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Preface  
 
 
 
 
 
This manual contains the solutions to all 292 problems contained in Gas Dynamics, Third 
Edition.  
 As in the text example problems, spreadsheet computations have been used 
extensively.  This tool enables more accurate, organized solutions and greatly speeds the 
solution process once the spreadsheet solver has been developed.  To accomplish the 
solution of the text examples and problems in this manual nearly 40 separate spreadsheet 
programs were constructed.  Some of these programs required only minutes to build, while 
others were more challenging.  
 The authors have attempted to carefully explain and detail the problem solutions so 
as to save time for the users.  However, it should be recognized that some errors may have 
inadvertently crept into the manual.  Should a user find any defects, the authors would 
appreciate hearing from the user so that revisions can be prepared. Please e-mail any 
comments to tkeith@eng.utoledo.edu  
 
 

JAMES E. A. JOHN 
 THEO G. KEITH, JR. 
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Problem 1. – Air is stored in a pressurized tank at a pressure of 120 kPa (gage) and a temperature 
of 27°C.  The tank volume is 1 m3.  Atmospheric pressure is 101 kPa and the local acceleration 
of gravity is 9.81 m/s2.  (a) Determine the density and weight of the air in the tank, and (b) 
determine the density and weight of the air if the tank was located on the Moon where the 
acceleration of gravity is one sixth that on the Earth. 
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Problem 2. – (a) Show that p/ρ has units of velocity squared. (b) Show that p/ρ has the same 
units as h (kJ/kg). (c) Determine the units conversion factor that must be applied to kinetic 
energy, V2/2, (m2/s2) in order to add this term to specific enthalpy h (kJ/kg). 
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Problem 3. – Air flows steadily through a circular jet ejector, refer to Figure 1.15. The primary 
jet flows through a 10 cm diameter tube with a velocity of 20 m/s. The secondary flow is through 
the annular region that surrounds the primary jet.  The outer diameter of the annular duct is 30 
cm and the velocity entering the annulus is 5 m/s. If the flows at both the inlet and exit are 
uniform, determine the exit velocity. Assume the air speeds are small enough so that the flow 
may be treated as an incompressible flow, i.e., one in which the density is constant. 
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Problem 4. – A slow leak develops in a storage bottle and oxygen slowly leaks out.  The volume 
of the bottle is 0.1 m3 and the diameter of the hole is 0.1 mm.  The initial pressure is 10 MPa and 
the temperature is 20˚C.  The oxygen escapes through the hole according to the relation 
  

ee A
T
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where p is the tank pressure and T is the tank temperature. The constant 0.04248 is based on the 
gas constant and the ratio of specific heats of oxygen. The units are: pressure N/m2, temperature 
K, area m2 and mass flow rate kg/s. Assuming that the temperature of the oxygen in the bottle 
does not change with time, determine the time it takes to reduce the pressure to one half of its 
initial value. 
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Problem 5. – A normal shock wave occurs in a nozzle in which air is steadily flowing.  Because 
the shock has a very small thickness, changes in flow variables across the shock may be assumed 
to occur without change of cross-sectional area.  The velocity just upstream of the shock is 500 
m/s, the static pressure is 50 kPa and the static temperature is 250 K.  On the downstream side of 
the shock the pressure is 137 kPa and the temperature is 343.3 K.  Determine the velocity of the 
air just downstream of the shock. 
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Problem 6. – A gas flows steadily in a 2.0 cm diameter circular tube with a uniform velocity of 
1.0 cm/s and a density ρo. At a cross section farther down the tube, the velocity distribution is 
given by V = Uo[1-( r/R)2], with r in centimeters. Find Uo, assuming the gas density to be    
ρo[1+( r/R)2]. 
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Problem 7. – For the rocket shown in Figure 1.6, determine the thrust. Assume that exit plane 
pressure is equal to ambient pressure. 
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Problem 8. – Determine the force F required to push the flat plate of Figure Pl.8 against the 
round air jet with a velocity of 10 cm/s. The air jet velocity is 100 cm/s, with a jet diameter of 5.0 
cm. Air density is 1.2 kg/m3.  
 

 
 
 
 
 
 
 
 
 

Figure P1.8 
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Problem 9. – A jet engine (Figure P1.9) is traveling through the air with a forward velocity of 
300 m/s. The exhaust gases leave the nozzle with an exit velocity of 800 m/s with respect to the 
nozzle. If the mass flow rate through the engine is 10 kg/s, determine the jet engine thrust. Exit 
plane static pressure is 80 kPa, inlet plane static pressure is 20 kPa, ambient pressure surrounding 
the engine is 20 kPa, and the exit plane area is 4.0 m2. 
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Figure P1.9 
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Problem 10. – A high-pressure oxygen cylinder, typically found in most welding shops, 
accidentally is knocked over and the valve on top of the cylinder breaks off.  This creates a hole 
with a cross-sectional area of 6.5 x 10-4 m2.  Prior to the accident, the internal pressure of the 
oxygen is 14 MPa and the temperature is 27˚C.  Based on critical flow calculations, the velocity 
of the oxygen exiting the cylinder is estimated to be 300 m/s, the exit pressure 7.4 MPa and the 
exit temperature 250 K.  How much thrust does the oxygen being expelled from the cylinder 
generate?  What percentage is due to the pressure difference? What percentage due to the exiting 
momentum?  Atmospheric pressure is 101 kPa.  Also note that 0.2248 lbf = 1 N. 
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  The thrust due to the pressure is 41% of total and that due to momentum 59%. 
 
 
 
Problem 11. – Air enters a hand held hair dryer with a velocity of 3 m/s at a temperature of 20°C 
and a pressure of 101 kPa.  Internal resistance heaters warm the air and it exits through an area of 
20 cm2 with a velocity of 10 m/s at a temperature of 80°C.  Assume that internal obstructions do 
not appreciably affect the pressure between inlet and exit and that heat transfer to the 
surroundings are negligible.  Determine the power in kW needed to operate the hair dryer at 
steady state. 
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Problem 12. – Air is expanded isentropically in a horizontal nozzle from an initial pressure of 
1.0 MPa, of a temperature of 800 K, to an exhaust pressure of 101 kPa. If the air enters the 
nozzle with a velocity of 100 m/s, determine the air exhaust velocity. Assume the air behaves as 
a perfect gas, with R = 0.287 kJ/kg · K and γ = 1.4. Repeat for a vertical nozzle with exhaust 
plane 2.0 m above the intake plane.  
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(b) Vertical nozzle    
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Problem 13. – Nitrogen is expanded isentropically in a nozzle from a pressure of 2000 kPa, at a 
temperature of 1000 K, to a pressure of 101 kPa. If the velocity of the nitrogen entering the 
nozzle is negligible, determine the exit nozzle area required for a nitrogen flow of 0.5 kg/s. 
Assume the nitrogen to behave as a perfect gas with constant specific heats, mean molecular 
mass of 28.0, and γ  = 1.4.  
 
        
 
 
 
 
 
 

2
V

h
2

V
hh

2
2

2

2
1

1o +=+=  

 
 ( ) ( )21p212 TTc 2hh2V −=−=  

 

 ( ) K1.426
2000
1011000

P
PTT 4.1

4.01

1

2
12 =⎟

⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

γ
−γ

   

 
 

 
Kkg

J9.296
28

3.8314R
⋅

==             

 

( ) ( ) ( )( )( ) s/m2.10921.42610009.2967TTR7TT
1

R2V 21212 =−=−=−
−γ

γ
=  

   

( )( ) 32

2
2

m
kg798.0

1.4269.296
000,101

RT
p

===ρ  

p1 = 2000kPa 
 
T1 = 1000K 
 
V1 ~ small 

1 
2 

p2 = 101kPa 

m = 0.5kg/s = ρ2A2V2 •

A2 = ?

V2 = ? 



 11

 

 ( )( )
22

22
2 cm 473.5m 4000573.0

2.1092798.0
5.0

V
mA ===

ρ
=

&
 

   
 
 
Problem 14. – Air enters a compressor with a pressure of 100 kPa and a temperature 20°C; the 
mass flow rate is 0.25 kg/s. Compressed air is discharged from the compressor at 800 kPa and 
50°C. Inlet and exit pipe diameters are 4.0 cm. Determine the exit velocity of the air at the 
compressor outlet and the compressor power required. Assume an adiabatic, steady, flow and 
that the air behaves as a perfect gas with constant specific heats; cp = 1.005 kJ/kg · K and           
R = 0.287kJ/kg·K.  
 
 
 
         
 
 
 
 
 
 
 
 

kg
kJ005.1cp =    

kkg
kJ287.0R

⋅
=  

 
s/kg 52.0mmm 21 === &&&  

 

( ) 222
21 m 60012.004.0

4
d

4
AA =

π
=

π
==  

 

( )( ) 31

1
1

m
kg189.1

2930.287
kPa 0.10

RT
p

===ρ  

 

( )( ) 31

2
2

m
kg630.8

3230.287
800

RT
p

===ρ  

 

( )( ) s
m3.167

00126.189.1
25.0

A
mV

11
1 ==

ρ
=

&
 

 

( )( ) s
m1.23

00126.63.8
25.0

A
mV

22
2 ==

ρ
=

&
 

p1 = 100kPa 
T1 = 293K 

d = 4.cm 

1 

2 

W = ? 
•

m = 0.25 kg/s • 

p2 = 800KPa 
T2 = 323K 

V2 = ? 
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2
V
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V
hmWQ

2
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2
2

22 &&&&    

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
+−=−

2
VV

hhmW
2

1
2
2

12&&             

 

        ( ) ( )( ) ( )( )
( )( ) ⎥

⎦

⎤
⎢
⎣

⎡ −+
+−=

10002
16731.231.233.167293323005.125.0  

        

        ( )( ) kW 1.4
s
kJ1.473.1315.3025.0 ==−=     

      
 
 
Problem 15. – Hot gases enter a jet engine turbine with a velocity of 50 m/s, a temperature of 
1200 K, and a pressure of 600 kPa. The gases exit the turbine at a pressure of 250 kPa and a 
velocity of 75 m/s. Assume isentropic steady flow and that the hot gases behave as a perfect gas 
with constant specific heats (mean molecular mass 25, γ  = 1.37). Find the turbine power output 
in kJ/(kg of mass flowing through the turbine). 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 

Kkg
J6.332

25
3.8314R

⋅
==    37.1=γ     ( )( )

Kkg
kJ2314.1

37.
6.33237.1

1
Rcp ⋅

==
−γ

γ
=   

 

K 3.947
600
2501200

p
pTT 37.1

37.01

1

2
12 =⎟

⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

γ
−γ

  

 

1 

2 

W  
•

V1 = 50m/s 
T1 = 1200K 
p1 = 600kPa 

p2 = 250 kPa 
V2 = 75 m/s 
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⎞

⎜
⎜

⎝

⎛
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2
V
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2

V
hmWQ

2
1

11

2
2
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 ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
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2
VV
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2
2

2
1

21&&  

  

( ) ( )( )
2000

VVVVTTc
2

VVhh
m
WW 2121

21p
2
2

2
1

21
−+

+−=
−

+−==
&

&
 

     

 ( )( ) ( )( )
kg
kJ6.309563.118.311

2000
251253.94712002314.1W =−=⎟

⎠
⎞

⎜
⎝
⎛ −

+−=  

 
        
 
 
Problem 16. – Hydrogen is stored in a tank at 1000 kPa and 30°C. A valve is opened, which 
vents the hydrogen and allows the pressure in the tank to fall to 200 kPa. Assuming that the 
hydrogen that remains in the tank has undergone an isentropic process, determine the amount of 
hydrogen left in the tank. Assume hydrogen is a perfect gas with constant specific heats; the ratio 
of specific heats is 1.4, and the gas constant is 4.124 kJ/kg · K. The tank volume is 2.0m3.  
 
   
 
 
 
 
 

K303TkPa 1000p 11 ==  
 

kPa 200p2 =           ( ) K3.191
1000
200303

p
pTT 4.1

4.01

1

2
12 =⎟

⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

γ
−γ

 

 
                  

( )( )
( )( ) kg 507.0

3.191124.4
2200

RT
pm

2

2
2 ==

∀
=  
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Problem 17. – Methane enters a constant-diameter, 3 cm duct at a pressure of 200 kPa, a 
temperature of 250 K, and a velocity of 20 m/s. At the duct exit, the velocity reaches 25 m/s. For 
isothermal steady flow in the duct, determine the exit pressure, mass flow rate, and rate at which 
heat is added to the methane. Assume methane behaves as a perfect gas; the ratio of specific 
heats is 1.32 (constant) and the mean molecular mass is 16.0. 
 
