Assuming linearized, two-dimensional potential flow,

calculate the vertical and horizontal components of the force on the bump. Assume M, =
2.0, with p,, = 50 kPa.
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M., lO.lL
—
P —
“‘iS 0.5/ T
—>

Figure P13.10

For the wall from Figure P13.10 we can distinct two different regions where dy/dx is

not zero
0<x<0.5L d_y=0.1 =0.2
dx L
2
0.5L<x<L g:—%:—O.Z
dx L
2

Using these relations in the general expression for the lift we get

1 2 (L 2 dy
L=—yp, M - (—jdx:

27" “lo JM2 —1 dx
1 2 2 [ 0.5L L }
—YPeMp| ———= 0.2)d -02)dx |=0
2pr o m 0 ( ) X+I0,5L( ) X

For the drag we can write

1 2 (¢ 2 dy 2 cf dy
ST (N (T
2 0 ,Mgo—l dx 0 dx

1 2 0.5L L
EmwMéﬁ[ o 02Pdx+ [ (- 0.2)2dx} -
MZ -1
M, 3) 2° -2
YPoo <=2 0.04L =(1.4)(50-10 ) - (0.04)(1-10 )=64.66N
Mg, -1 27 -1
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Problem 11. — A supersonic airfoil consists of a circular arc, as shown in Figure P13.11.
Compute the lift and drag coefficients of the foil versus angle of attack.

!
ML , A 0.1L
— T

L

Figure P13.11
The lift coefficient is

4o,

JM2 -1

The airfoil with a shape of a circular arc has camber but no thickness, with

Cp =

=2
Cp L P (d—cj S [oc2+022:
M2 -1 dx M2 1
[a2+0.04]
2 -1

Problem 12. — For the airfoil shown in Figure P13.12, determine C. and Cp versus angle
of attack in supersonic flow.

] o3c }.7 |

—
M . 0.08¢
R |
—> C

Figure P13.12
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The lift coefficient is
Cp - 4o,
M2 -1

For the upper surface of the airfoil, dy/dx can have two distinctive values

[ﬂj = 0.08¢ = % for 0<x<0.3c¢c
dx /), 03c 3

and

(ﬂj — 0.08c = % for 0.3c<x<c
dx u 0.7¢

For the lower surface of the airfoil

(&) -
dX 1

For zero angle of attack, the drag is

i 2 2 M
1 2 (¢ 2 dy dy ¢/ (dy dy
D=—yp,M — (—] +(—j dx +p (— | =] [dx =
277 »Jo Im2 _1 | \dx ), Ldx), °°IO_ dx ), \dx),

2 2]
LpaM2 | [jmc %j dx+]; C(—%) dx |=

0
2 M2 —1

Lo M2d 2 10.03047 =
2 M2 —1

1 0.06095

2
Eyp ooMooC >
MZ -1
Consequently, for zero angle of attack, the drag coefficient is
Cp = 0.06095
M2 -1

For an angle of attack a, we have an additional term
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o 40,2 ,0:06095
D =
M2 -1 M2 -1
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Chapter Fourteen

CHARACTERISTICS

Problem 1. — Use the Method of Indeterminate Derivatives to obtain equations of the
characteristics for the following equation in the hodograph plane,

u?)o?®  _uv o’ v2 o’
l-——|—5+2——+|1-——|—5=0
aZ 8V2 a2 ouov a2 8u2
where the function, ®(u,v), in the hodograph plane is related to the velocity potential,
d(x.y), by
O=xu+yv-9¢

so that

oD
—=xand —=y
ou ov

(see Problem 10 in Chapter 12).

To begin write the total derivatives of 0®/0u and od/0ov

2 2
dua q2)+dv8 @ =d(a£j=dx
ou ovou ou

Next rewrite

in the following form
2 2 2
6q2)+2C28<D+C36®=

Cl
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Note two of the terms have changed places and the coefficients are

VZ
C, =l1-—
u2
C,=|1-—

Since &*®/dudv = &*®/dvdu, the above provide three equations in terms of the three

unknown second derivatives. Solving for any of the derivatives (here &°®/6u’ was
selected) using Cramer’s Rule yields

o’d |N|
ou> D
where
dx dv 0 du dv O
|N|=dy du dv and|D|= 0 du dv
0 2C, C, C, 2C, C,

Setting the determinant D to zero gives the equation of the characteristic in the hodograph

plane, i.e.,
du dv O
|D| =0 du dv|=du(C,du-2C,dv)-dv(0-C,dv)=0
C, 2C, C,

which produces the following quadratic
2
C, av -2C, av +C,=0
du du

dv _C,*,C3-CC,

du C,

Solving this gives

Substitution brings Eq.(14.21)
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dv uVJ_r\/az(u2 +V2)—a4

du a’ —v?

The equation for the information that is carried on the characteristics is obtained by
equating the determinant N to zero, i.e.,

dx dv 0
INJ=|dy du dv|=dx(C,du-2C,dv)-dy(C,dv-0)=0
0 2C, C,
which produces
dy_du ,C € 2C,

& dv "C, ¢ +fci-cc, G,

~ C, -C,£{C;-CC; | 2¢,
-C,+Jci-cc, | G

~ cl(—c2 +./C3 —C1C3) 2C,

-C}+Ci-C,C, C,
~ —(—02 +,/C-C,C, )—2(:2
- c

~-C, +,/C; -C,C,

Substitution brings Eq.(14.15)

ﬂ: —uvi\/az(u2 +V2)—a4

dx a’—u’

Problem 2. — Use the Method of Indeterminate Derivatives to obtain the equation for the
slope of the characteristics in the hodograph plane in terms of the flow speed V and the

flow angle a.. Develop the equation starting with the potential equation in the hodograph
plane, i.e., Eq.(12.55)

2 2 4 2\2 A2
Vv? I—V—2 6(E+Vl+yv—4 %, l—V—2 642):0
a“ oV a” oV a ool
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Write the total derivatives of 0¢/0V and 6¢/0a

2 2
w0 ()
oV oo oV oV

2 2
dv 0’ +d0c6 42) :d[@j
oVoa oo ool

Next rewrite the potential equation as

2 2
T B
oV oo oV

The coefficients are

V2
Cl = Vz(l —a—zj

C,=0

2
VZ
c,=|1-~-
v
C4 ZV(1+Ya—4J

The above provide three equations in terms of the three unknown second derivatives.
Solving for any of the derivatives (here 6°¢/0V? was selected) using Cramer’s Rule yields

9 _IN
ov:  |p|
where
d(¢y) da 0 dv da 0
IN|=|d(¢,) dV dojand[D|=[0 dV da
0 0 C, c, 0 C,

Setting the determinant D to zero gives the desired equation of the characteristic in the
hodograph plane, i.e.,
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dv da 0
ID[=|0 dV do|=dV(C,dV-0)-da(0-C,da)=0
C, 0 C,

which produces the following

V2 V2
) (vz ] “ M-
-1
a
or
ld_V:i ! =ttanpu
V da M2 -1
which is Eq.(14.52).

Problem 3. — Use the Method of Linear Combination to obtain equations of the
characteristics for the following set of equations in the hodograph plane,

(a2 —uz)%+uv(%{+g]+(a2 _V2)8_X: 0

éu du
x % _
ov  ou

Rewrite the pair of first-order partial differential equations as

clﬁ+c2(a—x+ﬁj+c3@ ~0
du v fu oy

ox Oy 0

o du
Note the end terms of the potential equation have been interchanged and the coefficients
are
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C, :(a2 —V2)
C, =uv
C, :(az —uz)

Now multiply the first equation by an unknown parameter o, the second by o, and add
the results to get

GI{CI8—X+C2(ﬁ+ﬂ]+c3@}+cz(a—x—ﬂ] =0
ou ov odu ov

Grouping like derivatives gives

0x Ox
|:C1(Yl E + (Czc1 +0, )E} + |:(C261 -0, )% +C,0, %} =0

Clcl %_k(c%—iﬁZ)ﬁ +(C261—02 Q_FL@ :0
101 ov ou (CZGI—GZ)GV

Compare the group of terms within the square brackets to the following total derivatives

ox vy _dx
ou duov du
Oy dvoy dy
ou duov du

From this comparison we may write the slope, dv/du, denoted as A, as

dv 5 (Czc1 +(52) _ Cyo,

du Co, B (CZGI _Gz)

Expanding this pair of equations produces two equations for ¢, and o,

(CA-C,)o, -0, =0

(C,A-C,)o, -, =0

A unique solution for o; and o, will be obtained if and only if the determinant of the
coefficients vanishes, i.e.,

295



FromGasDynamics,Third Edition, by Jame<. JohnandTheoG. Keith. ISBN 0-13-120668-0© 2006 PearsorEducationnc.,
UpperSaddleRiver,NJ. All rightsreservedThis materialis protectedunderall copyrightlawsastheycurrentlyexist.No Portionof
this materialmaybereproducedin anyform or by anymeanswithout permissiorin writing from thepublisher.

‘(CIX—CZ) -1

=0
(C,A-Cy) —x‘

Expanding and rearranging the result produces the quadratic equation,
CA2—2CoA+C3=0
Solution of this expression yields

o G +ci-ccy _ uv+qfa’(u® +v2)-a’

du C, a’—v?

which was previously obtained as Eq.(14.21).

To derive the compatibility equation, incorporate the total derivative equations into the
combined equation and obtain

C,6,dx +(C,0, -5, )dy =0
or

C,dx + [cz —ﬁjdy =0

O,
The relationship between G, and o, is obtained from use of either

(Clx_cz)gl -0,=0

(C,A—Cy)o, —Ao, =0

Using the first of these and the expression for A produces

C, +4/C2-C,C
2 _cp-c,=c |2 o, —ci—cC

G, C,

Hence,

So
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w clasfa-ce) -crfci-cc,

dx c-(ci-c,c,) C,

Substitution brings Eq.(14.15)

dy —uvtqfa’(u® +v?)-a’
dx a’—u’

Problem 4. — Resolve problem 3 using Eigenanalysis

The pair of equations
Cl % + C2 [ﬁ + ﬁj
ou ov Ou

ox
v

J’_
e
2|2
Il

can be written in vector matrix form as

C Glow |G Clow

0 —-1|cu 1 0 |ov
where the dependent column vector is w = {X} . Defining the coefficient matrices as

y
A C, C, B C, C,
0 -1 1 0
the above equation may be written as
ow

AN Y _
ox oy

So
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The inverse matrix of A is

1
- Cl Cl

At _2diA_ {—1 —cz}
0 -1

“detA (-C,-0)| 0 C,

Multiplying A™ times B gives C

1 C 2C C
C=A"'B=|C. ol | = e
- - Cl 1 1 0 - Cl Cl

0 -1 -1 0

The characteristic directions are obtained by determining the eigenvalues of matrix C,

IC-A1[=0
that is
26, , G
Cl Cl =0
-1 =

Expanding the determinant yields the same quadratic expression as obtained by the two
previous methods problems 3 and 4

—[2C2 —megzo

Cl Cl

CA2 —2C,A+C3=0

Solution of this brings

a9V _ Czi\/ci—iclcs:uvi\/az(u2 +V2)—a4

du C, a’—v’

To derive the compatibility equation, begin with

ow . OwW

—+C—=0
ox 0y
The left eigenvectors corresponding to eigenvalue, A, of matrix C are determined from
1'Cc=211]
or
1/ (C-21)=0
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The characteristic variables are defined by

dr =X"'dw =0

where

- Ly Ly
X IZL:[II lII]:L 1
21 Lo

To derive the compatibility equation, the left eigenvectors must first be determined.
Rather than obtaining results for each characteristic (I and II), the following applies to
characteristics of either family

1"(C-A1)=0
or
2, , &
L L] ¢ c, |=0
Y

&11 -1, =0
C1
Hence,
1, = 2&—k]11
G,
12 = C3 11
AC,

The group of coefficients on the right side of the above two equations are equal to each
other as may be seen by examining the eigenvalue expansion. Therefore, the equations
are not independent of each other. So we may arbitrarily assign a value to either 1; or 1,
and then use the above to determine the remaining component. Let1; = 1, so that

I PASNIPR LS )
C, AC,
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The compatibility equation for characteristics is

1"dw =0
or
d d
I, 12]{ X}: 1 ( Q—xj { X}zdx+[2—2—7»jdy:0
dy C, dy 1
Consequently,
CZ
2=
dy 1 1 C,

And since 2& —A|= < the above becomes
C AC

1 1

)G
dy_1, & _1 26
& [ C) r G
’C,
dy _du G _ ¢ _2€,

& dv "C, c,+ci-cc, G

Substitution brings
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ﬂ: —uVJ_r\/az(u2 +V2)—a4

dx a’ —u?