 
 
 
     
 
 
 
 

222111 VAVA ρ=ρ    
 

2
2

2
1

1

1 V 
RT
pV 

RT
p

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 

 
 2211 VpVp =     
 

( )
22

1
12

m
N 160

25
20200

V
V

pp =⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

  

( ) 22 m000707.003.0
4

A =
π

=  

 

 
Kkg

J519.6
16

3.8314R
⋅

==  

  

( ) ( )
( )

( ) ( )
s

kg02176.020
250

000707.0
6.519

200VA
RT
p

VAm 11
1

1
111 ==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=ρ=&  

 

( ) ( )( ) W 448.2
2

5202502176.0
2

VV
mQ

2
1

2
2 =

+
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
= &&  

 
 
 
Problem 18. – Air is adiabatically compressed from a pressure of 300 kPa and a temperature of 
27 C to a pressure of 600 kPa and a temperature of 327 C.  Is this compression actually possible? 
 

1 2

T = constant 

Q • 

p1 = 200kPa 
T1 = 250K 
V1 = 20 m/s 

p2 = ? 
m = ? •

V2 = 25m/s 

Q = ? 
• 

d = 3cm 
γ = 1.32 
MW = 16 
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 kPa 300p1 =    kPa 600p2 =  
 
 K30027327T1 =+=  K600273327T2 =+=  
 

 
300
600lnR

300
600lnc

p
plnR

T
Tlncss p

1

2

1

2
p12 −=−=−  

 
                         ( ) 02lnc2lnRc vp >=−=  possible∴  
 
 
Problem 19. – Two streams of air mix in a constant-area mixing tube of a jet ejector.  The 
primary jet enters the tube with a speed of 600 m/s, a pressure of 200 kPa and a temperature of 
400˚C.  The secondary stream enters with a velocity of 30 m/s, a pressure of 200 kPa and a 
temperature of 100˚C.  The ratio of the area of the secondary flow to the primary jet is 5:1. The 
air behaves as a perfect gas with constant specific heats, cp = 1.0045 kJ/kg· K. Using the iterative 
numerical procedure described in Example 1.9 determine the velocity, pressure and temperature 
of the air leaving the mixing tube. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

gc 1    
α 5    
γ 1.4    
R 287    
cp 1004.5    
 Primary Secondary   

V 600.00 30.00   
T 673 373   
P 200,000 200,000   
     

A 43,122.5078    
     

B 263,528.7595    
     

C 706,538.5693    
     
 n Ve (m/s) Pe (Pa) Te (K) 
 1 0.0000 101,000.0 293.1500 
 2 125.1620 244,722.8 695.5757 
 3 122.5671 245,112.7 695.8957 
 4 122.4284 245,133.6 695.9126 
 5 122.4210 245,134.7 695.9135 
 6 122.4206 245,134.7 695.9136 
 7 122.4206 245,134.7 695.9136 
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Problem 20. – The flow exiting a jet ejector was determined by utilizing an iterative numerical 
procedure.  A more direct approach is possible however.  Eliminate pressure Pe between Eqs. 
(1.53) and (1.54).  Solve for the temperature Te in the resulting expression, and equate it to Eq. 
(1.55).  This produces a quadratic equation for the velocity Ve.  Solve the quadratic to determine 
Vm for the same set of conditions given in Example 1.9. 
 
From Eq. (1.53),    

e

e
e V

AT
p =  

 
From Eq. (1.54),   
 

ee V
R
ABp −=  

 
Combine these to obtain 
    

e
2
e

e V
A
B

R
V

T =+  

 
Equation (1.55) can be written as   
 

ep

2
e

ep
e c

CV
c2
1T =+  

 
Eliminate Te to obtain the quadratic   
 

0cbVaV e
2
e =+−  

 

where       

ep

ep

c
Cc

A
Bb

c2
1

R
1a

=

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

 

 

 
a2

ac4bbV
2

e
−±

=∴  
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CChhaapptteerr  TTwwoo  
  
  

WWAAVVEE  PPRROOPPAAGGAATTIIOONN  
IINN  CCOOMMPPRREESSSSIILLBBEE  MMEEDDIIAA  

 
 
 
Problem 1. – Using the expansion wave and control volume depicted in Figs. 2.8 and 2.9 
along with the continuity and momentum equations, rederive Eq. (2.4). 
 
 
 
 
 
 
 
Continuity equation 
 
                                  ( )( ) 0aAAdVad =ρ−+ρ−ρ      
 
Expand, neglect products of derivatives and simplify to get 

 
0addV =ρ−ρ                                               (1)     

 
Momentum equation 

 
( ) ( )[ ]adVaaAAdpppA −+ρ=−−  

 
or 

 
adVdp ρ=                                                     (2) 

 
Combining Eqs. (1) and (2) gives 
 

ρ= dadp 2  
 
Since the process is reversible and adiabatic, i.e., isentropic, this can be written as: 
 

s

pa ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
=  

a gas 
at 
rest 

p - dp 
ρ - dρ 
dV 

moving wave 

dV a gas 
at 
rest 

p - dp 
ρ - dρ 
dV

moving wave 

dV
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Problem 2. – (a) Derive an expression for ks, for a perfect gas, substitute the result into 
Eq. (2.10), and thereby demonstrate Eq. (2.7); (b) Derive an expression for kT, for a 
perfect gas, substitute the result into Eq. (2.11), and thereby demonstrate Eq. (2.7) and 
finally; (c) Derive an expression for βs, for a perfect gas, substitute your result into Eq. 
(2.14), and thereby demonstrate Eq. (2.7). 
 

(a) 
s

s p
1k ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
ρ∂

ρ
=  

 
An isotropic process involving a perfect gas is described by γρ= cP  

ρ
γ

=
ρ
ργ

=ργ=
ρ

∴
γ

−γ pcc
d
dp 1  

 
Hence, 

pp s γ
ρ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
ρ∂  

 

RT
1

p
1

p
1k

s
s ργ

=
γ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
ρ∂

ρ
=  

So, 

RT
k
1a

s
γ=

ρ
=  

 

(b) 
T

T p
1k ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
ρ∂

ρ
=  

 

RT
p

=ρ  

 

RT
1

p T
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
ρ∂  

 

RT
1kT ρ

=  

 
So, 
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RT
k

a
T

γ=
ρ

γ
=  

 

(c) RTppp

s
s γρ=γ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ρ
γ

ρ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
ρ=β  

 

RTa s γ=
ρ

β
=  

 
 
Problem 3. – Use dimensional analysis to develop an expression for the speed of sound in 
terms of the isentropic compressibility, the density and gc. 
 

( )es g,,kfa ρ=  

 2c3

2
s

FT
ML~g,

L
M~,

F
L~k,

T
L~a ρ  

 

c2cb3a2cbca
c

2

b

3

a2
TLMF

FT
ML

L
M

F
L

T
L −+−+−−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  

1c2:T
1cb3a2:L

0cb:M
0ca:F

=−
=+−

=+
=−−

 

Hence,  
2
1b             

2
1a          

2
1c −=−==  

 
So, 

s

c
k

g
a

ρ
=  

 
 
Problem 4. – Using the data provided in Tables 2-1, 2-2 and 2-3, i.e., the density, and the 
isentropic compressibility or the bulk modulus, calculate the velocity of sound at 20°C 
and one atmosphere pressure in (a) helium, (b) turpentine, and (c) lead. 
 

 (a) Helium:  3m
kg16.0=ρ ,  

GPa
1919,5ks =   
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)919,5)(16.0(
10

k
1a

9

s

=
ρ

= s/m 6.1027=  

 

(b) Turpentine: 3m
kg870=ρ ,   

GPa
ks

1736.0=   

 

)736.0)(870(
10

k
1a

9

s
=

ρ
= s/m 7.1249=  

 

(c) Lead: 3m
kg300,11=ρ ,  GPa 72.16s =β   

300,11
10 )27.16(a

9
s =

ρ
β

= s/m 9.1199=  

 
 
Problem 5. – In Example Problem 2.3 the speed of sound of superheated steam was 
determined by using a finite difference representation of the compressibility and steam 
table data (Table 2-4).  Using the same steam table data, determine the speed of sound of 
superheated steam for the same pressure and temperature, i.e., at p = 500 kPa and T = 
300˚C.  However, use the following finite differences to obtain two estimates for the 
speed of sound: 

( )
TT

2

p
v1

p

a

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
γ

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
ρ∂
γ

=  

( )
ss

2

p
v1

1

p

1a

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
ρ∂

=

 

 

( )
( ) ( ) ( ) ( )T,ppv

1
T,ppv

1
p2

p2
T,ppv

1
T,ppv

1
p
v1

a

T

2

∆−
−

∆+

∆γ
=

∆
∆−

−
∆+

γ
=

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
γ

=  

 
From Example 2.3 
 

( )
kg
M4344.0Tppv

3
1 =∆+ ,    ( )

kg
M6548.0Tppv

3
1 =∆− , and Pa 000,100p =∆  
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( )( )( )
2

2
2

s
m5.521,342

6548.0
1

4344.0
1

000,100327.12a =
−

=  

 
s/m 3.585a =  

 

( )
( ) ( )s,ppv

1
s,ppv

1
p2

p
v1

1a

s

2

∆−
−

∆+

∆
=

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
=  

 
From Example 2.3 
 

( )
kg
M4544.0s,ppv

3
=∆+ ,  ( )

kg
M6209.0s,ppv

3
=∆−  and Pa 000,100p =∆  

( )( )
2

2
2

s
m2.903,338

6209.0
1

4544.0
1

000,1002a =
−

=  

 
s/m 2.582a =  

 
 
 
Problem 6. – Equation (2.16) provides a convenient expression for calculating the speed 
of sound in air: a = 20.05 T , where T is the absolute temperature in degrees Kelvin.  
Derive the following linear equation for the speed of sound in air: 
 

 0 t6.0aa +=  
 
where a0 is the speed of sound in air at 0°C and t is °C. 
   
To accomplish this make use of Eq. (2-16) and the expansion 

( ) .....ynxxyx 1nnn ++=+ −  
 
 ( )[ ]    t273RRTa 2/1+γ=γ=  
 

⎟
⎠
⎞

⎜
⎝
⎛ ++=⎟

⎠
⎞

⎜
⎝
⎛ +γ= .....

273
t

2
11a

273
t1)273(R o

2/1
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( )

( )( ) 6.0
546
331

2732
a

,
s
m 13327305.20273Ra

o

o

==

==γ=

 

 
t6.0331a +=∴  

 
 
 
Problem 7. – Rather than measure the bulk modulus directly it may be easier to measure 
the speed of sound as it propagates though a material and then use it to compute the bulk 
modulus.  For a Lucite plastic of density 1,200 kg/m3, the speed of sound is measured as 
2,327 m/s.  Determine the bulk modulus.  What is the corresponding isentropic 
compressibility? 

Now 3m
kg200,1=ρ , 

s
m327,2a =    

 

 
ρ

β
= sa   

 

so, GPa 849.6Pa10498.6
mkg
sN1

s
m327,2

ms
kg200,1a 9

22
2

3 =×=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅
⋅

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=ρ=β  

 

GPa
11539.01k

s
s =

β
=  

 
 
 
Problem 8. – An object of diameter d (m) is rotated in air at a speed of N revolutions per 
minute.  Draw a plot of the rotational speed required for the velocity at the outer edge of 
the object to just reach sonic velocity for a given diameter.  Take the speed of sound of 
the air to be 331m/s. 
 
The highest speed will occur at R. 
 

 ( )
s
m331a

s 06
min 1mR

rev
rad2

min
revNV ==⎟

⎠
⎞

⎜
⎝
⎛ π

⎟
⎠
⎞

⎜
⎝
⎛=  

 
s
m,ND

60
π

=  
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The following is a log base 10 plot of N = 6,321.6/D.   
 

3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 

 
 
 
 
Problem 9. – (a) Newton assumed that the sound wave process was isothermal rather 
than isentropic.  Determine the size of error made in computing the speed of sound by 
making this assumption. (b) A flash of lightening occurs in the distance.  20 seconds later 
the sound of thunder is heard.  The temperature in the area is 23°C.  How far away was 
the lightening strike? 
 

(a) 
s

s ρk
1a =   

T
T k

1a
ρ

=   
T

s

s

T
k
k

a
a

=∴  

 

 001 11
a

aa

s

sT
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

γ
=

−
 for 4.1=γ   %5.15

a
aa

s

sT −=
−

 

 
(b) ( )( ) m 2.897,620344.86taL ==∆=  
 
 
Problem 10. – (a) The pressure increase across a compression pulse moving into still air 
at 1 atmosphere pressure and 30°C is 100 Pa.  Determine the velocity following the pulse.  
(b) The velocity changes by 0.1 m/s across a pressure wave that moves into hydrogen gas 
that is at rest at a pressure of 100 kPa and temperature 300K.   Determine the pressure 
behind the wave. 
 
Use Eq (2.2) and write the expression in difference form as 
 

Supersonic Region 

Subsonic Region R
ot

at
io

na
l S

pe
ed

, R
PM

 

Diameter, m 
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(a) 
ρa

p∆V =∆ , Pa 100∆p =  

air: 
( )

3m
kg1615.1

303
97.28

8314
000,101ρ =
⎟
⎠
⎞

⎜
⎝
⎛

=  

 
 m/s 0.34930305.20a ==  

 

Therefore,     ( )( ) m/s 247.0
0.3491615.1

100V ==∆  

 
(b) ρa∆V∆p = , m/s  1.0V =∆  
 

hydrogen: 
( )

3m
kg0808.0

300
016.2

8314
000,100

RT
pρ =

⎟
⎠
⎞

⎜
⎝
⎛

==  

 

  ( ) ( ) m/s  8.1320300
016.1

831441.1a =⎟
⎠
⎞

⎜
⎝
⎛=  

 
Therefore,     ( )( )( ) Pa 68.101.08.13200808.0p ==∆  
 
 
 
Problem 11. – (a) Helium at 35°C is flowing at a Mach number of 1.5.  Find the velocity 
and determine the local Mach angle. (b) Determine the velocity of air at 40°C to produce 
a Mach angle of 38°  
 
(a) helium: K308C35T =°=  5.1M =  
 

  aMV =  ( ) ( ) m/s 7.032,1308
003,4
314,8667.1RTa =⎟

⎠

⎞
⎜
⎝

⎛=γ=  

 
  ( )( ) m/s 0.549,15.17.032,1V ==  
 

  °=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
µ

=µ − 8.411ins 1  

 
(b) air: K313C40 =°=T  m/s 6.2993.22305.20a ==  
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⎟
⎠
⎞

⎜
⎝
⎛=µ −

M
1ins 1  

 

a
V

ins
1M =

µ
=  

 

( ) m/s 0.576
38ins

6.354
ins
aV ==

µ
=  

 
 
Problem 12. – (a) A jet plane is traveling at Mach 1.8 at an altitude of 10 km where the 
temperature is 223.3K. Determine the speed of the plane. (b) Air at 320 K flows in a 
supersonic wind tunnel over a 2-D wedge.  From a photograph the Mach angle is 
measured to be 45°.  Determine the flow velocity, the local speed of sound and the Mach 
number of the tunnel.  
 
(a) 8.1M = ,  K 3.223T = ,  m/s 6.2993.22305.20a ==  
 
  ( )( ) m/s 3.5398.16.299aMV ===  
 
(b) air: °=µ= 45,K 320T ,  m/s 7.35832005.20a ==  
 

( ) m/s 2.507
45ins
7.358

ins
aV ==

µ
=  

 

414.1
sin

1
a
VM =

µ
==  

 
 
Problem 13. – A supersonic aircraft, flying horizontally a distance H above the earth, 
passes overhead.  ∆t later the sound wave from the aircraft is heard.  In this time 
increment, the plane has traveled a distance L.  Show that the Mach number of the 
aircraft can be computed from: 
 

1
H

tV1
H
LM

22

+⎟
⎠
⎞

⎜
⎝
⎛ ∆

=+⎟
⎠
⎞

⎜
⎝
⎛=  

Hint: first show that the Mach angle µ can be expressed as ⎟
⎠
⎞⎜

⎝
⎛ −− 1M1tan 21 and then 

connect the Mach angle, µ, to the geometric parameters H and L.  

      
M
1sin =µ     

H 

L 
µ 

µ 
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L
H

1M

1tan
2

=
−

=µ  

 

      t∆VLt   bu           1
H
LM

2

=+⎟
⎠
⎞

⎜
⎝
⎛=∴  

 

               1
H

t∆V 2

+⎟
⎠
⎞

⎜
⎝
⎛=  

 
 
Problem 14. – Given speeds and temperatures, determine the corresponding Mach 
numbers of the following (note: 1 mile  = 5,280 ft = 1,609.3 m; 1 mi/hr = 1.6093 km/hr = 
0.447 m/s): 
 
(a) A cheetah running at top speed of 60 mi/hr; the local temperature is 40°C 
(b) A Peregrine falcon in a dive at 217 mi/hr; local temperature of 25°C 
(c) In June 1999 in Athens Greece, Maurice Greene became the world’s fastest human 

by running 100 m in 9.79 s; the temperature was 21°C 
(d) In June 1999, Alexander Popov became the world’s fastest swimmer by swimming 

50 m in 21.64s; the temperature of the water was 20°C 
 
(a) m/s 7.35431305.20a ==  
   

  
( ) ( )

( ) 076.0
m/s 7.354

mi/hr
m/s447.0

hr
mi60

a
VM ===  

 

(b) m/s 1.34629805.20a ==  
  

  ( )( )
( ) 28.0

 1.346
447.0217

a
VM ===  

 

(c) m/s 8.34329405.20a ==  m/s 21.10
97.9

100V ==    ⎟
⎠
⎞

⎜
⎝
⎛ ==

hr
mi9.22

447.0
21.10  

   03.0
8.343

21.10M ==  
 

(d) 2)-2 Table (from m/s 481,1a =  m/s 31.2
21.64

50V ==    ⎟
⎠
⎞

⎜
⎝
⎛ ==

hr
mi17.5

447.0
31.2  

00156.0
481,1
31.2M ==  

1 µ 
M 

M2 -1 
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Problem 15. – Given speeds and Mach numbers, assuming air is a perfect gas, determine 
the corresponding local temperature (note: 1 mi/hr = 0.447 m/s) for the following: 
 

(a) A Boeing 747-400 at a cruise speed of 910 km/hr; M = 0.85. 
(b) Concorde at a cruise speed of 1,320 mi/hr; M = 2.0 
(c) The fastest airplane, the Lockheed SR-71 Blackbird, flying at 2,200 mi/hr; M = 

3.3 
(d) The fastest boat, the Spirit of Australia, that averaged 317.6 mi/hr; M = 0.41 
(e) The fastest car, the ThrustSSC, averaged 760.035 mi/hr; M = 0.97 

 

(a)  
s
m8.252

s3600
m000,910V ==     85.0M =  

s
m4.297

85.
8.252

M
Va ===  

 

  C53K220
05.20
4.297

05.20
aT

22
°−=°=⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=  

 

(b) ( )( )  
s
m0.590447.01320V ==   0.2M =  m/s 0.295

M
Va ==  

 

C5.56K5.216
05.20

295
05.20

aT
22

°−==⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=  

 

(3) ( )( )  
s
m4.983447.02200V ==    3.3M =  m/s 0.298

3.3
4.983a ==  

 

C1.52K9.220
05.20
0.298

05.20
aT

22

°−==⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=  

 
 

(d) ( )( )  
s
m0.142447.06.317V ==    41.0M =  m/s 3.346

41.
142a ==  

 

C2.25K2.298
05.20
3.346

05.20
aT

22
°==⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=  

 

(e) ( )( )  m/s 7.339447.0035.760V ==  97.0M =     m/s 2.350
97.

7.339a ==  

C1.32K1.305
05.20
2.350

05.20
aT

22
°==⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=  



 28

 
 
Problem 16. – A baseball, which has a mass of 145 grams and a diameter of 3.66 cm, 
when dropped from a very tall building reaches high speeds.  If the building is tall 
enough the speed will be controlled by the drag, as the baseball will reach terminal speed.  
At this state  
 

DFW =  
 
Where W (weight) = mg, g (acceleration of gravity) = 9.81 m/s2, FD (drag force) = 
CDρairAV2/2, CD (drag coefficient) = 0.5 and A (projected area of sphere) = πR2. Find the 
terminal speed of the baseball and determine the corresponding Mach number if the 
ambient air temperature is 23°C and the ambient air pressure is 101 kPa.. 

The density of the air is first determined: 

 

( )( )
3

air m/kg19.1
296287.0

101
RT
p

===ρ
 

Now 

2
VAC

FmgW
2

airD
D

ρ
===

 
Hence, 

 
( )( )

( )( )( ) s/m76.33
0042.019.15.0
81.9145.02

AC
mg2V

airD
==

ρ
=

  
 

 

  
( )( )( )

098.0
2962874.1

76.33
a
VM ===  

   
 
 
Problem 17. – Derive the following equation for the speed of sound of a real gas from 
Berthelot’s equation of state:  

T1
RTp

2αρ
−

βρ−
ρ

=  

 

( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ αρ
−

βρ−

ρβ
+

βρ−
γ=

T
2

1

RT
1

RTa
2
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Since T is treated as a constant, we may simply use information from Section 2.6 where 

 

T

pa ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
γ=

  
 

 

  
( )

αρ−
βρ−

ρβ
+

βρ−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂ 2
1

RT
1

RTp
2

T
 

 
Now replace α with α/T.  Thus, from Eq. (2.24) 
 

  
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡ αρ
−

βρ−

ρβ
+

βρ−
γ=

T
2

1

RT
1

RTa
2

 

   
 
 
Problem 18. – Using the speed of sound expression from the previous problem and the 
following constants for nitrogen 
 
 R = 296.82 (N·m)/(kg·K) 
 α = 21,972.68 N·m4/kg2 
 β = 0.001378 m3/kg 
 γ = 1.4 
 
determine the speed of sound for the two cases described in Example 2.4. 
 
Case (1) p 0.3 MPa and T = 300K 
 
 
 

Iteration v f(v) df /dv v-f/(df/dv) ρ a 
1 0.296823 -4.9286E-05 8.7530E-02 0.297386 3.3690 353.7517 
2 0.297386 1.8796E-07 8.8198E-02 0.297384 3.3626 353.7505 
3 0.297384 2.6975E-12 8.8195E-02 0.297384 3.3627 353.7505 

 
The result differs from the experimental value 353.47 m/s by 0.08%. 
 
Case (2): p 30.0 MPa and T = 300K 
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Iteration v f(v) df /dv v-f/(df/dv) ρ a 
1 0.002968 -8.2594E-09 3.0708E-06 0.005658 336.9016 604.3973 
2 0.005658 5.2436E-08 4.9296E-05 0.004594 176.7430 426.1798 
3 0.004594 1.3084E-08 2.5826E-05 0.004088 217.6647 457.9898 
4 0.004088 2.2920E-09 1.7035E-05 0.003953 244.6426 483.2795 
5 0.003953 1.4088E-10 1.4959E-05 0.003944 252.9695 491.8702 
6 0.003944 6.6552E-13 1.4817E-05 0.003944 253.5736 492.5088 
7 0.003944 1.5099E-17 1.4817E-05 0.003944 253.5765 492.5118 

 
The result differs from the experimental value 483.18 m/s by 1.9%. 
 
 
 
Problem 19. –Employ the finite difference method of Example 2.5 to determine the 
speed of sound in nitrogen using the Redlich-Kwong equation of state  
 

( ) T1
a

1
RTp

2
o
βρ+

ρ
−

βρ−
ρ

=  

 
where for nitrogen: 
 R = 296.823 (N·m)/(kg·K) 
 ao = 1979.453 (N·m4·√K )/(kg2) 
 β = 0.0009557 m3/kg 
 γ = 1.4 
 
 
Compute the speed at a pressure of  30.1 MPa and a temperature of 300 K.  Experimental 
values of the speed of sound of nitrogen may be found in Ref. (11).  For the given 
conditions the measured value is 483.730 m/s. 
 