Problem 5. —The continuity and momentum equations for one-dimensional unsteady flow
are

P, p0u, 9P
ot oXx ox

(a) For an isentropic flow show that this pair can be written as

op 8u+ op

ot pa_x u&x

du Ou a’adp
—+u—=
ot ox p OXx

(b) Define the Riemann variable, R, as

dR=a@

p
and show that the pair of equations in part (a) become

OR OR ou
—+u—+a—-=0
ot 0x 0x

ou ou OR
—4+u—+a—=0
ot 0x 0x

(c) Add and subtract the pair of equations in part (b) to obtain

d(u+R) o(u+R)
Tor tlraTE T s0
d(u-R) d(u-R)
o Tl o
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(d) From the results of part (c) determine the slope of the characteristics, i.e., dx/dt, as
well as the information that is propagated along the characteristics.

(e) For isentropic flow of a perfect gas, show that if R(0) = a(0) = 0, then

(a) Since the flow is isentropic we have

(o) _dp
op), dp

or
dp =a’dp
So
P _,20
ox )4
Hence, the original pair
8p+p@+u@=0
ot ox ox
ou ou op
—+pu—=——
Pa Pl T ax
become
8p+p@+u8p=0
ot ox ox

dRza@
p
So
R _adp
ot p ot
R _adp
ox pOx

Use these to replace the density derivatives in the pair
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ap_|_ a_u+u@:0
ot ox ox

2
8u+ du a” 0p

R 1=
ot ox p O0x

To obtain
pPOR  Ou PudR _

0
a ot 0x a 0x

ou Ou a’podR
—t+u—+—-—-=0
ot 0x p aodx

Performing the cancellation of terms gives

OR OR  Ou
—+u—+a—=0
ot ox ox
ou ou OR
—+u—+a—=0
ot ox ox

(c) Add the pair in (b) to get

ou OR ou OR ou OR
— 4 —4+y—+4+uyu—+a—+a—-=
ot Ot 0Xx 0x 0Xx 0x

M++(u +a)M

=0
ot 0x

Subtraction produces
ou OR ou OR oJu OR

———+u—-u—+a——-a—=

ot Ot 0x 0x 0Xx 0x

(d) The pair of pde in (c) can be rewritten collectively as
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8(uiR)+(u+a)8(uiR) -0
ot oXx
Contrast this to the total derivative of u £ R, i.c.,
0uR) ;i , QWER) 4 jueR)
ot ox

Rather to

6(uiR)+d_x@(uiR) d(u+R)

ot dt 0Ox dt

And we observe that the quantity u = R remains constant along a line whose slope is

d—xzuia
dt
(e) Now
dR:a%
p

But for isentropic flow we have:dp = a*dp, therefore

aR = &
pa

For an isentropic process p = Cp'. Taking the logarithmic derivative of this expression
gives

d d

dp_ dp

p p
So

dp : 1 S 2

Py P ypp T =yCrpp T =yCTp T =a
dpo 'p

Taking the logarithmic derivative of this expression brings
) @ _Y -1dp

a Y P
Thus,
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27 P da = ilpada = padR

So
2

Problem 6. — Obtain the characteristic equations of the pair of pde in part (b) of problem
5 by using the Method of Indeterminate Derivatives.
In addition to the given set of equations
OR OR Ou
+a—=0

—_— u_ PRN—
ot 0x 0x

ou ou OR
—+u—+a—=0
ot 0x 0x

we have the total derivatives of R and u

OR OR

a2 1 dx S =R
ot 0Xx

a2+ ax 2%~ qu
ot 0X

The above provide four equations in terms of the four unknown derivatives. Solving for
any of the derivatives (here OR/0t was selected) using Cramer’s Rule yields

oR _[N

ot |D|

where
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0O u 0 a
0 a 1 u
N[ =
dR dx 0 O
du 0 dt dx
1 u O
0 a 1 u
D] =
dt dx 0 O
0 0 dt dx

Setting the determinant D to zero gives the equation of the characteristic in the x — t

plane, i.e.,
1 u O
a 1 u 0 1 u 0 a 1
0 a 1 u
ID| = =ldx 0 O|-u/dt 0 O0|-adt dx 0
dt dx O
0 dt dx 0 dt dx 0 0 dt
0 0 dt dx

= —dx(dx — udt)+ udt(dx — udt)— adt(0 — adt)

= —(dx)’ + udxdt + udxdt —u?(dt)’ +a*(dt)’ =0

which produces the following quadratic

2
(] -2 & Jrur a0
dt dt

Solving this gives

dx
—— =ut.u’ —iuz—a2 i:uia

dt

The compatibility equation is obtained by equating the determinant N to zero, i.e.,
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0 0
0 " ) a u 0 a u 0 a
|N|= a u:dRa 1 wu|—-dula 1 u
dR dx 0 O
0 dt dx dx 0 0
du 0 dt dx

= dR[u(dx — udt)—a(0 — adt )] - dudx(0 —a)

= dR(udX —u’dt+ azdt)+ adudx =0
which produces

(s
Replace dx/dt with u + a yields
[u(uza)+a’ —u? bR +[a(u +a)jdu = (+ va +a’ JR +(ua+a’ ku =0
which reduces to

+dR +du=0

along lines with slopes

dx
dt

Problem 7. — Obtain the characteristic equations of the pair of pde in part (b) of problem
5 by using the Method of Linear Combination.

Multiply the given equations

by o; and o, respectively, and add to get
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Rearrangement brings

oR c, |0OR ou G, |Ou
o,|—+|u+—a|—|+0,|—+|u+—a|—|=0
ot o, )Ox ot G, )O0x

Compare the group of terms within the square brackets to the following total derivatives

0R _ dx R _dR

atan @
u dxou_du
ot dt ox dt

From this comparison we may write the slope, dx/dt, denoted as A, as

dv c c
—=A=u+—ra=u+—ta
du c, c,

Expanding this pair of equations produces two equations for 6, and o

u—AJo, +ac, =0
(u-2)o, +ac,

ac, +(u—2A)o, =0

A unique solution for o; and o, will be obtained if and only if the determinant of the
coefficients vanishes, i.c.,
(u—2) a J _0

a (u—2

Expanding and rearranging the result produces the quadratic equation,

(u-1) -a’>=0

Solution of this expression yields
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To derive the compatibility equation, incorporate the total derivative equations into the
combined equation and obtain

6,dR +c5,du=0
or

idR+du=O

G,
The relationship between G, and G, is obtained from use of either

(u—2A)o, +ac, =0

ac, +(u-A)o, =0
Using either of these and the expression for A produces

6, A-u_ ufa-u

= = ==1
c, a a
Hence,
+dR+du=0

along lines with slopes

dx

—=uta

dt

Problem 8. — Obtain the characteristic equations of the pair of pde in part (b) of problem
5 by using Eigenanalysis.

The pair of equations

OR OR ou
— +u—+a
ot 0x 0Xx

can be written in vector matrix form as
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1 O|low |u alow
—+ —=0
{O l}ét L u}é‘x

. u . . .
where the dependent column vector is w = LJ . Defining the coefficient matrices as

the above equation may be written as

AN gV _,
ot Ox

Note A is the identity matrix I. Therefore, A" =1. So
ow ow _ow . 0w

T HABEE=24B =0
ot ox ot ox

The characteristic directions are obtained by determining the eigenvalues of the
coefficient matrix of Ow/0x, which in this case is matrix B, hence

B—AI=0
that is

This is the same determinant as obtained in the previous problem. Expanding gives
(u—r)y —a*=0
Solution of this expression yields

_dx
dt

To derive the compatibility equation, the left eigenvectors must first be determined.

Rather than obtaining results for each characteristic. The following applies to
characteristics of either family

"(B-AI)=0

or

310



FromGasDynamics,Third Edition, by Jame<. JohnandTheoG. Keith. ISBN 0-13-120668-0© 2006 PearsorEducationnc.,
UpperSaddleRiver,NJ. All rightsreservedThis materialis protectedunderall copyrightlawsastheycurrentlyexist.No Portionof
this materialmaybereproducedin anyform or by anymeanswithout permissiorin writing from thepublisher.

Expanding gives two equations produces

(u=2a)1, +al, =0

al, +(u-2)1, =0

Hence,
I, = ( A— ujll
a
a
1, = 1
Using the fact that
A=uzta
produces that
1, ==£I,

Take 1; to be unity. The compatibility equation for characteristics is

1"dw =0
or
du du
1, 12]LR} = ﬂ[dR} —du+dR =0

Problem 9. — (a) Combine Eq.(14.29) with both expressions in Eq.(14.27) to obtain
Eq.(14.30); (b) Substitute Eq.(14.30) into Eq.(14.29) to obtain

dv_-C,FC;-CC,

du C,

(a) We begin with the simpler of the two expressions

(CA-C,)o, +0,=0

Hence,
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c

—2=C,-C,A

O,
But

C, +,/C;-C,C,

A=
Cl

Substitution brings

Next the second expression is used, i.e.,
(C,A=C,)o, +Ao, =0

or

c, C,-C,A C;
R I B s R O
c, A A

= ST -C, =

c,tjci-cc, C,+C2-C,C,
—(Jc; —c,c,Tc,ci—cc,

I C
= =FC,,/C2-C,C,
C

C,+/C2-C,C,
= FC,4C:-C,C,

(b) From Eq.(14.29) we have

C,du + (Cz +2]dv =0

G,

Substituting the results from part (a) gives

C,du + (c2 F,/C2-C,C, )dv =0
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Rearranging this brings

dv _ -C, -C, C,F,C;-C,C,

du ¢, +Jci-cc, c,+ci-cc,c, T C-ccC,
B —cl(c2 F.4C2 —c1c3) ~C,+4C2-C,C,

c-(c-c,c,) C,

Problem 10. — In example 14.2 only one of four compatibility equations was determined.
Complete this example by determine the remaining three.