 

The Redlich-Kwong equation of state is: 
( ) Tvv

a
v
RTp o

β+
−

β−
= .  Rearrange to obtain: 

 

( ) 0
Tp

a
v

Tp
a

p
RTv

p
RTvvf oo223 =

β
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

β
+β−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=  

 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

β
+β−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

Tp
a

p
RTv

p
RT2v3

dv
df o22  

 
Use Newton-Raphson to find v = 0.003279 m3/kg.  Thus, ρ = 304.9917 kg/m3. Use ∆ρ = 
0.1 and compute 
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p(ρ+∆ρ,T) = p(305.0917,300) = 30,112,951.62 Pa 
p(ρ−∆ρ,T) = p(304.8917,300) = 30,087,052.10 Pa 

 

s
m79.425pa =

ρ∆
∆

γ=  

 
The result is 12% too small compared to the experimental value of 483.73m/s.  However, 
if a more appropriate value of γ at this pressure and temperature is used, i.e., γ = 1.704, a 
= 469.75m/s, which is in error by only 2.9%. 
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Problem 1. – Air flows at Mach 0.25 through a circular duct with a diameter of 60 cm. 
The stagnation pressure of the flow is 500 kPa; the stagnation temperature is 175°C. 
Calculate the mass flow rate through the channel, assuming γ = 1.4 and that the air 
behaves as a perfect gas with constant specific heats.  
 

( )  kPa7500.4785009575.0 kPa500
p
pp

o

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

 

( ) ( ) K 4896.4424489877.0273175
T
TT

o

==+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

 
( )

( )( )
3

2

m/kg 7698.3
K 4896.442Km/kgkN 287.0

m/kN 75.478
RT
p

=
⋅⋅

==ρ
 

( ) 22 m 2827.06.0
4

A =
π

=  

 
( )( ) m/s 4136.105K 4896.442Km/kgN 7284.125.0RTMV =⋅⋅=γ=  

 
kg/s 3603.112AVm =ρ=&  

 
 
Problem 2. – Helium flows at Mach 0.50 in a channel with cross-sectional area of 0.16 
m2. The stagnation pressure of the flow is 1 MPa, and stagnation temperature is 1000 K. 
Calculate the mass flow rate through the channel, with γ = 5/3. 
 

( )  kPa6.818kPa10008186.0 MPa1
p
pp
o

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

( ) ( ) K 1.92310009231.0K 1000
T
TT
o

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  
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KkJ/kg 077.2R ⋅=  
 

( )( )
3m/kg 4270.0

1.923077.2
6.818

RT
p

===ρ  

 
( )( )( ) m/s 7931.893K 1.923Km/kgN 20773/550.0RTMV =⋅⋅=γ=  

 
( )( )( ) s/kg0639.61m/s 7931.893m 16.0m/kg 4270.0AVm 23 ==ρ=&  

 
 
 
Problem 3. – In Problem 2, the cross-sectional area is reduced to 0.12 m2. Calculate the 
Mach number and flow velocity at the reduced area. What percent of further reduction in 
area would be required to reach Mach 1 in the channel? 
 

9902.03203.1
16.0
12.0

A

A
A
A

A

A
*
1

1

2
*
2 =⎟

⎠
⎞

⎜
⎝
⎛==  

 
So, A2 < A* for M1 = 0.5.  Therefore, M2 = 1 and M1 will be reduced below 0.5. Since the 
exit Mach number is 1, then  A2 = A* , 
 

   3333.11
12.0
16.0

A
A

A
A

A
A

*
2

2

1
*
1 =⎟

⎠
⎞

⎜
⎝
⎛==  

 
Using this area ratio we find:  4930.0M1 = .  Now M2 = 1 so 

 

( ) K 0.75010007500.0T
T
TT o

o

2
2 ==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 
( )( ) m/s 2883.161175020773/50.1RTMV 22 ==γ=  

 
 
Problem 4. – (a) For small Mach numbers, determine an expression for the density ratio                               
ρ /ρo.  (b) Using Eqs. (3.15) and (3.17), prove that  
 

2
oo

o

o

a
a

T
T

p
p

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ρ
ρ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛  

 
(a) 
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LL +−=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−γ

−⎟
⎠
⎞

⎜
⎝
⎛ −γ

+≅⎟
⎠
⎞

⎜
⎝
⎛ −γ
+=

ρ
ρ −γ

−

2
M1M

1
1

2
11M

2
11

2
21

1
2

o
 

 
(b)   

2
o

2

2
oo

1
21

1
212

o

o

a
a

Ra

Ra
T
T

M
2

11M
2

11M
2

11
p

p

⎟
⎠

⎞
⎜
⎝

⎛=
γ

γ
==

⎟
⎠
⎞

⎜
⎝
⎛ −γ
+=⎟

⎠
⎞

⎜
⎝
⎛ −γ
+⎟

⎠
⎞

⎜
⎝
⎛ −γ
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ρ
ρ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −γ
−

−γ
γ

 

 
 
Problem 5. – An airflow at Mach 0.6 passes through a channel with a cross-sectional area 
of 50 cm2. The static pressure in the airstream is 50 kPa; static temperature is 298 K. 

(a) Calculate the mass flow rate through the channel.  
(b) What percent of reduction in area would be necessary to increase the flow    
Mach number to 0.8? to 1.0?  
(c) What would happen if the area were reduced more than necessary to reach 
Mach 1? 

 

(a) ( )
3kg/m 5846.0

K 298Km/kgkN 287.0
 kPa50

RT
p

=
⋅⋅

==ρ  

 
RTMV γ= ( ) m/s 6177.2072982874.16.0 ==  

 
( )( )( ) s/kg6069.0m/s 6177.207m 0050.05846.0AVm 2 ==ρ=&  

 
(b) For 0382.1*A/A,8.0M ==  
      For 1882.1*A/A,6.0M ==  

(% reduction in area to reach Mach 0.8) %62.12100
1882.1

0382.11882.1
=

−
=  

 

(% reduction in area to reach Mach 1.0) %84.15100
1882.1

11882.1
=

−
=  

 
(c) Flow would be reduced. 
 
 
Problem 6. – A converging nozzle with an exit area of 1.0 cm2 is supplied from an 
oxygen reservoir in which the pressure is 500 kPa and the temperature is 1200 K. 
Calculate the mass flow rate of oxygen for back pressures of 0, 100, 200, 300, and 400 
kPa. Assume that γ = 1.3. 
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For γ = 1.3, the critical pressure ratio is:  5457.0
p

*p
o

= .  So, the back pressure is 

 

 ( ) kPa8500.2725005457.0p
p

*pp o
o

b ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ,  

 
Thus, the nozzle is choked for back-pressures below 272.85 kPa, i.e., for 0, 100, and 200 
kPa.  For these back pressures, pe = 272.8 kPa and  
 

 ( ) K 5200.1043K 12008696.0T
T
TT o

o

e
e ==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

  
 ( ) m/s 6653.59352.10438.2593.1RTMV eee ==γ=  

 ( )( )
3

2

e

e
e m/kg0064.1

K 52.1043KkJ/kg 2598.0
kN/m 85.272

RT
p

=
⋅

==ρ  

 

 ( )( )( ) kg/s 05975.06653.5931010064.1VAm 4
eee =×=ρ= −&  

 
 

For pb = pe =300 kPa; thus, ,6.0
500
300

p
p

o

e == from which we find 9133.0Me =  

 

( ) K 5600.1066K 12008888.0T
T
TT o

o

e
e ==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 
( ) m/s 1474.54856.10668.2593.19133.0RTMV eee ==γ=  

 

( )( ) ( ) ( )( )m/s 1474.548m101
m
kg

56.10662598.0
300m/s 5.546m101

RT
pm 24

3
24

e

e −− ×=×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=&

 
      = 0.05935 kg/s  
 

For pb = pe = 400 kPa, 5935.0M  ,8.0
p
p

e
o

e ==  

 
( ) K 7600.113912009498.0Te ==  
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( ) ( )[ ] s/kg04974.076.11398.2593.15935.010
76.11392598.0

400m 4 =⎟
⎠
⎞

⎜
⎝
⎛

×
= −&  

 
 
 
Problem 7. – Compressed air is discharged through the converging nozzle as shown in 
Figure P3.7. The tank pressure is 500 kPa, and local atmospheric pressure is 101 kPa. 
The inlet area of the nozzle is 100 cm2; the exit area is 34 cm2. Find the force of the air on 
the nozzle, assuming the air to behave as a perfect gas with constant γ = 1.4. Take the 
temperature in the tank to be 300 K.  
 
 
 
 
 
 
 
 
 
 
 

Figure P3.7 
 
Assume the nozzle is choked.  Accordingly, pe = 0.5283 (500 kPa) = 264.15 kPa. Since 
this pressure exceeds the back pressure, the assumption is valid. 
 
  Me = 1.0 
 
  ( ) K 9900.2493008333.0Te ==  
 

( ) m/s 9321.31699.2492874.1RTMV eee ==γ=  
 

At the nozzle inlet, 2038.0M  findwewhich,  from9412.2
34

100
*A

A
i

i ===  

 

  ( ) K 1400.2983009938.0T  ,  so9938.0
T
T

i
o

i ===  

 

  ( )   kPa7500.4865009735.0p,  9735.0
p
p

i
o

i ===  

 
  ( ) m/s 5374.7014.2982874.12038.0Vi ==  
 

To = 300 K 
 
po = 500 kPa 
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( ) ( )( ) s/kg9673.39321.3160034.0
99.249287.0

15.264me ==&  

 
  ( ) ( )ieeiatmeeTii VVmAApApFAp −=−−−+ &  
 
  ∴ ( ) ( )ieeiatmiieeT VVmAApApApF −+−+−= &  
 

  

( )( ) ( )( )
( )( )
( )( )

N/kN1000
m/s 70.5374-16.93213kg/s 9673.3

1034100m/kN0.101

m10100kN/m 86.754m1034kN/m 15.264F
42

242242
T

+

−+

×−×=
−

−−

 

 
  kN 3253.29775.06666.08675.48981.0FT −=++−=  
 
The force of the fluid on the nozzle (equal but opposite) is 2.3253 kN to the right. 
 
 
Problem 8. – A converging nozzle has an exit area of 56 cm. Nitrogen stored in a 
reservoir is to be discharged through the nozzle to an ambient pressure of 100 kPa. 
Determine the flow rate through the nozzle for reservoir pressures of 120 kPa, 140 kPa, 
200 kPa, and 1 MPa. Assume isentropic nozzle flow. In each case, determine the increase 
in mass flow to be gained by reducing the back pressure from 100 to 0 kPa. Reservoir 
temperature is 298 K. 
 
For N2, γ = 1.40.  The nozzle is choked for  
 

 ( )  kPa2864.189
5283.0
100

p*p
p

p
o

b
o ===   

 
Case 1.  po = 120 kPa and pb = 100 kPa 
 

 9492.0
T
T

   ,5171.0M,   8333.0
120
100

p
p

o

e
e

o

e ====  

 
 ( ) K 8616.2822989492.0Te ==  
 

 ( )
3

2

e

e
e m/kg 1911.1

K 8616.282kkJ/kg 2968.0
m/kN 100

RT
p

=
⋅

==ρ  

 
( ) m/s 2791.1778616.2828.2964.15171.0RTMV eee ==γ=  
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( )( ) kg/s 1825.12791.17710561911.1VAm 4
eee =×=ρ= −&  

 
Case 2. po = 140 kPa and pb = 100 kPa 

 

( ) K 6734.2702989083.0T   ,7103.0M,   7143.0
140
100

p
p

ee
o

e =====  

( )
3

e m/kg 2448.1
6734.2702968.0

 100
==ρ  

 
( ) m/s 2103.2386734.2708.2964.17103.0Ve ==  

 ( ) kg/s 6605.12103.23810562448.1m 4 =×= −&  

 
Case 3. po = 200 kPa and pb = 100 kPa 

 
Since po is above the critical reservoir pressure the nozzle is choked, therefore Me = 1.0 

 
( ) kPa 6600.1052005283.0pe ==  

 
( ) K 3234.2482988333.0Te ==  

 

( )
3

e m/kg 4336.1
3234.2482968.0
 66.105

==ρ  

 
( ) m/s 2216.3213234.2488.2964.10.1Ve ==  

 
( )( )( ) kg/s 5788.22216.32110564336.1m 4 =×= −&  

 
Case 4. po = 1 MPa = 1000 kPa and pb = 100 kPa  

 
kg/s 8941.12

200
10005788.2m =⎟

⎠
⎞

⎜
⎝
⎛=&  

 
Case 5.  po = 120 kPa and pb = 0 kPa  

   
For Case 1, lowering back pressure to 0 kPa will change the flow and the nozzle will now 
be choked. Therefore, 

 
Me = 1.0,  
 
Ve = 321.2216 m/s 
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( )
( )

3
e m/kg 8602.0

3234.2482968.0
 1205283.0

==ρ  

 
( )( )( ) kg/s 5473.12216.32110568602.0m 4 =×= −&  

 
Case 6.  po = 140 kPa and pb = 0 kPa  

 
The nozzle is choked, so Me = 1 

 
( ) kg/s 8052.15473.1

120
140m ==&  

 
Case 7. 
   

( ) kg/s 5788.25473.1
120
200m ==&  

 
Case 8. 
   

( ) kg/s 8941.125473.1
120
1000m ==&  

 
 
Problem 9. – Pressurized liquid water flows from a large reservoir through a converging 
nozzle. Assuming isentropic nozzle flow with a negligible inlet velocity and a back 
pressure of 101 kPa, calculate the reservoir pressure necessary to choke the nozzle. 
Assume that the isothermal compressibility of water is constant at 5 × 10-7 (kPa)-l and 
equal to the isentropic compressibility.  Exit density of the water is 1000 kg/m3.  
 

c
2

Vdp 2
=+

ρ∫  

 

 
pd

d1
p

1kk sT
ρ

ρ
=

∂
ρ∂

ρ
=≈  

 

 0
2

Vd
k
1 2

2
2

1
2T

=+
ρ

ρ
∫  

 

0
2

V11
k
1 2

2

21T
=+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ρ

−
ρ
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( )

m/s 1414.2136 
kPa105)kg/m 1000(

1
k

1aV 173s2
22 =

×
=

ρ
==

−−
 

 
 

( ) /kgm 0.0005- kPa105
s
m

2
2136.141411 317

2

22

21
=×⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

ρ
−

ρ
−−  

  
 

 kg/m 0005.0
kg/m 1000
11 3

3
1

−=
ρ

 

 
 3

1 kg/m 0.2000=ρ  
 

 

( )
 kPa103863.1

2000
1000ln

kPa105
1n

k
1pp

d
k
1pd

6
171

2

T
12

2

1T

2

1

×−=⎟
⎠
⎞

⎜
⎝
⎛

×
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ρ
ρ

=−

ρ
ρ

=

−−

∫∫

l

 

 
or  kPa103864.1103863.1101p 66

r ×=×+=   
 
 
Problem 10. – Calculate the stagnation temperature in an airstream traveling at Mach 5 
with a static temperature of 273 K (see Figure P3.10). An insulated flat plate is inserted 
into this flow, aligned parallel with the flow direction, with a boundary layer building up 
along the plate. Since the absolute velocity at the plate surface is zero, would you expect 
the plate temperature to reach the free stream stagnation temperature? Explain. 
 
 
 
 
 
 

Figure P3.10 
 

 K 7.1637
1667.0
273To ==   

 
No.  In general the reduction to zero speed is not an adiabatic process.  However, it could 
be if viscous heating counteracts heat conduction back through the boundary layer. 
  
 
 

M∞ =5 
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Problem 11. – A gas stored in a large reservoir is discharged through a converging 
nozzle. For a constant back pressure, sketch a plot of mass flow rate versus reservoir 
pressure. Repeat for a converging-diverging nozzle. 
      
 
 
 
 
      
   
 
 
 
 
 
 
 
                          Converging Nozzle       C-D Nozzle 
 
       
Problem 12. – A converging-diverging nozzle is designed to operate isentropically with 
air at an exit Mach number of 1.75. For a constant chamber pressure and temperature of 5 
MPa and 200°C, respectively, calculate the following: 

(a) Maximum back pressure to choke nozzle  
(b) Flow rate in kilograms per second for a back pressure of 101 kPa 
(c) Flow rate for a back pressure of 1 MPa Nozzle exit area is 0.12 m2. 

 

(a)  For M = 1.75,  386.1
*A

A
= 5  

 

  For 8558.0
p
p  , 4770.0M  , 3865.1

*A
A

o
===  

 
  Maximum back pressure to choke nozzle = 5(0.8558) = 4.2790 MPa 
 
(b)  pb = 101 kPa, nozzle choked 

 

2
2

throat m 086549.0
3865.1

m12.0A ==  

 
( )  MPa6415.25283.0MPa 5pthroat ==  

 
( )  K1509.3948333.0273200Tthroat =+=  

 

M = 1 at  
nozzle exit 

pr pb 

m&  

M = 1 at  
nozzle 
throat 

pr pb 

m&
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( ) m/s 9571.3971509.3942874.1Vthroat ==  
 

( )
3

throat kg/m 3510.23
K 1509.394

Kkg
kJ287.0

Pak 5.2641
=

⋅

=ρ  

 
( )( ) ( ) kg/s 2829.8049571.397 08655.03510.23VAm throatthroatthroat ==ρ=&

 
 
(c)  kg/s 2829.804m =&  
 
 
Problem 13. – A supersonic flow is allowed to expand indefinitely in a diverging 
channel. Does the flow velocity approach a finite limit, or does it continue to increase 
indefinitely? Assume a perfect gas with constant specific heats. 
 

For adiabatic flow, 
2

VTcTc
2

pop += .  However, T cannot be less than 0 K (second law) 

So,   
 

is finite V   and   Tc2V maxopmax =  

 
 
Problem 14. – A converging-diverging frictionless nozzle is used to accelerate an 
airstream emanating from a large chamber. The nozzle has an exit area of 30 cm2 and a 
throat area of 15 cm2. If the ambient pressure surrounding the nozzle is 101 kPa and the 
chamber temperature is 500 K, calculate the following:  

(a) Minimum chamber pressure to choke the nozzle  
(b) Mass flow rate for a chamber pressure of 400 kPa 
(c) Mass flow rate for a chamber pressure of 200 kPa 

 

(a)  0.2
A
A

throat

exit =   

 

  For  9372.0
p
p   , 3059.0M    ,0.2

A
A

o* ===   

 

  Minimum chamber pressure to choke Pak 7678.107
9372.0
101

==   

(b) Nozzle choked for pc = po = 400 kPa 
 

( )  kPa3200.2114005283.0pthroat ==  
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( )  K6500.4165008333.0Tthroat ==  

 

( ) ( )
( ) ( )

( )( )
kg/s1.0846

m/s 1576.409m1015kg/m 7672.1

)65.416(2874.1m1015
K 65.416

Kkg
kJ287.0

 kPa32.211AVm

243

24

=

×=

×

⋅

=ρ=

−

−&

 

 

(c) kg/s 5423.0
400
2000846.1m =⎟

⎠
⎞

⎜
⎝
⎛=&           

 
 
Problem 15. – Sketch p versus x for the case shown in Figure P3.15.  
 

 
 
 
 
 
 
 

 
Figure P3.15 

        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

M > 1 M > 1 

x 

x

p 

throat
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Problem 16. – Steam is to be expanded to Mach 2.0 in a converging-diverging nozzle 
from an inlet velocity of 100 m/s. The inlet area is 50 cm2; inlet static temperature is 500 
K. Assuming isentropic flow, determine the throat and exit areas required. Assume the 
steam to behave as a perfect gas with constant γ = 1.3.  
 

 
( )

1826.0
6997.547

100
5005.4613.1

100Mi ===      

 

 2
throat* cm 3050.15

2669.3
50A    ,2669.3

A
A

===   

 

 For 2
exit

t

e
* cm 1389.27A     so7732.1

A
A

A
A   ,0.2M ====  

 
 
Problem 17. – Write a computer program that will yield values of T/To, p/po, and A/A* 
for isentropic flow of a perfect gas with constant γ = 1.27. Use Mach number increments 
of 0.05 over the range M = 0 to M = 2.0.  
 

1
1b

+γ
−γ

= ,  
)1M(b1

b1
T
T

2o −+

−
= ,   

b2
1b

oo T
T

p
p

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ,   ( )[ ]

M
1Mb1

*A
A b2

1
2 −+

=  

 
M T/To p/po A/A* 

0.00 1.00000 1.00000 infinite 
0.05 0.99966 0.99841 11.76142
0.10 0.99865 0.99367 5.90577
0.15 0.99697 0.98584 3.96515
0.20 0.99463 0.97499 3.00342
0.25 0.99163 0.96125 2.43340
0.30 0.98800 0.94478 2.05940
0.35 0.98373 0.92575 1.79759
0.40 0.97886 0.90437 1.60608
0.45 0.97339 0.88086 1.46164
0.50 0.96735 0.85545 1.35034
0.55 0.96076 0.82839 1.26335
0.60 0.95365 0.79994 1.19481
0.65 0.94604 0.77035 1.14069
0.70 0.93795 0.73986 1.09813
0.75 0.92942 0.70873 1.06506
0.80 0.92047 0.67720 1.03995
0.85 0.91113 0.64547 1.02166
0.90 0.90143 0.61378 1.00931
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0.95 0.89139 0.58230 1.00226
1.00 0.88106 0.55121 1.00000
1.05 0.87045 0.52067 1.00215
1.10 0.85959 0.49081 1.00844
1.15 0.84851 0.46177 1.01864
1.20 0.83724 0.43362 1.03264
1.25 0.82581 0.40646 1.05032
1.30 0.81423 0.38035 1.07166
1.35 0.80254 0.35534 1.09664
1.40 0.79076 0.33147 1.12530
1.45 0.77891 0.30875 1.15768
1.50 0.76702 0.28718 1.19389
1.55 0.75509 0.26678 1.23404
1.60 0.74316 0.24752 1.27826
1.65 0.73124 0.22939 1.32672
1.70 0.71935 0.21236 1.37960
1.75 0.70750 0.19640 1.43712
1.80 0.69570 0.18147 1.49952
1.85 0.68398 0.16753 1.56703
1.90 0.67234 0.15453 1.63996
1.95 0.66079 0.14244 1.71860
2.00 0.64935 0.13121 1.80329
M T/To p/po A/A* 

 
 
 
Problem 18. – A gas is known to have a molecular mass of 18, with cp = 2.0 kJ/kg · K. 
The gas is expanded from negligible initial velocity through a converging-diverging 
nozzle with an area ratio of 5.0. Assuming an isentropic expansion in the nozzle with 
initial stagnation pressure and temperature 1 MPa and 1000 K, respectively, determine 
the exit nozzle velocity.  
 

 KJ/kg 9056.461
molekg/kg 18

KmoleJ/kg 3.8314R ⋅=
−

⋅−
=  

 

 KkJ/kg 0.2
1

Rcp ⋅=
−γ
γ

=  

 

 3299.4
4619056.0

0.2
1

==
−γ
γ  

 
 ∴ 300.1=γ  
 

 ( ) K 1000.4304301.01000T    ,9723.2M    ,0.5
A
A

ee* ====  
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            ( ) m/s 5171.15101.4309056.4613.19723.2Ve ==  
 
 
Problem 19. – A jet plane is flying at 10 km with a cabin pressure of 101 kPa and a cabin 
temperature of 20°C. Suddenly a bullet is fired inside the cabin and pierces the fuselage; 
the resultant hole is 2 cm in diameter. Assume that the temperature within the cabin 
remains constant and that the flow through the hole behaves as that through a converging 
nozzle with an exit diameter of 2.0 cm. Take the cabin volume to be 100 m3. Calculate 
the time for the cabin pressure to decrease to one-half the initial value. At 10 km, p = 
26.5 kPa and T = 223.3 K. 