The complete left eigenvector is

-1 1
Y ) )
L<lov o0 u/v —u/v
o) e o
1 —1/a’ 1/pva 1/pva
0 1 0 o |

The compatibility equations are established by application of
1dw=0
for each left eigenvector corresponding to a particular eigenvalue.

Along the characteristic given by dy/dy = A,

du du

dv -1 dv dp
Mdw=[1> 2 12 12 i {0 0~ 1} gy |~ ar HdP=0

dp dp

So we obtain the speed sound expression

d_
dp

Along the characteristics given by dy/dy = A3 and A4 we have
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du du

d F1 o+ d
AR AN KRN [ g it L} | g B

dp ap af pva dp

dp dp

where p= VM? -1 = \/ (u2 +v? )/ a’ —1. Expanding and canceling terms yields

?VduiudV+Edp =0

p
Now according to Bernoulli’s equation
dp_ —(udu + vdv)
p

Uniting the expressions and rearranging produces

dv _ v*fu
du u¥Fpv

Multiply both numerator and denominator by u = Bv. The numerator simplifies as
follows

(V + Bu)(u + BV) = uv+pu’ £Bv’ +uvp’

= uV(1+B2)iB(u2 +V2):M[uvi\/az(u2 +V2)—a4]
a

Whereas the denominator simplifies as follows

2 2 2 2

) (o ++) (0 )

(u+[3u)(ui[3v):u2—B2V2=u2——2 V2+V2=—2 (az—vz)
a a

Hence,

dv uvtyfai(u®+v?)-a

du a’ —v?

Problem 11. — Use the Method of Indeterminate Derivatives to determine the equations
of the characteristics for linearized, two-dimensional, supersonic flow described by
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2\9%0 , 0%
(1M)aX el

There is no need to go through the entire analysis since this is a simple extension of
theory presented in the Chapter. Instead simply let

C =(1-M2)=—p’
C,=0
C, =1

Note for supersonic flow C; is negative and the potential equation is actually the wave
equation, which is hyperbolic.

dy G -C,C, 0+«/0+B _F1 |
dx B’ B M2 -1
dV_—CZTM/Cﬁ—ClC3 0, F40+pB’ _Tpo T ME 1

Problem 12. — (a) Show that each dependent variable in the following pair of equations
must satisfy the wave equation and therefore the set is hyperbolic

v _g
ox 0y
au_N_y
oy 0Ox

(b) Use the Method of Linear Combination to determine the equations of the
characteristics for this set of equations.

(a) The wave equation is written in the x-y plane as

o, 0
o oy

where c is the wave speed.
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Now differentiate the first equation wrt to x and the second wrt y to obtain

0*u ~ o’v
ox*  OxOy
82u_ 0%v B
oy’ dyox

Subtraction produces the wave equation with a wave speed of +1

o*u B o*u

aXZ ayZ

Now differentiate the first equation wrt to y and the second wrt x to obtain

Pu oy
dyox oy’
0*u _82V B
oxoy ox’

Subtraction produces the wave equation with a wave speed of £1

o*v v
o oy’
(b) Multiply the given equations
u_ov_g
ox Oy
u_ov_g
oy 0x

by o) and o, respectively, and add to get

ou Ov ou Ov
o,|——-——1|+0, ——— =0
ox 0y oy Ox
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Rearrangement brings

olan (5]l (5]

Compare the group of terms within the square brackets to the following total derivatives

ou dy ou _du
ox dx G‘y T dx
@ dy ov _dv
ox dx ay dx

From this comparison we may write the slope, dx/dt, denoted as A, as

dv_,_o _of
du G, o,

Expanding this pair of equations produces two equations for 6; and o

Ao, —-c,=0

6,—-Ac,=0

A unique solution for o; and o, will be obtained if and only if the determinant of the
coefficients vanishes, i.e.,

Ao -1
1 -

‘:0

Expanding and rearranging the result produces the quadratic equation,

X +1=0
Solution of this expression yields
_dx 41
T dt

The eigenvalues yield the wave speed of the wave equation.

To derive the compatibility equation, incorporate the total derivative equations into the
combined equation and obtain

c,du—c,dv=0
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or
&du —dv=0
G2

The relationship between G, and o, is obtained from use of either

(u—2A)o, +ac, =0

ac, +(u—-A)o, =0
Using either of these and the expression for A produces

o, A-u_ufa-u

c, a
Hence,
tdu—-dv=0
or
N4
du
along lines with slopes
dx
—=uta
dt

Problem 13. — Use Eigenanalysis to determine the equations of the characteristics in

problem 12.

The pair of equations
au_v_,
ox 0y
au_v_,
oy 0x

can be written in vector matrix form as

1 0|ow (0 —1|ow
0 -1t 1 0 |ox
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u
where the dependent column vector is w = { } . Defining the coefficient matrices as
A%

SN

the above equation may be written as

ot 0x
The inverse of A is
A_1_1 0
1o -1
So
OW A gV _OW oW,
ot ox ot Ox
where

S S

The characteristic directions are obtained by determining the eigenvalues of C

IC-A1[=0
Therefore,
-A -1
=0
-1 -
Expanding gives
A —12=0
Solution yields
L
dx

To derive the compatibility equation, the left eigenvectors must first be determined.
Rather than obtaining results for each characteristic. The following applies to
characteristics of either family

1"(C-AI)=0
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or

Expanding gives two equations produces

Al +1,=0
l,+11,=0
Hence,
1, =\l =7],
1 _
1, :—Xll =7,

where the slope of the characteristics (A = £1) has been used. So
1, =41,

Take I; to be unity. The compatibility equation for characteristics is

1"dw =0
or

Problem 14. — Complete the solution of Example 14.3 by determining the solution at
points 19 to 32. Check the accuracy of the results.

The numbering of the points is contained in the following figure
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A set of tables that contains data for all of the labeled points follows:

V=
o= (Cy C = Chy = vl o+ oa—p
(CHCw/2 | —Cp/2 o+Vv a-v
point deg de deg deg M deg deg deg

1 6.00 26.3798 32.3798 | 20.3798 2.0000 30.0000 | 36.0000 -24.0000
2 4.00 26.3798 30.3798 | 22.3798 2.0000 30.0000 | 34.0000 -26.0000
3 2.00 26.3798 28.3798 | 24.3798 2.0000 30.0000 | 32.0000 -28.0000
4 0.00 26.3798 26.3798 | 26.3798 2.0000 30.0000 | 30.0000 -30.0000
5 5.00 27.3798 323798 | 22.3798 2.0365 29.4095 | 34.4095 -24.4095
6 3.00 27.3798 30.3798 | 24.3798 2.0365 29.4095 | 32.4095 -26.4095
7 1.00 27.3798 28.3798 | 26.3798 2.0365 29.4095 | 30.4095 -28.4095
8 6.00 28.3798 34.3798 | 22.3798 2.0733 28.8370 | 34.8370 -22.8370
9 4.00 28.3798 32.3798 | 24.3798 2.0733 28.8370 | 32.8370 -24.8370
10 2.00 28.3798 30.3798 | 26.3798 2.0733 28.8370 | 30.8370 -26.8370
11 0.00 28.3798 28.3798 | 28.3798 2.0733 28.8370 | 28.8370 -28.8370
12 5.00 29.3798 343798 | 24.3798 2.1106 28.2815 | 33.2815 -23.2815
13 3.00 29.3798 323798 | 26.3798 2.1106 28.2815 | 31.2815 -25.2815
14 1.00 29.3798 30.3798 | 28.3798 2.1106 28.2815 | 29.2815 -27.2815
15 6.00 30.3798 36.3798 | 24.3798 2.1483 27.7419 | 33.7419 -21.7419
16 4.00 30.3798 343798 | 26.3798 2.1483 27.7419 | 31.7419 -23.7419
17 2.00 30.3798 32.3798 | 28.3798 2.1483 27.7419 | 29.7419 -25.7419
18 0.00 30.3798 30.3798 | 30.3798 2.1483 27.7419 | 27.7419 -27.7419
19 5.00 31.3798 36.3798 | 26.3798 2.1864 27.2173 | 32.2173 222173
20 3.00 31.3798 34.3798 | 28.3798 2.1864 27.2173 | 302173 242173
21 1.00 31.3798 32.3798 | 30.3798 2.1864 27.2173 | 282173 -26.2173
22 6.00 32.3798 38.3798 | 26.3798 2.2251 26.7068 | 32.7068 -20.7068
23 4.00 32.3798 36.3798 | 28.3798 2.2251 26.7068 | 30.7068 -22.7068
24 2.00 32.3798 34.3798 | 30.3798 2.2251 26.7068 | 28.7068 -24.7068
25 0.00 32.3798 32.3798 | 32.3798 2.2251 26.7068 | 26.7068 -26.7068
26 5.00 33.3798 38.3798 | 28.3798 2.2642 26.2096 | 31.2096 -21.2096
27 3.00 33.3798 36.3798 | 30.3798 2.2642 26.2096 | 29.2096 -23.2096
28 1.00 33.3798 34.3798 | 32.3798 2.2642 26.2096 | 27.2096 -25.2096
29 6.00 34.3798 40.3798 | 28.3798 2.3039 25.7250 | 31.7250 -19.7250
30 4.00 34.3798 38.3798 | 30.3798 2.3039 25.7250 | 29.7250 -21.7250
31 2.00 34.3798 36.3798 | 32.3798 2.3039 25.7250 | 27.7250 -23.7250
32 0.00 34.3798 343798 | 34.3798 2.3039 25.7250 | 25.7250 -25.7250

The coordinates and slopes of the characteristics in the physical plane are contained in the
following table
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a
point | deg 1 a+p a—p nmy my; X y

1 6 30 36 -24 9.5144 1.0000
2 4 30 34 -26 9.5435 0.6673
3 2 30 32 -28 9.5609 0.3339
4 0 30 30 -30 9.5668 0.0000
5 5 29.4095 34.4095 -24.4095 -0.4495 0.6797 9.8265 0.8597
6 3 29.4095 32.4095 -26.4095 -0.4922 0.6298 9.8505 0.5162
7 1 29.4095 30.4095 -28.4095 -0.5363 0.5821 9.8625 0.1722
8 6 28.8370 34.8370 -22.8370 0.1051 0.6905 10.1222 1.0639
9 4 28.8370 32.8370 -24.8370 -0.4750 0.6106 10.1563 0.7030
10 2 28.8370 30.8370 -26.8370 -0.5186 0.6401 10.1541 0.3588
11 0 28.8370 28.8370 -28.8370 -0.5457 0.0000 10.1779 0.0000
12 5 28.2815 33.2815 -23.2815 -0.4257 0.6509 10.4780 0.9124
13 3 28.2815 31.2815 -25.2815 -0.4676 0.6023 10.4768 0.5532
14 1 28.2815 29.2815 -27.2815 -0.5108 0.5557 10.5030 0.1806
15 6 27.7419 33.7419 -21.7419 0.1051 0.6622 10.8171 1.1369
16 4 27.7419 31.7419 -23.7419 -0.4351 0.6131 10.8201 0.7636
17 2 27.7419 29.7419 -25.7419 -0.4772 0.5660 10.8481 0.3760
18 0 27.7419 27.7419 -27.7419 -0.5208 0.0000 10.8497 0.0000
19 5.00 27.2173 322173 -22.2173 -0.4036 0.6244 11.1821 0.9896
20 3.00 27.2173 30.2173 -24.2173 -0.4448 0.5769 11.2153 0.5878
21 1.00 27.2173 28.2173 -26.2173 -0.4873 0.5313 11.2181 0.1957
22 6.00 26.7068 32.7068 -20.7068 0.1051 0.6361 11.5317 1.2120
23 4.00 26.7068 30.7068 -22.7068 -0.4134 0.5882 11.6028 0.8157
24 2.00 26.7068 28.7068 -24.7068 -0.4549 0.5421 11.6101 0.4082
25 0.00 26.7068 26.7068 -26.7068 -0.4978 0.0000 11.6112 0.0000
26 5.00 26.2096 31.2096 -21.2096 -0.3830 0.5999 11.9783 1.0410
27 3.00 26.2096 29.2096 -23.2096 -0.4236 0.5534 12.0240 0.6373
28 1.00 26.2096 27.2096 -25.2096 -0.4654 0.5086 12.0298 0.2129
29 6.00 25.7250 31.7250 -19.7250 0.1051 0.6120 12.4084 1.3042
30 4.00 25.7250 29.7250 -21.7250 -0.3933 0.5650 12.4265 0.8647
31 2.00 25.7250 27.7250 -23.7250 -0.4341 0.5198 12.4720 0.4428
32 0.00 25.7250 25.7250 -25.7250 -0.4763 0.0000 12.4767 0.0000

The accuracy of the calculations is assessed in the following table

M
(exact M
Point Area A/A* solution) (MOCO) % Error

4 Ay 1.6875 2 2
11 1.06395A, 1.7953 2.0733 2.0733 0
18 1.1341A, 1.9138 2.1472 2.1483 0.0514
25 1.2137A, 2.0471 2.2239 2.2251 0.0506
32 1.3042A, 2.2008 2.3038 2.3039 0.0011
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Problem 15. — Using the same number of points repeat Example 14.3 for:

(a) Minitia1 = 2.0, total wedge angle of 12° and y = 1.3;
(b) Minitia1 = 4.0, total wedge angle of 12° and y = 1.4;
(¢) Minitial = 2.0, total wedge angle of 24° and y=1.4

(a) Minitial = 2.0, total wedge angle of 12° and y=1.3

point o deg N C(+Hh C(Ou M 1] o+ o—p
1 6.00 28.6809 34.6809 22.6809 2.0000 30.0000 36.0000 -24.0000
2 4.00 28.6809 32.6809 24.6809 2.0000 30.0000 34.0000 -26.0000
3 2.00 28.6809 30.6809 26.6809 2.0000 30.0000 32.0000 -28.0000
4 0.00 28.6809 28.6809 28.6809 2.0000 30.0000 30.0000 -30.0000
5 5.00 29.6809 34.6809 24.6809 2.0324 29.4747 34.4747 -24.4747
6 3.00 29.6809 32.6809 26.6809 2.0324 29.4747 32.4747 -26.4747
7 1.00 29.6809 30.6809 28.6809 2.0324 29.4747 30.4747 -28.4747
8 6.00 30.6809 36.6809 24.6809 2.0649 28.9650 34.9650 -22.9650
9 4.00 30.6809 34.6809 26.6809 2.0649 28.9650 32.9650 -24.9650
10 2.00 30.6809 32.6809 28.6809 2.0649 28.9650 30.9650 -26.9650
11 0.00 30.6809 30.6809 30.6809 2.0649 28.9650 28.9650 -28.9650
12 5.00 31.6809 36.6809 26.6809 2.0978 28.4698 33.4698 -23.4698
13 3.00 31.6809 34.6809 28.6809 2.0978 28.4698 31.4698 -25.4698
14 1.00 31.6809 32.6809 30.6809 2.0978 28.4698 29.4698 -27.4698
15 6.00 32.6809 38.6809 26.6809 2.1309 27.9884 33.9884 -21.9884
16 4.00 32.6809 36.6809 28.6809 2.1309 27.9884 31.9884 -23.9884
17 2.00 32.6809 34.6809 30.6809 2.1309 27.9884 29.9884 -25.9884
18 0.00 32.6809 32.6809 32.6809 2.1309 27.9884 27.9884 -27.9884
o
point | deg u a+u a—u my my; X y

1 6 30 36 -24 9.5144 1.0000

2 4 30 34 -26 9.5435 0.6673

3 2 30 32 -28 9.5609 0.3339

4 0 30 30 -30 9.5668 0.0000

5 5 29.4747 34.4747 -24.4747 -0.4502 0.6806 9.8261 0.8597

6 3 29.4747 32.4747 -26.4747 -0.4929 0.6306 9.8501 0.5162

7 1 29.4747 30.4747 -28.4747 -0.5370 0.5829 9.8621 0.1721

8 6 28.9650 34.9650 -22.9650 0.1051 0.6929 10.1205 1.0637

9 4 28.9650 32.9650 -24.9650 -0.4764 0.6122 10.1551 0.7029

10 2 28.9650 30.9650 -26.9650 -0.5200 0.6425 10.1527 0.3589

11 0 28.9650 28.9650 -28.9650 -0.5479 0.0000 10.1763 0.0000

12 5 28.4698 33.4698 -23.4698 -0.4290 0.6548 10.4743 0.9120

13 3 28.4698 31.4698 -25.4698 -0.4709 0.6060 10.4732 0.5531

14 1 28.4698 29.4698 -27.4698 -0.5143 0.5593 10.4992 0.1806

15 6 27.9884 33.9884 -21.9884 0.1051 0.6677 10.8101 1.1362

16 4 27.9884 31.9884 -23.9884 -0.4396 0.6183 10.8129 0.7631

17 2 27.9884 29.9884 -25.9884 -0.4819 0.5711 10.8411 0.3758

18 0 27.9884 27.9884 -27.9884 -0.5257 0.0000 10.8429 0.0000
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Point Area A/A* (Exact 1;/f)lution) (MD(/;C) % Error
4 Ay 1.7732 2 2
11 1.0637A4 1.8862 2.0649 2.0649 0
18 1.1334A, 2.0097 2.1299 2.1309 0.0438

(b) Misitial = 4.0, total wedge angle of 12° and y = 1.4

point a deg v C(th C()u M 1] a+p a—u
1 6.00 65.7848 71.7848 59.7848 4.0000 14.4775 20.4775 -8.4775
2 4.00 65.7848 69.7848 61.7848 4.0000 14.4775 18.4775 -10.4775
3 2.00 65.7848 67.7848 63.7848 4.0000 14.4775 16.4775 -12.4775
4 0.00 65.7848 65.7848 65.7848 4.0000 14.4775 14.4775 -14.4775
5 5.00 66.7848 71.7848 61.7848 4.0768 14.1991 19.1991 -9.1991
6 3.00 66.7848 69.7848 63.7848 4.0768 14.1991 17.1991 -11.1991
7 1.00 66.7848 67.7848 65.7848 4.0768 14.1991 15.1991 -13.1991
8 6.00 67.7848 73.7848 61.7848 4.1557 13.9238 19.9238 -7.9238
9 4.00 67.7848 71.7848 63.7848 4.1557 13.9238 17.9238 -9.9238
10 2.00 67.7848 69.7848 65.7848 4.1557 13.9238 15.9238 -11.9238
11 0.00 67.7848 67.7848 67.7848 4.1557 13.9238 13.9238 -13.9238
12 5.00 68.7848 73.7848 63.7848 4.2370 13.6516 18.6516 -8.6516
13 3.00 68.7848 71.7848 65.7848 4.2370 13.6516 16.6516 -10.6516
14 1.00 68.7848 69.7848 67.7848 4.2370 13.6516 14.6516 -12.6516
15 6.00 69.7848 75.7848 63.7848 4.3207 13.3822 19.3822 -7.3822
16 4.00 69.7848 73.7848 65.7848 4.3207 13.3822 17.3822 -9.3822
17 2.00 69.7848 71.7848 67.7848 4.3207 13.3822 15.3822 -11.3822
18 0.00 69.7848 69.7848 69.7848 4.3207 13.3822 13.3822 -13.3822
(04
point | deg 1] a+p a—H my my X y

1 6 14 20 -8 9.5144 1.0000

2 4 14 18 -10 9.5435 0.6673

3 2 14 16 -12 9.5609 0.3339

4 0 14 14 -14 9.5668 0.0000

5 5 14.1991 19.1991 -9.1991 -0.1555 0.3412 10.2041 0.8927

6 3 14.1991 17.1991 -11.1991 -0.1915 0.3026 10.2291 0.5361

7 1 14.1991 15.1991 -13.1991 -0.2279 0.2649 10.2416 0.1788

8 6 13.9238 19.9238 -7.9238 0.1051 0.3553 10.9225 1.1480

9 4 13.9238 17.9238 -9.9238 -0.1799 0.2905 10.9777 0.7536

10 2 13.9238 15.9238 -11.9238 -0.2162 0.3165 10.9073 0.3895

11 0 13.9238 13.9238 -13.9238 -0.2412 0.0000 10.9827 0.0000

12 5 13.6516 18.6516 -8.6516 -0.1457 0.3305 11.7892 1.0218

13 3 13.6516 16.6516 -10.6516 -0.1815 0.2922 11.7029 0.6219

14 1 13.6516 14.6516 -12.6516 -0.2178 0.2547 11.7722 0.2011

15 6 13.3822 19.3822 -7.3822 0.1051 0.3447 12.6965 1.3345

16 4 13.3822 17.3822 -9.3822 -0.1587 0.3061 12.5927 0.8942

17 2 13.3822 15.3822 -11.3822 -0.1947 0.2683 12.6522 0.4371

18 0 13.3822 13.3822 -13.3822 -0.2312 0.0000 12.6420 0.0000
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Point Area A/A* (Exact 1;[)lution) (MDSC) % Error
4 Ay 10.7188 4.00 4.0000
11 1.0637A4 12.3051 4.1558 4.1557 -0.0014
18 1.1334A4 14.1642 43172 4.3207 0.0799

(¢) Minitia1 = 2.0, total wedge angle of 24" and y = 1.4

point a deg v C(th C()u M 1] a+p a—u
1 12.00 26.3798 38.3798 14.3798 2.0000 30.0000 42.0000 -18.0000
2 8.00 26.3798 34.3798 18.3798 2.0000 30.0000 38.0000 -22.0000
3 4.00 26.3798 30.3798 22.3798 2.0000 30.0000 34.0000 -26.0000
4 0.00 26.3798 26.3798 26.3798 2.0000 30.0000 30.0000 -30.0000
5 10.00 28.3798 38.3798 18.3798 2.0733 28.8370 38.8370 -18.8370
6 6.00 28.3798 34.3798 22.3798 2.0733 28.8370 34.8370 -22.8370
7 2.00 28.3798 30.3798 26.3798 2.0733 28.8370 30.8370 -26.8370
8 12.00 30.3798 42.3798 18.3798 2.1483 27.7419 39.7419 -15.7419
9 8.00 30.3798 38.3798 22.3798 2.1483 27.7419 35.7419 -19.7419
10 4.00 30.3798 34.3798 26.3798 2.1483 27.7419 31.7419 -23.7419
11 0.00 30.3798 30.3798 30.3798 2.1483 27.7419 27.7419 -27.7419
12 10.00 32.3798 42.3798 22.3798 2.2251 26.7068 36.7068 -16.7068
13 6.00 32.3798 38.3798 26.3798 2.2251 26.7068 32.7068 -20.7068
14 2.00 32.3798 34.3798 30.3798 2.2251 26.7068 28.7068 -24.7068
15 12.00 34.3798 46.3798 22.3798 2.3039 25.7250 37.7250 -13.7250
16 8.00 34.3798 42.3798 26.3798 2.3039 25.7250 33.7250 -17.7250
17 4.00 34.3798 38.3798 30.3798 2.3039 25.7250 29.7250 -21.7250
18 0.00 34.3798 34.3798 34.3798 2.3039 25.7250 25.7250 -25.7250
(04
point | deg 1] a+p a—H my my X y