 
Because the back pressure to cabin pressure is 26.5/101 = 0.2624, which is less than 
0.5283 the critical pressure ratio at γ = 1.4, the flow is choked and Me = 1.  Hence, the 
mass flow rate is 

 
( )
( ) ( )( )

 p104186.7

293)(8333.02874.1)1(02.0
4293)(8333.0287

p5283.0
RTAM

RT
pAVm

c
7

2c

−×=

⎟
⎠
⎞

⎜
⎝
⎛ π=γ=ρ=&

 

 
In the cabin, 
  

( )dt 104186.7RT
p

dp

mRT
dt
dmRT

dt
dp

mRTp

7

c

c

c

c

−×
∀

−=

∀
−=

∀
=∴

=∀

&  

 
Integration produces, 
 

 ( ) t104186.7RT
p
p

ln 7

initialc

finalc −×
∀

−=  

 

 ( )( ) ( ) t104186.7
100

2932872ln 7−×=  

 
 t = 1111.1096 s = 0.3086 h 
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Problem 20. – A rocket nozzle is designed to operate isentropically at 20 km with a 
chamber pressure of 2.0 MPa and chamber temperature of 3000 K. If the products of 
combustion are assumed to behave as a perfect gas with constant specific heats (γ = 1.3 
and MM = 20), determine the design thrust for a nozzle throat area of 0.25 m2.  
 
At   20 km, p = 5.53 kPa 
 

 
o

e

r

b
p
p

002765.0
2000

53.5
p
p

===  

 

 ( ) K 4000.77030002568.0T
T
TT    ,3923.4M o

eo
ee ==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==  

 
At design 
 
 ( )  ApmVThrust eee +=  
 

 m/s 1293.28344.770
20

3.83143.13923.4Ve =⎟
⎠
⎞

⎜
⎝
⎛=  

Now at the throat M t = 1, so (p/po)t = 0.5457 and (T/To)t = 0.8696. 
 

( )

( )
( ) ( )

( )( )( )

s/kg7290.298

m/s 3805.1187m25.0kg/m 0063.1

m/s 3000)(8696.0
20

3.83143.1)1(m25.0
K3000)(8696.0

Kkg
kNm

20
3143.8

kN/m 20005457.0m

23

2
2

t

=

=

⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

=&

 

 

 
( )( ) ( )[ ]

0.8480MN 
 0.0014 8466.0

)000,000,1/()25.0(55301293.28347290.298Thrust

=
+=

+=
 

 
 
Problem 21. – A converging nozzle has a rectangular cross section of a constant width of 
10 cm. For ease of manufacture, the sidewalls of the nozzle are straight, making an angle 
of 10° with the horizontal, as shown in Figure P3.21. Determine and plot the variation of 
M, T, and p with x, taking M1 = 0.4, Po1 = 200 kPa, and To1 = 350 K. Assume the 
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working fluid to be air, which behaves as a perfect gas with constant specific heats         
(γ = 1.4), and that the flow is isentropic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure P3.21 
 
 
. A2 = A* 
 

 5901.1
*A

A,4.0M  ,cm 100A 1
1

2
1 ===  

 

 cm 289.6h  so    ,cm 89.62 
5901.1
100A 2

2 ===  

 

( )10tan2
hhx 1 −=  

 
h (cm) x (cm) A/A* M p (kPa) T (K) 
10.00 0 1.5901 0.400 179.1 339.2 
9.50 1.418 1.5106 0.426 176.5 337.7 
9.00 2.836 1.4311 0.457 173.3 336.0 
8.50 4.253 1.3516 0.494 169.3 333.7 
8.00 5.671 1.2721 0.539 164.1 330.8 
7.50 7.089 1.1926 0.596 157.3 326.8 
7.00 8.507 1.1131 0.676 147.3 320.7 
6.50 9.925 1.0336 0.812 129.7 309.3 
6.29 10.523 1.0000 1.000 105.7 291.7 

 

10 cm 

h 

10 cm 

Cross section at 2 

10 cm 

Cross section at 1 

 x 

     M2 = 1.0 

M1 = 0.4 
 
Po1 = 200kPa 
 
To1 = 350 K   2 

   10o

 1 
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Problem 22. – A spherical tank contains compressed air at 500 kPa; the volume of the 
tank is 20 m3. A 5-cm burst diaphragm in the side of the tank ruptures, causing air to 
escape from the tank. Find the time required for the tank pressure to drop to 200 kPa. 
Assume the temperature of the air in the tank remains constant at 280 K, the ambient 
pressure is 101 kPa and that the airflow through the opening can be treated as isentropic 
flow through a converging nozzle with a 5-cm exit diameter.  
 

For ( ) so choked5283.0 505.0
200
101

p
p

  ,Pak 200p
o

b
tank <===  

 
( ) K 3240.2332808333.0T    , p 5283.0p eoe ===  

 
 ( ) m/s 1855.3063240.2330.2874.1RTV ee ==γ=  
 

 ( ) 1855.306 05.0
43240.233287.0

p 5283.0m 2o ⎟
⎠
⎞

⎜
⎝
⎛ π=&  

 
     = 0.004743 po kg/s   with   po in kPa 
 



 50

In the tank,  
 

po∀= mRT 
 

 ( )o
o p 004743.0RTmRT

dt
dmRT

dt
dp

∀
−=

∀
−=

∀
= &  

 

 ( ) ( )dt 004743.0
20

270287.0
p

dp

o

o −
=  

 

  t01838.0
500
200ln −=  

 

 ( ) s 8526.49
01838.0

4.0 lnt =
−

=  

 
 
Problem 23. – A converging-diverging nozzle has an area ratio of 3.3 to 1. The nozzle is 
supplied from a tank containing a gas at 100 kPa and 270 K (see Figure P3.23). 
Determine the maximum mass flow possible through the nozzle and the range of back 
pressures over which the mass flow can be attained assuming the gas is (a) helium (γ = 
1.67, R = 2.077 kJ/kg·K) and (b) hydrogen (γ = 1.4, R = 4.124 kJ/kg·K). 
 
 
 
 
 
 
 
 
 

 
Figure P3.23 

 

(a) Helium: 3.3
*A

A
  ,67.1 e ==γ  

 
1494.3,1739.0Me =  

Maximum pb to choke nozzle:  at Me = 0.1739,  9752.0
p
p

eo
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 

 
Maximum pb to choke nozzle = 97.52 kPa 
 
Nozzle choked for  kPa52.97pb ≤  

To = 270 K 
 
po = 100 kPa 

Athroat = 60 cm2
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throatthroat
throat

throat
max RTAM

RT
pm γ=&  

 

    ( )
( ) ( ) ( )( )2707491.0207767.1)1(1060

2707491.0077.2
1004867.0 4−×=  

 
kg/s 5822.0mmax =&  

 

(b) Hydrogen: 3.3
*A

A
  ,40.1 e ==γ  

 

9780.0
p
p    ,1787.0M 

eo
e =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 
Nozzle choked for all  kPa8.97pb ≤  
 

( )
( ) ( ) ( )( )2708333.041244.1)1(1060

2708333.0124.4
1005283.0m 4

max
−×=&  

 
            = 0.3894 kg/s 

 
 
Problem 24. – Superheated steam is stored in a large tank at 6 MPa and 800°C. The 
steam is exhausted isentropically through a converging-diverging nozzle. Determine the 
velocity of the steam flow when the steam starts to condense, assuming the steam to 
behave as a perfect gas with γ = 1.3.  
 
 
Solution Using Steam Table Data 
 
 At 6 MPa, 800°C: KkJ/kg 6554.7s1 ⋅=  
 

1111 vpuh +=  
 

 ( )( )
kg
kJ08159.06000

kg
kJ2.3641 +=  

 
 = 4130.7 kJ/kg 
 
Steam will just condense for s2 = sg = s1 
 



 52

 At 45 kPa, 6709.7s    , kPa40at    ;6307.7s gg ==  
 
Interpolation gives 

kg
kJ8.2638h   ,C77T   Pa,k 42p 222 =°==  

 
( ) ( ) m/s 172710008.26387.41302hh2V 212 =−=−=  

 
Solution Assuming Steam is a Perfect Gas 
 

K 873600273T   ,7794.3M   ,007.0
6000

42
p
p

ee
o

=+====  

 
 T2  = 873 (0.3182)  = 277.7886 K 
 
 ( ) m/s 8994.15427886.2775.4613.17794.3V2 ==  
 
Because the second answer assumes that the steam is a perfect gas with constant specific 
heats, the first answer is more accurate. 
 
 
Problem 25. – Air is stored in a tank 0.037661m3 in volume at an initial pressure of 
5,760.6 kPa and a temperature of 321.4K. The gas is discharged through a converging 
nozzle with an exit area of 3.167x10-5 m2. For a back-pressure of 101 kPa, assuming a 
spatially lumped polytropic process in the tank, i.e., pvn = constant, and isentropic flow in 
the nozzle, i.e., pvγ = constant, compare predicted tank pressures to the measured values 
contained the following table. Try various values of the polytropic exponent, n, from 1.0 
(isothermal) to 1.4 (isentropic).  Perform only a Stage I analysis, i.e., the nozzle is 
choked. 
 

 
time, 
sec 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 9.0 11.0 13.0 15.0 17.0 19.0

po/po1 
1.000 0.717 0.551 0.448 0.358 0.281 0.241 0.199 0.142 0.104 0.078 0.059 0.044 0.033

 
Now from the continuity equation 
 

eeee VAm
dt
dm

ρ−=−= &  

 
For polytropic expansion within the tank 
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n
1o

1o
n
o

o pp
ρ

=
ρ

 

 
So 

n
1

1o

o
1oo p

p
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ=ρ  

 
And for isentropic expansion in the nozzle 
 

γγ ρ
=

ρ e

e

o

o pp  

So 

γ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ=ρ

1

1o

o
oe p

p  

 
For a choked flow: Me = 1, Ve = ae = √γpe/ρe  and  
 

)1/()1/(
2
e

e

o
2

1M
2

11
p
p −γγ−γγ

⎟
⎠
⎞

⎜
⎝
⎛ +γ

=⎟
⎠
⎞

⎜
⎝
⎛ −γ
+=  

 
So, 

)1/(

oe 2
1pp

γ−γ

⎟
⎠
⎞

⎜
⎝
⎛ +γ

=  

 
Therefore, 

n
1

1o

o1
1

1oe p
p

2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +γ

ρ=ρ γ−  

 
Now, 
 

( ) ( ) n2
1

1o

o12
1

21
1o

12
1o

21
oe

eee
e
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Using ao1 = √γpo1/ρ01  the mass flow rate at the exit can be written as 
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Now the time rate of change of the mass within the tank is given by 
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Equating this to the exiting flow rate gives 
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Integration yields, (note: 
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Rearrangement brings 
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Note this is not valid for n =1, the isothermal case which must be treated separately.  For 
n = 1 
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Canceling, separating variables, integrating and rearranging yields, 
 

( ) t12
1

2
11oaeA

1o

o e
p
p

γ−
+γ

⎟
⎠
⎞

⎜
⎝
⎛ +γ

∀
−

=  

 
A spreadsheet program was written and run for various n.  A table of the results is as 
follows 

n = 1.0 1.1 1.2 1.3 1.4  
t po/po1  po/po1  po/po1  po/po1  po/po1  po/po1 (exp) 

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.000 
1.0 0.8396 0.8257 0.8122 0.7990 0.7862 0.717 
2.0 0.7049 0.6830 0.6620 0.6421 0.6230 0.551 
3.0 0.5918 0.5658 0.5415 0.5187 0.4974 0.448 
4.0 0.4969 0.4695 0.4443 0.4212 0.3999 0.358 
5.0 0.4172 0.3902 0.3658 0.3437 0.3237 0.281 
6.0 0.3503 0.3247 0.3021 0.2818 0.2636 0.241 
7.0 0.2941 0.2707 0.2502 0.2321 0.2159 0.199 
9.0 0.2073 0.1890 0.1731 0.1594 0.1473 0.142 

11.0 0.1461 0.1327 0.1211 0.1112 0.1025 0.104 
13.0 0.1030 0.0937 0.0856 0.0787 0.0726 0.078 
15.0 0.0726 0.0665 0.0611 0.0564 0.0522 0.059 
17.0 0.0512 0.0474 0.0440 0.0410 0.0382 0.044 
19.0 0.0361 0.0340 0.0320 0.0301 0.0283 0.033 
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CChhaapptteerr  FFoouurr  
  
  

SSTTAATTIIOONNAARRYY  NNOORRMMAALL    
SSHHOOCCKK  WWAAVVEESS 

 
 
 
Problem 1. – A helium flow with a velocity of 2500 m/s and static temperature of 300 K 
undergoes a normal shock. Determine the helium velocity and the static and stagnation 
temperatures after the wave. Assume the helium to behave as a perfect gas with constant 
γ = 5/3 and R = 2077 J/kg·K. 
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From the normal shock relations 
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From the isentropic relations 
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From the normal shock relations 
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Problem 2. – A normal shock occurs at the inlet to a supersonic diffuser, as shown in 
Figure P4.2. Ae/Ai is equal to 3.0. Find Me, pe, and the loss in stagnation pressure (poi – 
poe). Repeat for a shock at the exit.  Assume γ = 1.4. 
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Figure P4.2 
 
Shock at inlet: 
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Problem 3. – Sketch p versus x for the three cases shown in Figure P4.3. Assume 
isentropic flow except for flow across the normal shocks. 
 
 

 
 

 
 

 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem 4. – Air expands from a storage tank through a converging-diverging nozzle 
(see Figure P4.4). Under certain conditions it is found that a normal shock exists in the 
diverging section of the nozzle at an area equal to twice the throat area, with the exit area 
of the nozzle equal to four times the throat area. Assuming isentropic flow except for 
shock waves, that the air behaves as a perfect gas with constant γ = 1.4, and that the 
storage tank pressure and temperature are 200 kPa and 300 K, determine the following:  

(a) A* for flow from inlet to shock 
(b) A* for flow from shock to exit  
(c) Mach number at nozzle exit plane 
(d) Stagnation pressure at nozzle exit plane 
(e) Exit plane static pressure 
(f) Exit plane velocity  

 
 
 

M < 1 

x 

M > 1 

x 

M < 1 M > 1 

x 

x 

p 

x 

p 

x 

p 



 59

 
 
 
 
 
 
 
 
 

 

Figure P4.4 
 
 (a) 50 cm2 
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Problem 5. – A supersonic flow at Mach 3.0 and γ = 1.4 is to be slowed down via a 
normal shock in a diverging channel. For the conditions shown in Figure P4.5, find p2/p1 
and pe/pi. 
 
 
 
 
 
 

To = 300 K 
 
po = 200 kPa Athroat = 50 cm2 

Aexit = 4 Athroat  

Ashock = 2 Athroat 
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Figure P4.5 
 
From the isentropic Mach number-area relation at the inlet and exit Mach numbers, we 
have 
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Now using this ratio of stagnation pressures across the shock, we can find the Mach 
number on the upstream side of the shock, i.e., M1, and in turn, determine the pressure 
ratio across the shock: M1 = 3.6455  
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Problem 6. – A body is reentering the earth's atmosphere at a Mach number of 20. In 
front of the body is a shock wave, as shown in Figure P4. 7. Opposite the nose of the 
body, the shock can be seen to be normal to the flow direction. Determine the stagnation 
pressure and temperature to which the nose is subjected. Assume that the air behaves as a 
perfect gas (neglect dissociation) with constant γ = 1.4. The ambient pressure and 
temperature are equal to 1.0 kPa and 220 K. 
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Figure P4.6 
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Problem 7. – Determine the back pressure necessary for a normal shock to appear at the 
exit of a converging-diverging nozzle, as shown in Figure P4.7.  Assume γ = 1.4. 
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Figure P4.7 

 
From the given area ratio, we use the Newton-Raphson method to determine the 
supersonic Mach number on the upstream side of the shock.  Then we may use the 
isentropic and shock relations to determine the pressure ratios that enable us to compute 
the back pressure: 
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Problem 8. – A normal shock is found to occur in the diverging portion of a converging-
diverging nozzle at an area equal to 1.1 times the throat area. If the nozzle has a ratio of 
exit area to throat area of 2.2, determine the percent of decrease in nozzle exit velocity 
due to the presence of the shock (compared with the exit velocity of a perfectly expanded 
isentropic supersonic nozzle flow). Assume the flow is expanded from negligible 
velocity, that the stagnation temperature of the flow is the same for both cases, and that 
the working fluid is steam, which behaves as a perfect gas with constant γ = 1.3. 
 
With no shock, 
 
From the given area ratio and because the flow is choked: Ae/At = Ae/A* = 2.2, we can 
determine the exit Mach number using the Newton-Raphson method and find that        
Me = 2.2201, and therefore, the static to total temperature ratio is 0.5749.  Hence, 
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From this area ratio we are able to extract the exit Mach number again using the 
Newton-Raphson method, therefore, the static to total temperature ratio  
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Problem 9. – A flow system consists of two converging-diverging nozzles in series (see 
Figure P4.9a. If the area ratio (exit to throat) of each nozzle is 3.0 to 1, find the area ratio 
A3/Al necessary to produce sonic flow at the second throat, with a shock at A2. Assume 
isentropic flow except for the normal shock. Find the percent of loss in stagnation 
pressure for this flow. At another operating condition, a shock appears at A3 (Figure 
P4.9b). Find the percent of loss of stagnation pressure for this condition. 
 
 
 

 
 
 
 

 
(a)                                                                              (b) 

Figure P4.9 
 
 

(a) For the shock at A2, we may use the given area ratio to determine the Mach 
number exiting the upstream nozzle and assuming that the Mach number does not 
change in the constant area section we then have   

 

A1 A3 

A2 

A1 A3 

A2 



 64

      2411.2
A
Aso,4462.0

A
A

p
p,6374.2M *

1

*
2

*
2

*
1

1o

2o
1 ====   

 

Since sonic flow exists at both A1 and A3, we have,    2411.2
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(b) For shock at A3, we have from part (a) A3/A1 = A3/A* = 2.411.  Using this area 

ratio, we can find the Mach number on the upstream side of the shock, i.e., 
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And so, 
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or 42.72% loss of stagnation pressure 

 
 
Problem 10. – For the system shown in Figure P4.10, Mi = 2.0, Ai = 20 cm2, throat area = 
15 cm2, shock area = 22 cm2, and exit area = 25 cm2. With the working fluid behaving as 
a perfect gas with constant γ = 1.3, find the following: 

(a) Throat Mach number 
(b) Exit Mach number  
(c) Ratio of exit static pressure to static pressure at i 

 
 
 
 
 
 
 
 

Figure P4.10 
 
 
(a)  Now at Mi = 2.0 and for γ = 1.3, we use the Mach number-area relation to find: 

1 2 

e i 
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From which we determine the result of part (a), 
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we find: 
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At this Mach number we can compute the total pressure ratio across the shock 
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Me = 0.4571 
 

(c) From the various Mach numbers computed thus far, we may determine the 
following pressure ratios and form the string, 

 

3591.4
1305.0
1)6502.0)(1)(8749.0(

p
p

p
p

p
p

p
p

p
p

i

1o

1o

2o

2o

oe

oe

e

a

e =⎟
⎠
⎞

⎜
⎝
⎛==    

 
 
Problem 11. – A jet plane uses a diverging passage as a diffuser (Figure P4.11). For a 
flight Mach number of 1.8, determine the range of back pressures over which a normal 
shock will appear in the diffuser. Ambient pressure and temperature are 25 kPa and     
220 K. Find the mass flow range handled by the diffuser for the determined back pressure 
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range. Also, the inlet and exit area are Ai = 250 cm2, Ae = 500 cm2. Assume isentropic 
flow except for the shocks. Take γ = 1.4. 
 
 
 
 
 
 
 
 
 
 
 

Figure P4.11 
 
For a shock at the inlet, with M1 = 1.8 and γ = 1.4, from the normal shock relations 
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From this area ratio, we can determine the exit Mach number and therefore the exit static 
to total pressure ratio 
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The following pressure ratio string may be readily formed 
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Next the mass flow rate is computed 
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For a shock at the exit, 
 

 ( ) 8780.24390.1
250
500

A
A

A
A

A
A

*
i

i

i

e
*
1

1 ===  

 

 6799.7
p
p,0506.0

p
p,5934.2M

1

2

1o

1
1 ===  

 

 ( )( ) ( ) Pak 8338.5525
1740.0
10506.06799.7p

p
p

p
p

p
pp 1o

1o

1

1

2
e =⎟

⎠
⎞

⎜
⎝
⎛== ∞

∞
 

 
  
The diffuser is choked so it passes the same mass flow for the back pressure range,  
 

kg/s 5.2974m =&  
 
A shock appears in the diffuser for: 55.8338 kPa <  pb < 111.5127 kPa  
 
 
Problem 12. – Air (γ = 1.4) enters a converging-diverging diffuser with a Mach number 
of 2.8, static pressure pi of 100 kPa, and a static temperature of 20°C. For the flow 
situation shown in Figure P4.12, find the exit velocity, exit static pressure, and exit 
stagnation pressure. 
 

 
 
 

 
 
 
 
 
 
 

Figure P4.12 
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From this value of M1 we can determine the total pressure ratio across the shock 

1 2 e i 

Ae = 0.50 m2 

At = 0.10 m2 

Ai = 0.25 m2 

Mi = 2.8 
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 From this area ratio we can compute the exit Mach number 
 
 Me = 0.1003 
 

 9980.0
T
T    ,9930.0

p
p

o

e

2o

e ==  

 

 kPa 3913.2717
0368.0
100p    ,K 4397.752

3894.0
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 ( )  kPa4457.22523913.27178289.0p eo ==  
 
 ( )  kPa6785.22364457.22529930.0pe ==  
 
 ( )( )( ) m/s 0943.559348.7502874.11003.0RTMV eee ==γ=  
 
 
Problem 13. – Write a computer program that will yield values of p2/p1, ρ2/ρ1, T2/T1, and 
po2/po1 for a fixed normal shock with a working fluid consisting of a perfect gas with 
constant γ = 1.20. Use Mach number increments of 0.05 over the range M = 1.0 to M = 
2.5.  
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M1 p2/p1 ρ2/ρ1 T2/T1 po2/po1 
1.00 1.0000 1.0000 1.0000 1.0000 
1.05 1.1118 1.0923 1.0178 0.9998 
1.10 1.2291 1.1873 1.0352 0.9989 
1.15 1.3518 1.2848 1.0521 0.9965 
1.20 1.4800 1.3846 1.0689 0.9924 
1.25 1.6136 1.4865 1.0855 0.9861 
1.30 1.7527 1.5902 1.1022 0.9777 
1.35 1.8973 1.6957 1.1189 0.9671 
1.40 2.0473 1.8027 1.1357 0.9542 
1.45 2.2027 1.9110 1.1527 0.9391 
1.50 2.3636 2.0204 1.1699 0.9220 
1.55 2.5300 2.1308 1.1873 0.9030 
1.60 2.7018 2.2420 1.2051 0.8822 
1.65 2.8791 2.3539 1.2231 0.8599 
1.70 3.0618 2.4663 1.2415 0.8362 
1.75 3.2500 2.5789 1.2602 0.8114 
1.80 3.4436 2.6918 1.2793 0.7856 
1.85 3.6427 2.8048 1.2987 0.7591 
1.90 3.8473 2.9177 1.3186 0.7320 
1.95 4.0573 3.0304 1.3388 0.7045 
2.00 4.2727 3.1429 1.3595 0.6767 
2.05 4.4936 3.2549 1.3806 0.6490 
2.10 4.7200 3.3664 1.4021 0.6213 
2.15 4.9518 3.4773 1.4240 0.5938 
2.20 5.1891 3.5876 1.4464 0.5667 
2.25 5.4318 3.6971 1.4692 0.5401 
2.30 5.6800 3.8058 1.4925 0.5139 
2.35 5.9336 3.9135 1.5162 0.4884 
2.40 6.1927 4.0203 1.5404 0.4636 
2.45 6.4573 4.1261 1.5650 0.4395 
2.50 6.7273 4.2308 1.5901 0.4162 
M1 p2/p1 ρ2/ρ1 T2/T1 po2/po1 

 
 
 
Problem 14. – A converging-diverging nozzle has an area ratio (exit to throat) of 3.0. The 
nozzle is supplied from an air (γ = 1.4, R = 287 J/kg·K) reservoir in which the pressure 
and temperature are maintained at 270 kPa and 35°C, respectively. The nozzle is 
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exhausted to a back pressure of 101 kPa. Find the nozzle exit velocity and nozzle exit-
plane static pressure.  
 