1 12 30 42 -18 4.7046 1.0000

2 8 30 38 -22 4.7629 0.6694

3 30 34 -26 4.7980 0.3355

4 0 30 30 -30 4.8097 0.0000

5 10 28.8370 38.8370 -18.8370 -0.3330 0.7931 5.0393 0.8886

6 28.8370 34.8370 -22.8370 -0.4125 0.6852 5.0890 0.5349

7 28.8370 30.8370 -26.8370 -0.4968 0.5871 5.1139 0.1786

8 12 27.7419 39.7419 -15.7419 0.2126 0.8182 5.3407 1.1352

9 8 27.7419 35.7419 -19.7419 -0.3806 0.6454 5.4153 0.7455

10 27.7419 31.7419 -23.7419 -0.4628 0.7078 5.4084 0.3870

11 0 27.7419 27.7419 -27.7419 -0.5159 0.0000 5.4600 0.0000

12 10 26.7068 36.7068 -16.7068 -0.2910 0.7325 5.7749 1.0089

13 26.7068 32.7068 -20.7068 -0.3684 0.6303 5.7698 0.6148

14 26.7068 28.7068 -24.7068 -0.4499 0.5367 5.8288 0.1979

15 12 25.7250 37.7250 -13.7250 0.2126 0.7595 6.1746 1.3124

16 8 25.7250 33.7250 -17.7250 -0.3099 0.6548 6.1799 0.8834

17 25.7250 29.7250 -21.7250 -0.3882 0.5592 6.2447 0.4305

18 25.7250 25.7250 -25.7250 -0.4709 0.0000 6.2490 0.0000
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Point Area A/A* (Exact 1;f)lution) (MDSC) % Error
4 Ay 1.6875 2.00 2.0000
11 1.0637A4 1.9157 2.1483 2.1483 -0.0004
18 1.1334A4 2.1925 2.2997 2.3039 0.1827

Problem 16. — A supersonic flow at Mach 1.8 and y = 1.4 enters the channel shown in
Figure P14.16(a). Using the point-to-point method of characteristics, determine the Mach
number distribution throughout the flow for the pattern shown in Figure P14.16(b).

M, =18 — !
p; =10kPa — )

(b)

Figure P14.16

A spreadsheet program was constructed to solve this problem. Results of the program are
contained within the following:

Input and computed initial data-

Y y-1/y+1 o M; wall ang turns A(angle) X, Yo P1
1.4 0.1667 0 1.8 8 4 2 0 0.1 10

Results of calculations-
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Method: Point-to-
Point
a shaded cell contains a value that is
Note: set
Point | ¢ v Cr= C= M M o+ o— P/Po
v+a. v—a

1 0.0 | 20.7251 | 20.7251 | 20.7251 1.8000 33.7490 | 33.7490 | -33.7490 | 0.1740
2 2.0 | 22.7251 | 24.7251 | 20.7251 1.8697 32.3339 | 34.3339 | -30.3339 | 0.1564
3 4.0 | 24.7251 | 28.7251 | 20.7251 1.9405 31.0204 | 35.0204 | -27.0204 | 0.1402
4 6.0 | 26.7251 | 32.7251 | 20.7251 2.0125 29.7940 | 35.7940 | -23.7940 | 0.1253
5 8.0 | 28.7251 | 36.7251 | 20.7251 2.0861 28.6433 | 36.6433 | -20.6433 | 0.1117
6 0.0 | 24.7251 | 24.7251 | 24.7251 1.9405 31.0204 | 31.0204 | -31.0204 | 0.1402
7 2.0 | 26.7251 | 28.7251 | 24.7251 2.0125 29.7940 | 31.7940 | -27.7940 | 0.1253
8 4.0 | 28.7251 | 32.7251 | 24.7251 2.0861 28.6433 | 32.6433 | -24.6433 | 0.1117
9 6.0 | 30.7251 | 36.7251 | 24.7251 2.1614 27.5591 | 33.5591 | -21.5591 | 0.0993
10 8.0 | 32.7251 | 40.7251 | 24.7251 2.2385 26.5337 | 34.5337 | -18.5337 | 0.0880
11 0.0 | 28.7251 | 28.7251 | 28.7251 2.0861 28.6433 | 28.6433 | -28.6433 | 0.1117
12 2.0 | 30.7251 | 32.7251 | 28.7251 2.1614 27.5591 | 29.5591 | -25.5591 | 0.0993
13 4.0 | 32.7251 | 36.7251 | 28.7251 2.2385 26.5337 | 30.5337 | -22.5337 | 0.0880
14 6.0 | 34.7251 | 40.7251 | 28.7251 2.3177 25.5605 | 31.5605 | -19.5605 | 0.0778
15 8.0 | 36.7251 | 44.7251 | 28.7251 2.3991 24.6340 | 32.6340 | -16.6340 | 0.0685
16 0.0 | 32.7251 | 32.7251 | 32.7251 2.2385 26.5337 | 26.5337 | -26.5337 | 0.0880
17 2.0 | 34.7251 | 36.7251 | 32.7251 2.3177 25.5605 | 27.5605 | -23.5605 | 0.0778
18 4.0 | 36.7251 | 40.7251 | 32.7251 2.3991 24.6340 | 28.6340 | -20.6340 | 0.0685
19 6.0 | 38.7251 | 44.7251 | 32.7251 2.4830 23.7497 | 29.7497 | -17.7497 | 0.0601
20 8.0 | 40.7251 | 48.7251 | 32.7251 2.5695 22.9035 | 30.9035 | -14.9035 | 0.0525
21 0.0 | 36.7251 | 36.7251 | 36.7251 2.3991 24.6340 | 24.6340 | -24.6340 | 0.0685
22 2.0 | 38.7251 | 40.7251 | 36.7251 2.4830 23.7497 | 25.7497 | -21.7497 | 0.0601
23 4.0 | 40.7251 | 44.7251 | 36.7251 2.5695 22.9035 | 26.9035 | -18.9035 | 0.0525
24 6.0 | 42.7251 | 48.7251 | 36.7251 2.6589 22.0918 | 28.0918 | -16.0918 | 0.0458
25 0.0 | 40.7251 | 40.7251 | 40.7251 2.5695 22.9035 | 22.9035 | -22.9035 | 0.0525
26 2.0 | 42.7251 | 44.7251 | 40.7251 2.6589 22.0918 | 24.0918 | -20.0918 | 0.0458
27 4.0 | 44.7251 | 48.7251 | 40.7251 2.7515 21.3117 | 25.3117 | -17.3117 | 0.0397
28 0.0 | 44.7251 | 44.7251 | 44.7251 2.7515 21.3117 | 21.3117 | -21.3117 | 0.0397
29 2.0 | 46.7251 | 48.7251 | 44.7251 2.8474 20.5605 | 22.5605 | -18.5605 | 0.0343
30 0.0 | 48.7251 | 48.7251 | 48.7251 2.9470 19.8357 | 19.8357 | -19.8357 | 0.0295

Problem 17. —The values of the flow angle, o, the Mach angle, p, and the angles of the
characteristics, a + p, for all points of the previous problem are shown in Table P14.17.
Compute the slopes myand my and the x,y coordinates for each of the points.

The table below contains the computed data. The Mach angles were computed in the
previous problem from the determined Mach number.
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Point n atp a—p m; my X y

1 33.7490 33.7490 | -33.7490 | -0.6682 0.6682 0.1497 0.0000
2 32.3339 34.3339 | -30.3339 | -0.5851 0.6756 0.1595 0.0067
3 31.0204 35.0204 | -27.0204 | -0.5100 0.6918 0.1695 0.0136
4 29.7940 35.7940 | -23.7940 | -0.4409 0.7109 0.1797 0.0208
5 28.6433 36.6433 | -20.6433 | 0.1405 0.7324 0.3562 0.1501
6 31.0204 31.0204 | -31.0204 | -0.5932 0.6013 0.1707 0.0000
7 29.7940 31.7940 | -27.7940 | -0.5185 0.6106 0.1822 0.0070
8 28.6433 32.6433 | -24.6433 | -0.4498 0.6302 0.1939 0.0144
9 27.5591 33.5591 | -21.5591 | -0.3859 0.6519 0.3850 0.1389
10 26.5337 34.5337 | -18.5337 | 0.1405 0.6757 0.4133 0.1581
11 28.6433 28.6433 | -28.6433 | -0.5366 0.5462 0.1952 0.0000
12 27.5591 29.5591 | -25.5591 | -0.4685 0.5566 0.2086 0.0075
13 26.5337 30.5337 | -22.5337 | -0.4050 0.5784 0.4149 0.1268
14 25.5605 31.5605 | -19.5605 | -0.3452 0.6020 0.4474 0.1463
15 24.6340 32.6340 | -16.6340 | 0.1405 0.6272 0.4814 0.1676
16 26.5337 26.5337 | -26.5337 | -0.4887 0.4993 0.2239 0.0000
17 25.5605 27.5605 | -23.5605 | -0.4254 0.5106 0.4462 0.1135
18 24.6340 28.6340 | -20.6340 | -0.3659 0.5339 0.4832 0.1332
19 23.7497 29.7497 | -17.7497 | -0.3094 0.5587 0.5222 0.1550
20 22.9035 30.9035 | -14.9035 | 0.1405 0.5850 0.5635 0.1792
21 24.6340 24.6340 | -24.6340 | -0.4473 0.4586 0.7000 0.0000
22 23.7497 25.7497 | -21.7497 | -0.3877 0.4704 0.7573 0.0270
23 22.9035 26.9035 | -18.9035 | -0.3312 0.4948 0.8180 0.0570
24 22.0918 28.0918 | -16.0918 | -0.2773 0.5205 0.8827 0.0907
25 22.9035 22.9035 | -22.9035 | -0.4107 0.4225 0.8229 0.0000
26 22.0918 24.0918 | -20.0918 | -0.3541 0.4348 0.8930 0.0305
27 21.3117 253117 | -17.3117 | -0.3000 0.4600 0.9682 0.0650
28 21.3117 21.3117 | -21.3117 | -0.3779 0.3901 0.9736 0.0000
29 20.5605 22.5605 | -18.5605 | -0.3237 0.4027 1.0608 0.0351
30 19.8357 19.8357 | -19.8357 | -0.3482 0.3607 1.1615 0.0000

Table P14.17

Problem 18. —Repeat Problem 14.16 using the region-to-region method for the regions
shown in Figure P14.18.

Figure P14.18

328



FromGasDynamics,Third Edition, by Jame<. JohnandTheoG. Keith. ISBN 0-13-120668-0© 2006 PearsorEducationnc.,
UpperSaddleRiver,NJ. All rightsreservedThis materialis protectedunderall copyrightlawsastheycurrentlyexist.No Portionof
this materialmaybereproducedin anyform or by anymeanswithout permissiorin writing from thepublisher.

Region-to-Region Methodology:

. .. «
crossing a type I characteristic: v+ao=1 \\ Av = Aa

crossing a type Il characteristic: v-o =1I DY Av = -Aa
Y
: : “
Given: a1, vi, and o, Find: v, 1 X 2
Av = Aa
or

V2=V =0 — 01

SO vy =g+ (vi—oy)=ap+ 11

. . 3
Given: a3, v3, and a4 Find: v4 ‘2 4

Av =—-Aa
or
V4 —V3=03—04
SO Vg = =0t (vitas)=—aq+1;

Given: ais, vs, and ds, Vs Find: v;7 and o,

crossing I between regions 5 and 7: v7 — vs = 0.7 — a5 of V7—07=Vs5—0s
crossing II between regions 6 and 7: v; — vg = —(0l7 — alp) or v7tog=vgtog

solving these two equations simultaneously gives

(VG +a’6)+(V5 _as) L +115
v, = =
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Method: Region-to-

Region

Region | q v I=v+a | II=v-a M p o+ a-—p
1 0.0 20.7251 20.7251 20.7251 1.8000 33.7490 | 33.7490 | -33.7490
2 2.0 22.7251 24.7251 20.7251 1.8697 32.3339 34.3339 | -30.3339
3 4.0 24,7251 28.7251 20.7251 1.9405 31.0204 | 35.0204 | -27.0204
4 6.0 26.7251 32.7251 20.7251 2.0125 29.7940 | 35.7940 | -23.7940
5 8.0 28.7251 36.7251 20.7251 2.0861 28.6433 | 36.6433 | -20.6433
6 0.0 24,7251 24.7251 24,7251 1.9405 31.0204 | 31.0204 | -31.0204
7 2.0 26.7251 28.7251 24.7251 2.0125 29.7940 | 31.7940 | -27.7940
8 4.0 28.7251 32.7251 24,7251 2.0861 28.6433 | 32.6433 | -24.6433
9 6.0 30.7251 36.7251 24.7251 2.1614 27.5591 33.5591 | -21.5591
10 8.0 32.7251 40.7251 24.7251 2.2385 26.5337 | 34.5337 | -18.5337
11 0.0 28.7251 28.7251 28.7251 2.0861 28.6433 | 28.6433 | -28.6433
12 2.0 30.7251 32.7251 28.7251 2.1614 27.5591 29.5591 | -25.5591
13 4.0 32.7251 36.7251 28.7251 2.2385 26.5337 | 30.5337 | -22.5337
14 6.0 34.7251 40.7251 28.7251 23177 25.5605 31.5605 | -19.5605
15 8.0 36.7251 44,7251 28.7251 2.3991 24.6340 | 32.6340 | -16.6340
16 0.0 32.7251 32.7251 32.7251 2.2385 26.5337 | 26.5337 | -26.5337
17 2.0 34.7251 36.7251 32.7251 2.3177 25.5605 | 27.5605 | -23.5605
18 4.0 36.7251 40.7251 32.7251 2.3991 24.6340 | 28.6340 | -20.6340
19 6.0 38.7251 44,7251 32.7251 2.4830 23.7497 | 29.7497 | -17.7497
20 8.0 40.7251 48.7251 32.7251 2.5695 22.9035 | 30.9035 | -14.9035
21 0.0 36.7251 36.7251 36.7251 2.3991 24.6340 | 24.6340 | -24.6340
22 2.0 38.7251 40.7251 36.7251 2.4830 23.7497 | 25.7497 | -21.7497
23 4.0 40.7251 44,7251 36.7251 2.5695 229035 | 26.9035 | -18.9035
24 6.0 42,7251 48.7251 36.7251 2.6589 22.0918 | 28.0918 | -16.0918
25 8.0 447251 52.7251 36.7251 2.7515 21.3117 | 29.3117 | -13.3117
26 0.0 40.7251 40.7251 40.7251 2.5695 22.9035 | 22.9035 | -22.9035
27 2.0 42.7251 44,7251 40.7251 2.6589 22.0918 | 24.0918 | -20.0918
28 4.0 44,7251 48.7251 40.7251 2.7515 21.3117 | 253117 | -17.3117
29 6.0 46.7251 52.7251 40.7251 2.8474 20.5605 26.5605 | -14.5605
30 0.0 447251 44,7251 44,7251 2.7515 21.3117 | 21.3117 | -21.3117

Problem 19. — Compute the supersonic flow past the curved contour of a two-

dimensional plug nozzle shown in Figure P14.19a. The contour is shaped so as to
produce cancellation of the waves incident on the plug. The nozzle is to provide a flow of
air (y = 1.4) at Mach 1.9502856. The Mach number at the throat of the nozzle is sonic.
Use the region-to-region method for a 5 wave expansion as indicated in Figure 14.19b.
Determine the Mach number distribution and the inclinations of the characteristics.
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Figure P14.19a

Reference line

Note: o is CW therefore is
negative

Figure P14.19b

In going from region 1 to region 6 we would have to cross 5 characteristics of Type I for
which Av = Aa. or vg — vi = 0 — 01. Since M; = 1 and Mg = 1.9502856, vi = 0 and vg =
25.0000, respectively. And since o = 0, we see that a; = —25.0000°. Because we are
considering the expansion to take place across 5 waves, the flow angle increases by 5° in
passing from region-to-region. The following table is readily established:

Region o v I=v+ta | II=v-a M n o+ p o—p
1 -25.0000 | 0.0000 -25.0000 | 25.0000 | 1.0000 | 90.0000 | 65.0000 | -115.0000
-20.0000 | 5.0000 -15.0000 | 25.0000 | 1.2565 | 52.7383 | 32.7383 | -72.7383
-15.0000 | 10.0000 -5.0000 25.0000 | 1.4350 | 44.1769 | 29.1769 | -59.1769
-10.0000 | 15.0000 5.0000 25.0000 | 1.6047 | 38.5474 | 28.5474 | -48.5474
-5.0000 | 20.0000 15.0000 | 25.0000 | 1.7750 | 34.2904 | 29.2904 | -39.2904
0.0000 25.0000 | 25.0000 | 25.0000 | 1.9503 | 30.8469 | 30.8469 | -30.8469

AN [A W

To compute the contour of the surface, we average the slopes of adjoining regions and
obtain the following
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Region Region | Inclinat'n
1 2 -93.8692
2 3 -65.9576
3 4 -53.8621
4 5 -43.9189
5 6 -35.0686

Problem 20. — A thin airfoil has the form of a circular arc, as shown in Figure P14.20.
Use segregated supersonic flow along a curved surface to determine the lift and drag
coefficients for the foil at a Mach number of 1.851177. Take y = 1.4 and divide the
circular arc into 5 linear pieces of equal length. A characteristic will emerge from each of
the corners of these lengths on both the upper and lower sides on the foil.

M, =1851177
iy ‘
7\ | t=3.407417 em
R =100cm
Figure P14.20

The numbering of the regions is contained in the following sketch

Region 1
M., =1.851177
—_

Type I

Before performing the characteristic calculations, various geometric calculations must be
made. Development of the relations is straightforward. The symbols are labeled in the
sketch below.
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AOT = —cos™ (Ej
R

1= -Rsin(- AOT)

t angle of attack (AOA)
c=C 41 ] AL
AL - R(AOT) Rt
n

angle of turn (AOT)

AOA = tan™ [ij
R

Input data and the initial calculations for the problem are contained in the following:

Y o n M.=M; R t
14 0 5 1.851177 100 3.407417
\Z1 P1/Po AOT | Aa=o0y/n 1 c AL AOA
22.1970 | 0.16090 -15 -3.0000 25.8819 26.1052 5.2360 7.5000
FREESTREAM
Region a v M P/Po
deg deg
1 0.0 22.1970 1.8512 0.1609
Following the region-to-region procedure (see the solution to Problem 18)
UPPER LOWER
SURFACE SURFACE
Region a v M P/Po Region a v M P/Po
deg deg deg deg
2 -3.0 | 25.1970 | 1.9573 | 0.1366 7 -3.0 19.1970 | 1.7474 | 0.1886
3 -6.0 | 28.1970 | 2.0665 | 0.1152 8 -6.0 16.1970 | 1.6452 | 0.2200
4 -9.0 | 31.1970 | 2.1794 | 0.0966 9 -9.0 13.1970 | 1.5438 | 0.2556
5 -12.0 | 34.1970 | 2.2966 | 0.0804 10 -12.0 | 10.1970 | 1.4417 | 0.2962
6 -15.0 | 37.1970 | 2.4187 | 0.0664 11 -15.0 7.1970 1.3371 | 0.3431

Next the pressure difference across the airfoil, i.e., the pressure on the upper surface is
subtracted from the pressure on the lower surface, is determined
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Segment Ap/p,
1 (R7-R2) 0.05201
2 (R8 -R3) 0.10474
3 (R9 -R4) 0.15900
4 (R10 - R5) 0.21579
5 (R11 - R6) 0.27662

The lift and drag forces are computed from

iﬂ:p—"i(ﬂJ ALcosa.
pl pl i=1 po i 1

%:p—“i(ﬁj ALsin o
p, P T\p. ) 1

The lift and drag coefficients are computed from

Lift  Lift/p,  Lift/p,

C. = _
©opVic Y \4 c IMIZC
2 2vp,/p, 2
Drag  Drag/p,
CD: V2 = Y
pP1Vi€ *MIZC
2 2

The results of the calculations are

Lift/p. | Drag/p- Co Cp
0.25754 | 0.05044 | 0.41126 | 0.08055

Problem 21. —A converging-diverging nozzle discharges a uniform supersonic flow at
Mach 2.2 and static pressure of 101 kPa two dimensionally into a back pressure region of
69.28701 kPa. Use the Region-to-Region method to determine the flow just downstream
of the nozzle exit for the same configuration as employed in Example 14.4. Assume
y=1.4.

Because this problem follows that of Example 14.4 for the same configuration, the figure
of that example is repeated below
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ay calc

Av =-Aa
V4 — V] =04 — 0
Oy =01+ Vs—Vy
Ao =04 /n Av =Aa

Av =Aa

Vo, — V=0 — 0

Av =—-Aa

Vs — V2 = —(0ls — 01p)

n = no of divisions
Ve = [(Vs—0tsy + (V3 + ai3)]/2
Vo=V + Ad

Vs =V + O = Vg— (Vs— as)

The initial and computed data for this problem follows

Ao =
Y o Pe=Di pb=ps | Mc=M, Pe/Po P4/Po M, a4 /n
1.4 0 101 69.28701 22 0.09352 | 0.06416 | 2.4410 | 2.0000
n Vi Vy
3 31.7325 37.7325

Because Region 4 is a uniform flow region bordering the free surface: ps = 69.28701 kPa.
For isentropic flow at M; =2.2 and y= 1.4,

Ps _ [&j[&j _ (wj(o.msz) = 0.06416
Po \P D, 101

So using the isentropic flow solver for this pressure ratio we find M, =2.4410 as shown
above.
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At this Mach number, from the Prandtl-Meyer Spreadsheet Solver (PMSS):
v4 =37.7325° and wu = sin_l(l/ M) = 24.1836°. Also at M| = 2.2, the PMSS gives v, =
31.7325° and p; = sin"'(1/ M;) = 27.0357°. Hence,

o, =a, +v, —v, =0.0+37.7325-31.7325 = 6.0000°

As seen in Figure 14.16, the expansion fan has been divided into 3 equal pieces so that

_60_

0= =20°  a; =40

The results of the calculations are listed below

Region a v M " a+pu a—u
deg deg deg deg deg
1 0.0 31.7325 2.2 27.0357 | 27.0357 | -27.0357
2 2.0000 33.7325 2.2781 26.0373 28.0373 | -24.0373
3 4.0000 35.7325 2.3584 25.0883 29.0883 | -21.0883
4 6.0000 37.7325 2.4410 24.1836 | 30.1836 | -18.1836
5 0.0 35.7325 2.3584 25.0883 | 25.0883 | -25.0883
6 2.0000 37.7325 2.4410 24.1836 | 26.1836 | -22.1836
7 4.0000 39.7325 2.5262 23.3189 | 27.3189 | -19.3189
8 2.0000 37.7325 2.4410 24.1836 | 26.1836 | -22.1836
9 0.0 39.7325 2.5262 23.3189 | 23.3189 | -23.3189
10 2.0000 41.7325 2.6142 22.4905 | 24.4905 | -20.4905
11 0.0000 39.7325 2.5262 23.3189 | 23.3189 | -23.3189
12 -2.0000 37.7325 2.4410 24.1836 | 22.1836 | -26.1836
13 0.0 43,7325 2.7051 21.6951 21.6951 | -21.6951
14 -2.0000 41.7325 2.6142 22.4905 | 20.4905 | -24.4905
15 -4.0000 39.7325 2.5262 23.3189 19.3189 | -27.3189
16 -6.0000 37.7325 2.4410 24.1836 18.1836 | -30.1836
17 0.0 39.7325 2.5262 23.3189 | 23.3189 | -23.3189
18 -2.0000 37.7325 2.4410 241836 | 22.1836 | -26.1836
19 -4.0000 35.7325 2.3584 25.0883 | 21.0883 | -29.0883
20 0.0 39.7325 2.5262 23.3189 | 23.3189 | -23.3189
21 -2.0000 37.7325 2.4410 24.1836 | 22.1836 | -26.1836

The averaged angles of inclination and the slopes of the characteristics are
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[Typelia-p | [Typelia+ny |

Regions Angle slope; Regions Angle slopey;
deg deg
2 -25.5365 | -0.4778 2-5 26.5628 0.5000
3 -22.5628 | -0.4155 3-6 27.6359 | 0.5236
-4 -19.6359 | -0.3568 4-7 28.7513 0.5486
6 6-9
7 7
8 8

-23.6359 | -0.4376 24.7513 0.4610
-20.7513 | -0.3789 10 25.9047 | 0.4857
-20.7513 | -0.3789 -11 24.7513 0.4610
9-10 -21.9047 | -0.4021 10-13 | 23.0928 0.4264
10-11 | -21.9047 | -0.4021 11-14 | 21.9047 | 0.4021
11-12 | -24.7513 | -0.4610 12-15 | 20.7513 0.3789
13-14 | -23.9394 | -0.4440 14-17 | 21.9047 | 0.4021
14-15 | -23.0928 | -0.4264 15-18 | 20.7513 0.3789
15-16 | -25.9047 | -0.4857 16 -19 19.6359 | 0.3568
17-18 | -28.7513 | -0.5486 18-20 | 22.7513 0.4194
18-19 | -26.7513 | -0.5041 19-21 21.6359 | 0.3967

20-21 | -24.7513 | -0.4610

Problem 22. —Repeat Example 14.5 using the region-to-region method. Compare the
results.

The numbering and layout of the regions is contained in the following sketch

Input and the maximum turning angle are contained in the following table

Y o M; M;s divisions | Oly,maxMLN
1.2 0 1 1.8 4 12.151243

Using this information and the region-to-region methodology explained in Problem 18
we can determine the values in the table which follows
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Region o v I=v+o | II=v—o M " o+ o— L
1 0.0000 0.0000 0.0000 0.0000 1.0000 90.0000 | 90.0000 | -90.0000
2 3.0378 3.0378 6.0756 0.0000 1.1659 59.0617 | 62.0995 | -56.0239
3 6.0756 6.0756 12.1512 0.0000 1.2727 51.7871 | 57.8627 | -45.7115
4 9.1134 9.1134 18.2269 0.0000 1.3682 46.9605 | 56.0740 | -37.8471
5 12.1512 | 12.1512 | 24.3025 0.0000 1.4583 43.2931 | 55.4444 | -31.1419
6 0.0000 6.0756 6.0756 6.0756 1.2727 51.7871 | 51.7871 | -51.7871
7 3.0378 9.1134 12.1512 6.0756 1.3682 46.9605 | 49.9984 | -43.9227
8 6.0756 12.1512 | 18.2269 6.0756 1.4583 43.2931 | 49.3687 | -37.2175
9 9.1134 15.1891 | 24.3025 6.0756 1.5454 40.3208 | 49.4342 | -31.2074
10 0.0000 12.1512 | 12.1512 | 12.1512 1.4583 43.2931 | 43.2931 | -43.2931
11 3.0378 15.1891 18.2269 | 12.1512 1.5454 40.3208 | 43.3586 | -37.2830
12 6.0756 18.2269 | 24.3025 | 12.1512 1.6309 37.8175 | 43.8931 | -31.7418
13 0.0000 18.2269 | 18.2269 | 18.2269 1.6309 37.8175 | 37.8175 | -37.8175
14 3.0378 21.2647 | 24.3025 | 18.2269 1.7156 35.6540 | 38.6918 | -32.6162
15 0.0000 24.3025 | 24.3025 | 24.3025 1.8000 33.7490 | 33.7490 | -33.7490

The angles of inclinations of the characteristics can be used to determine the X,y locations
of characteristics. These are determined by averaging the characteristic angles, o + i, of
adjoining regions.

[ Type | 1 |

[ Type | 1w

Region Region | Inclinat'n Region Region | Inclinat'n
1 2 -73.0120 2 6 56.9433
2 3 -50.8677 3 7 53.9305
3 4 -41.7793 4 8 52.7214
4 5 -34.4945 5 9 52.4393
6 7 -47.8549 7 10 46.6457
7 8 -40.5701 8 11 46.3637
8 9 -34.2124 9 12 46.6637
10 11 -40.2881 11 13 40.5880
11 12 -34.5124 12 14 41.2924
13 14 -35.2168 14 15 36.2204
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Chapter Fifteen

MEASUREMENTS IN
COMPRESSIBLE FLOW

Problem 1. - A Pitot tube is placed in a uniform air flow of Mach 2.5. If the Pitot tube indicates
a pressure of 500 kPa, find the static pressure of the flow. Take y = 1.40.

From the Rayleigh-Pitot formula, Eq. (15.7), we have

1
2002 Toa
P2 4yM7 =2y 1)

For an M, = 2.5 and y = 1.4, the pressure ratio is computed to be

2.5
Po2 _ 7.5[%) —8.526136
P .

Because po,2 = 500 kPa, p; = 500/8.52616 = 58.643213 kPa

Problem 2. — A Pitot tube is placed in a uniform helium flow. If the Pitot tube indicates a
pressure of 280 kPa and the static pressure of the flow is measured to be 20 kPa, find the Mach
number. Take y = 1.40.

This is the same type of problem as in Example 15.1. Thus, many of the same steps are repeated
herein. The first step is to compute the critical pressure ratio, i.e., Eq.(15.1) at M =1 and y = 1.4,

v
(p—°j - [V—HJH —~1.89293
p critical 2

If the actual pressure ratio pop/p; is below the critical value, a subsonic Mach number is
computed from Eq.(15.2); whereas, if the pressure ratio is above the critical value, we must
extract the supersonic Mach number from the Rayleigh-Pitot formula, Eq.(15.7). To accomplish
this we will use the Newton-Raphson procedure that is easily incorporated into a spreadsheet
program. Equation (15.7) may be written in the following form
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f(M)= AM* ~=BM’ +C =0
where the coefficients in this expression are
(y+1)" Py ) P )
A=T, B =4y£iJ , C=2(y—1{$2]
The derivative of this function is

%(M) = 2yAM*"™ —2BM

The Netwon-Raphson algorithm is

f(Mold) (2Y - l)AMilyti - BMild -C

M _=M_ —
. o E (M ) 2 (YAM ilygl -BM, )
old

dM
For this case po; = 280 kPa and p; = 20 kPa, so the pressure ratio is 14.000, which is well above

the critical pressure ratio for the given ratio of specific heats. It should be noted that the
computed coefficients for this case are

A =6.195766
B =16.093083
C=2.3722561

The results of the iterative computations are presented in following table

M(old) f(M) df/dM | M(new)
4.00000 | 45.32248 | 81.61429 | 3.44467
3.44467 | 9.08901 | 49.86759 | 3.26241
3.26241 | 0.84077 | 40.75026 | 3.24178
324178 | 0.01024 | 39.75931 | 3.24152
3.24152 | 0.00000 | 39.74700 | 3.24152

WA (|~ =

Rayleigh-Pitot formula computations

Hence, the computed Mach number for this case is M= M| = 3.241522.

Problem 3. — A uniform flow of air at Mach 2.0 passes over an insulated wall. The static
temperature and pressure in the free stream outside the boundary layer are, respectively, 250 K
and 20 kPa. Determine the free-stream stagnation temperature, adiabatic wall temperature, and
static pressure at the wall surface. Take y = 1.40.

From Eq.(15.13) we have
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Taw — Too
Tooo - Too

r (15.13)

Since T, =250K and M, =2.0
T,, = Tw(l +YT_1MSOJ - 250(1 +%j — 450K

Assuming a turbulent boundary layer of air (Pr = 0.72)

r =3/Pr =3/0.72 = 0.896281

Ty = T + (T, — T, ) = 250+ 0.896281(450 — 250) = 429.25619K

The static pressure at the wall is the same as the free stream static pressure: 20kPa

Problem 4. — A total temperature probe is inserted into the flow of Problem 3. If the probe has K
[see Eq.(15.16)] equal to 0.97, what temperature will be indicated by the probe?

From Eq.(15.16)

To indicated Too

00 0

So

T,

o,indicated

=T, +K(T,, - T, )=250+0.97(450 — 250) = 444.0K

Problem 5. — Sketch a plot of p/p, versus M for isentropic flow. On the same coordinates, plot
Poo/Pritot VErsus M.,. Take y = 1.40.

Values are computed for a range of Mach numbers from Eq.(15.7) for the Raleigh Pitot formula

1
2002 1o
Po2 — Y+1M12 (yl_l) Ml v (15‘7)
Pi 2 4yM; - 2(y —1)

and from Eq.(15.1) for the isentropic relation

I
p_°=(1+y—_11\/[2j”‘1 (15.1)
p 2

The computed values appear in the following table and the accompanying chart
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Rayleigh | isentropic
M, P1/Po2 P/Po

1.0 0.528282 | 0.528282
1.2 0.415368 | 0.412377
1.4 0.327951 | 0.314241
1.6 0.262814 | 0.235271
1.8 0.214155 | 0.174040
2.0 0.177291 | 0.127805
2.2 0.148888 | 0.093522
2.4 0.126632 | 0.068399
2.6 0.108917 | 0.050115
2.8 0.094613 | 0.036848
3.0 0.082912 | 0.027224
3.2 0.073228 | 0.020228
3.4 0.065129 | 0.015125
3.6 0.058290 | 0.011385
3.8 0.052465 | 0.008629
4.0 0.047465 | 0.006586
4.2 0.043143 | 0.005062
4.4 0.039381 | 0.003918
4.6 0.036088 | 0.003053
4.8 0.033189 | 0.002394
5.0 0.030625 | 0.001890
5.2 0.028345 | 0.001501
5.4 0.026310 | 0.001200
5.6 0.024485 | 0.000964
5.8 0.022843 | 0.000779
6.0 0.021361 | 0.000633
6.2 0.020017 | 0.000517
6.4 0.018797 | 0.000425
6.6 0.017684 | 0.000350
6.8 0.016667 | 0.000290
7.0 0.015735 | 0.000242
7.2 0.014879 | 0.000202
7.4 0.014091 | 0.000169
7.6 0.013363 | 0.000143
7.8 0.012691 | 0.000121
8.0 0.012068 | 0.000102
8.2 0.011489 | 0.000087
8.4 0.010952 | 0.000075
8.6 0.010450 | 0.000064
8.8 0.009983 | 0.000055
9.0 0.009546 | 0.000047
9.2 0.009137 | 0.000041
9.4 0.008754 | 0.000036
9.6 0.008395 | 0.000031
9.8 0.008057 | 0.000027
10.0 0.007739 | 0.000024
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Problem 6. — Derive the Gladstone-Dale relation, Eq.(15.26), from the Lorenz-Lorentz relation,
Eq.(15.25).

From Eq.(15.25) we have

n’—1 B
n’+2

Cp (15.25)
For values of n near unity we may write that n = 1 + ¢, where ¢ is very small. Therefore,

n2—1=(l+8)2—1:28+82 ~2¢

n?+2=(1+¢ef +2=3+2e+8> =3

So
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n>-1 2 2
== _“(h-1)=C
T, s l=Ce

Hence,
3
n :1+5Cp =1+Kp

the Gladstone-Dale equation is obtained.

Problem 7. — Compute the index of refraction at atmospheric pressure for the gases contained in
Table 15.1 for the given Gladstone-Dale constants and temperatures.

To use the Gladstone-Dale equation, we must first compute the density of each gas assuming
each behaves as a perfect gas

Gas | T(K) | RkJkegK) | p(kPa) p (m¥/kg) | K (cm/g) n

He 295 2.077 101.3 0.16533 0.196 1.0000324
H, 273 4.124 101.3 0.08998 1.55 1.0001395
0, 273 0.2598 101.3 1.42826 0.19 1.0002714
N> 273 0.2968 101.3 1.25021 0.238 1.0002975
CO, 295 0.1889 101.3 1.81784 0.229 1.0004163

Problem 8. — The wire of a hot wire anemometer is placed to an air flow at atmospheric pressure
with a temperature of 30°C and a velocity of 80 m/s. The wire is heated to a constant temperature
of 210°C. The diameter of the wire is 4 um and its length is 2 mm. Determine the electric current
in the wire. The air properties at the mean film temperature are: p = 0.898 kg/m’, u = 2.27-107
kg/m-s, k=0.0328 W/m'K, and ¢,=1.013 kJ/kg-K. The resistivity of the wire is 0.22 pQ-m.

The Reynolds number is:

_pVad _ (0.8980kg/m’ 80m /s){4-10 m)
H 2.27-10kg/m-s

Re =12.66

The Prandtl number is:

-5 3
pr = Mo _ (22710 ke/msJ1L013-10° ke K) oo
” 0.0328W /m-K
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With Prandtl and Reynolds numbers we can determine the Nusselt number from Kramers
correlation, Eq.(15.23):

Nu =0.42Pr**+0.57Pr** Re™ =0.42-0.70°* +0.57-0.70°* -12.66%° = 2.19

The heat transfer coefficient can then be calculated as:

_Nu-k _2.19-(0.0328W/m-K)

- =17958W /m* - K
d 4-10°m

h

The heat loss from the wire is given by:

q=h-A-(T, -T,)=h-(n-d-L)-(T,, - T,)

~ (17958W /m? - K [n (410 m)- (2107 m)] (210-30)K =0.08124W
The resistance of the wire is:

_ pr _(022_10_6QmX219—3m)

Cwd*/4) T r(ae10m) /4] R

Consequently, the electric current in the wire is:
- \/E - [QO8I2AW 0484 = 48mA
R 350

Problem 9. — A symmetrical wedge of 10° total included angle is placed in a uniform Mach 2.0
flow of static pressure of 60 kPa. If the axis of the wedge is misaligned with the flow direction
by 3°, determine the static pressure difference between the top and bottom surfaces of the wedge.
Take y=1.40

The symmetrical wedge is shown as follows

M, =2.0
SR

The misaligned wedge is shown below along with the various angles of deflection. With these
angles, the upstream Mach number and the ratio of specific heats, it is a simple matter using the
oblique shock solver developed in Chapter 6 to determine the flow characteristics shown in the
following tables:
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50 4+ 30 =g°

Upper Surface

Given: M, and 8 |
Weak Shock Solution
Y M, d(deg) 0(deg) P2/p:
1.4000 2.0000 2.0000 31.6463 1.1180
0.0349 1.6225 67.07914

radians coto
Lower Surface
Given: M, and35 |
Weak Shock Solution
Y M, d(deg) 0(deg) P2/p1
1.4000 2.0000 8.0000 37.2101 1.5400

0.1396 1.3170 92.39894
radians cotO

The pressure difference between the lower surface and the upper surface is then

AP = Plower — Pupper = 92-39894 —67.07914 = 25.3198kPa

Problem 10. — The temperature of the wire of an anemometer placed perpendicular to an air flow
of 20°C is 100°C. The wire dissipates 20 mW of heat to the flow. The diameter of the wire is 3
pum and the length 1 mm. What is the velocity of the flow? The properties of the air at the mean
temperature between fluid and the wire are: p = 1.0595 kg/m’, cp = 1.009 kJ/kg, k = 0.0285
W/mK, and p=2-10" kg/m-s.

The heat transfer coefficient is:
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q q 20-10°W 2
h= _ - =26525.8W/m>-K
A(T, -T,) ndL(T, -T,) =-(3-10°m)i-107}100-20)K "

The Nusselt number is computed from:

_hd (26525.8W/m* -K)3-10°m)
k 0.0285W /m-K

Nu =2.79

The Prandtl number is:

c .107° . 103 .
pr_ by _(2:10kg/ms[1.009:10°) /kg - K) _ o
k 0.0285W /m-K

Therefore, the Reynolds number is determined from Kramers correlation, Eq.(15.26):

R (Nu=042:Pr'2Y" _(279-042.0708" )" _
0.57-Pr® 0.57-0.708°% '

The velocity of the flow is therefore:

oo Ren _ 222.(2.-105kg/m s)

pd  (1.0595kg/m*)-(3-10°m

=139.6m/s
)

Problem 11. — The sensing element of a hot wire anemometer is a platinum wire 4 pm diameter
and 2 mm length. The wire is placed perpendicular to an air flow at atmospheric pressure with a
temperature of 20°C and a velocity of 60 m/s. If the temperature of the wire is 100°C, determine
the power dissipated by the wire. The properties of the air at the mean film temperature are:
p =1.0595 kg/m’, ¢, = 1.009 kl/kg-K, k = 0.0285 W/m-K, p = 2-10” kg/m:-s.

The Reynolds number is:

_pVad _ (1.0595kg /m* J60m /s){4 10 m)

Re S =12.714
[ 210" kg/m-s
The Prandtl number is:
c 107 . .10° .
b b, _(2:10°ke/m-s)1.009-10° 'k K) _ o0

k 0.0285W/m-K

The Nusselt number can be computed using the Kramers correlation, Eq.(15.23):
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Nu =0.42Pr*+0.57Pr* Re®’ =0.42-0.708°* + 0.57-0.708°% -12.714*° =2.2
The heat transfer coefficient is:

~ Nu-k  22-(0.0285W/m-K)
d 4-10°m

h =15675W/m?* -K

The heat loss from the wire is:

q=h-A-(T, -T,)=h-(n-d-L)-(T, - T, )=

= (15675W/m2 K) [n - (4 - 10‘6m)- (2 107 m)] (100-20)K = 0.0315W =31.5SmW

Problem 12. — A dual beam LDV-system with a wavelength of 3000A and a 20° angle between
the intersecting beams records a difference of 30MHz between the two Doppler shifts. What is
the velocity of the flow-field?

The amplitude of the wave vector is

K = Amsink _ (41t)(sin10°)

- =17273757.86 m~!
I8 3000-107%m

The velocity of the seeding particle (assumed equal to the velocity of the flow) is

_vp-2m _ (30-106Hz)-(27c)

. =25914 m/s
K 7273757.86m"™

\'%

Problem 13. — What is the minimum frequency that a dual beam LDV system has to have in
order to measure a 1000 m/s velocity with a 5000 A laser with a 5° angle between the beams?
Explain using both theoretical explanations of the LVD instrument.

Using the Doppler shift explanation: the frequency difference between the two Doppler shifts is

v = vK
D7 o
where the amplitude of the wave vector is
_4msink
A
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so the frequency to detect is

2vsin K

Alternately, using the fringe model: the fringe spacing distance is

df = 7\'
2sin K

so the frequency to detect can be determined, as above, from,

v _2vsink _ (2-1000m/s)-(sin2.5°)
dg A 5000-10'm

Vp = =174.478 MHz

Problem 14. — Determine the vorticity of the flowfield based on the double-exposed PIV

photograph shown Figure P15.14. The interval between the two exposures is At = 0.001s. The
grid-size equals Imm in both directions.

@, j+1)
\]i—l,j ——\ O
i-1.1 — i+1,]
(-1, NG i, i) ( ),
A y
e  First exposure (t=0)
O
Q1) O  Second exposure (t = At)
;' 2

Figure P15.14

The vorticity of the flow is defined as

For two-dimensional flow,
ov ou
Gij= = oy
X Y i
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The vorticity can be numerically approximated using central differences as

Vit 7 Vilj  Uije ~ Uij
2Ax 2Ay

;=
From Figure P15.14

_—Ay —0.00lm _

Vi = = —1 m/s
LI AL 0.001s

Similarly,

Ay AX - Ax
Vi_l’jgzzlm/s, ui’jHEE:l m/S, ui,j_lz =

Hence, the vorticity is

_1—13 _1—(—13):_2_103 =
2-10  2-10

1

G

Problem 15. — A double—exposed PIV photograph contains the flowfield illustrated in Figure
P15.15. Show that if the grid-size is equal in the x and y directions, i.e., Ax = Ay, the vorticity at

(1)) 1s only dependent upon the time interval At between the two exposures.

(1 j+1)
oL D Q
Co. ®, . .
(1_1, J) (1’ _]) (1+15 J)
y
A 4
Q le. »O
(1 J-1)

®  First exposure (t=0)

O  Second exposure (t = At)
Figure P15.15

The vorticity can be numerically calculated from
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¢ _(GV auJ o Vielj T VieLj o Uije T Ui
ij = B

ox oy L 2ax 2Ay
Now,
Ay Ay AXx Ax
Vil :E’ Vi1,j :_E > Ui 41 :_E’ Ui -1 :E

Hence, for Ax = Ay we have

Gi ; =N
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