Since, pb/po = 101/270 = 0.3741 < 0.5283, the nozzle is choked.  Hence the At = A*.  So, 
for Ae/A* = 3.0 determine the subsonic and supersonic solutions, i.e., curves 4 and 5 in 
Fig. 4.14.  This yields Me = 0.1974 and Me = 2.6374.   
 
For the subsonic solution: pe/po = 0.9732.  Thus, pe = (0.9732)(270) = 262.7640 kPa, 
which is much larger than the given back pressure.   
 
For the supersonic solution: pe/po = 0.04730. Thus, pe = (0.0473)(270) = 12.7764 kPa, 
which is far lower than the given back pressure.  
 
The actual situation is somewhere in between these.  For a shock in the exit of the nozzle 
(curve c in Fig 4.14), we use the shock relations at Me = M1 =2.6374 and find             
p2/p1 = 7.9486.  Since p1 = 12.7764 kPa, p2 = pe = (12.7764)(7.9486) = 101.5545 kPa.  
Since this is larger than the given back pressure, this situation is also not possible.   
 
The actual case corresponds to curve d in Fig 4.14, where oblique shock waves (refer to 
Fig. 4.16) occur outside the nozzle in order to compress the exiting flow to the correct 
pressure.   
 
Thus, for pb = 101 kPa, pe = 12.7764 kPa and       
 

( ) s/m9960.599308)4182.0(2874.16374.2RTMV eee ==γ=  
 
 
Problem 15. – A supersonic nozzle possessing an area ratio (exit to throat) of 3.0 is 
supplied from a large reservoir and is allowed to exhaust to atmospheric pressure (101 
kPa). Determine the range of reservoir pressures over which a normal shock will appear 
in the nozzle. For what value of reservoir pressure will the nozzle be perfectly expanded, 
with supersonic flow at the exit plane? Find the minimum reservoir pressure to produce 
sonic flow at the nozzle throat. Assume isentropic flow except for shocks, with γ = 1.4. 
 
At Ae/A* = 3.0, Me = 0.1974 and pe/po = 0.9732 or Me = 2.6374 and pe/po = 0.0473. 
 

For a shock just past the throat: kPa7813.103
9732.0
101pp or ===  

For a shock at exit: ( )( ) kPa6393.268
9486.70473.0

101pp or ===  

 
Thus, for a shock in the nozzle: kPa6393.268pkPa7813.103 r ≤≤  
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For perfect isentropic expansion: ( ) kPa3066.2135
0473.0
101pp or ===  

 
Minimum reservoir pressure for sonic flow at nozzle throat: 103.7813 kPa 
 
 
Problem 16. – A converging-diverging nozzle with an area ratio (exit to throat) of 3.0 
exhausts air (γ = 1.4) from a large high-pressure reservoir to a region of back pressure pb. 
Under a certain operating condition, a normal shock is observed in the nozzle at an area 
equal to 2.2 times the throat area. What percent of decrease in back pressure would be 
necessary to rid the nozzle of the normal shock?  
 
For As/A* = 2.2 , Ms = M1 = 2.3034.  At this Mach number from the shock tables we find: 
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From this area ratio we find, Me = 0.3577 from which pe/po2 = 0.9154.  Thus, 
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Now for a shock at the exit, i.e., As/A* = Ae/At = 3.0: M1 = = 2.6374 and in turn Me = 
0.5005. 
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% reduction = %4097.29100
5326.0

3760.05326.0
=

−  

 
 
Problem 17. – Due to variations in fuel flow rate, it is found that the stagnation pressure 
at the inlet to a jet-engine nozzle varies with time according to: 
 

po = 200[1 + 0.1 sin (π/4)t], 
 
with t in seconds and po in kilopascals. Determine the resultant variation in nozzle flow 
rate, nozzle exhaust velocity, and exit-plane static pressure. The nozzle area ratio (exit to 
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throat) is 2.0 to 1, and the inlet stagnation temperature is 600 K. Assume negligible inlet 
velocity. The nozzle exhausts to an ambient pressure of 30 kPa; γ = 1.4; nozzle exit area 
is 0.3 m2; R = 0.3 kJ/kg · K.  
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Hence, the stagnation pressure varies from 48.4200 − 4.8420 = 43.5780 kg/s to 48.4200 + 
4.8420 = 53.2620 kg/s. 
 
The stagnation pressure varies from 200 – 20 = 180 kPa to 200 + 20 = 220 kPa. 
 
For a shock at the exit, for Ae/A* = 2.0, we find Me = M1 = 2.1972.  From which we 
obtain and (p1/po1) = 0.0939 and (p2/p1) = 5.4656.  Thus, 
 

( )( ) kPa4545.58
4656.50939.0

30pp or ===  

 
Hence, the exit velocity is constant, 
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Problem 18. – Helium enters a converging-diverging nozzle with a negligible velocity; 
stagnation pressure is 500 kPa and stagnation temperature is 300 K. The nozzle throat 
area is 50 cm2, and the exit area is 300 cm2.  Determine the range of nozzle back 
pressures over which a normal shock will appear in the nozzle. Also, find the nozzle exit 
velocity if the nozzle exhausts into a vacuum.  
 
For γ = 5/3 and at an area ratio (A/A*) = 300/50 = 6.0, we find, 
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M = 0.0943 and p/po = 0.9926 
 

M = 4.1051, p/po = 0.008878, p2/p1 = 20.8145 and T/To = 0.1511. 
 
A normal shock will be in the nozzle for (0.008878)(20.8145)(500) = 92.3956 kPa < pb < 
(0.9926)(500) = 496.3000 kPa. 
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Problem 19. – A jet plane uses a diverging passage as a diffuser (Figure P4.19). For a 
flight Mach number of 1.92, determine the range of back pressures over which a normal 
shock will appear in the diffuser. Ambient pressure and temperature are 70 kPa and 270 
K. Find the mass flow rates handled by the diffuser for the determined back pressure 
ranges, with Ainlet = 100 cm2 and Aexit = 200 cm2. Assume isentropic air flow (γ = 1.4,     
R = 287 J/kg·K) except for across the shocks.  
 
 
 
 
 
 
 
 
 
 

Figure P4.19 
 
 
When the shock is at the inlet:  i (the inlet) = 1 (the upstream location of the shock)  
 
At M1 = 1.92, p1/po1 = 0.1447, A1

*/A2
* = 0.7581 and A1/A1

* = 1.5804.  Thus, 
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From this area ratio we find, Me = 0.2507 and pe/po2 = 0.9572.  Now p1 = 70 kPa, thus 
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When the shock is at the exit: e (the exit) = 2 (the downstream location of the shock) 

T = 270 K 
p = 70 kPa 

Aexit  
Ainlet  
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At Mi = 1.92, Ai/A1

* = 1.5804.  Thus 
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From this area ratio we find, M1 = 2.6926, p2/p1 = 8.2918 and p1/po1 = 0.04344.  Because 
the flow is isentropic from i to 1 we may write, 
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A normal shock will be in the diffuser for 174.2481 kPa ≤ pb ≤ 351.0417 kPa 
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Problem 20. – For the converging-diverging nozzle shown in Figure P4.20, find the range 
of back pressures for which pe > pb, the range of back pressures for which pe < pb, and the 
range of back pressures over which the nozzle is choked. Take γ = 1.4. 
 
 
 
 
 
 
 
 
 
 

Figure P4.20 
 
 
For an area ratio Ae/At = Ae/A* = 60/15 = 4.0,  
 
Supersonic case with shock at exit: 
 

Me = 2.9402, pe/po = 0.0298 and p2/p1 = 9.9188 
 

po = 101 kPa 
Athroat = 15 cm2

Aexit = 60 cm2 
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Subsonic case with shock just downstream of throat: 
 

Me = 0.1465 and pe/po = 0.9851  
 
 pb =  (0.9851)(101) = 99.4951 kPa 
 
For perfectly expanded flow in nozzle: 
 

pb =  (0.0298)(101) = 3.0098 kPa 
 
So, pe > pb for all pb < 3.0098 kPa, whereas, pe < pb for 3.0098  kPa < pb < 29.8536 kPa.  
The nozzle is choked for all pb ≤ 99.4951 kPa. 
 
 
 
Problem 21. – Nitrogen (γ = 1.4, R = 296.8 J/kg·K) expands in a converging-diverging 
nozzle from negligible velocity, a stagnation pressure of 1 MPa, and a stagnation 
temperature of 1000 K to supersonic velocity in the diverging portion of the nozzle. If the 
area ratio of the nozzle is 4.0, determine the back-pressure necessary for a normal shock 
to position itself at an area equal to twice the throat area. For this condition, find the 
nozzle exit velocity.  
 
For *

1s AA  = 2.0 , Ms = M1 = 2.1972.  At this Mach number from the shock relations 
we find: 
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From this area ratio we find, Me = 0.2377 from which pe/po2 = 0.9614 and Te/To = 0.9888.  
Thus, 
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pb = 0.6052(1MPa) = 605.2 kPa 

 
Te = 0.9888(1000) = 988.8K 
 

( )( )( ) s/m3630.1528.9888.2964.12377.0RTMV eee ==γ=  
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Problem 22. – (a) Develop a relation for the upstream Mach number, M1, in terms of the 
downstream Mach number, M2. (b) Use the result from (a) and Eq. (4.12) to prove that 
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Let b = (γ+1)/(γ-1), therefore b+1 = 2γ/(γ-1) and b-1 = 2/(γ-1).   
 
(a) Equation (4.9) may be written as 
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Expand this and rearrange to get 
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Note by interchanging the subscripts the relation is unchanged, therefore it is obvious that 
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The result is also apparent from Fig. 4.10 in which we may observe that the curve is 
symmetrical about the line M2 = M1. 
 
(b) Equation (4.12) can be written as 
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Problem 23. – Prove that the Rankine-Hugoniot relation reduces to the equation for an 
isentropic process for very weak shocks.  Hint: start from Eq. (4.16b) and replace p2 with 
p + dp and p1 with p.  Repeat this for the densities.  Then use the expansion technique 
that was employed in Example 4.1. Note to properly use the expansion approach we must 
first express the term to be expanded as 1 + (small quantity). 
 
Let b = (γ+1)/(γ-1), therefore b+1 = 2γ/(γ-1) and b-1 = 2/(γ-1).  Thus, Eq. (4.16b) may be 
written as 
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Now replace the downstream terms with the upstream value + a differential and rearrange 
the result to get 
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Thus,  
 

ρ
ρ

γ=
d

p
dp  

Integration gives the isentropic relation γρ= Cp  
 
 
Problem 24. – The back pressure to reservoir pressure ratio is 0.7 for a C-D nozzle, with 
an exit to throat area ratio of 2.0.  Use the procedure when the shock location is not 
specified, i.e., the direct approach to determine the location of a normal shock for a ratio 
of specific heats equal to 1.3. Repeat the problem for γ = 5/3.  Draw a conclusion 
regarding shock location and the value of γ. 
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The following table showing the calculation results was prepared from a simple 
spreadsheet program 
 

step γ  1.3 1.4 1.67 

1 Me  0.4128 0.4067 0.3919 

2 pe/po2  0.8964 0.8923 0.8827 

3 po2/po1 0.7809 0.7845 0.793 

4 M1 1.8397 1.8627 1.9221 

5 As/At  1.5349 1.5101 1.4573 

 
 
As may be seen as γ is increased the shock moves upstream. 
 
 
Problem 25. – The back-pressure to reservoir pressure ratio is 0.7 for a C-D nozzle, with 
an exit to throat area ratio of 2.0.  Use the procedure for the situation when the shock 
location is specified, i.e., the trial and error approach to determine the location of a 
normal shock for a ratio of specific heats equal to 1.4. To start the calculations assume 
the shock is at the exit of the nozzle. 
 
The following table summarizes the calculations for each trial.   
 

 
step trial 1 2 3 

0 As/At 2.0 1.467 1.508 

1 M1 2.197 1.825 1.861 

2 po2/po1 0.6295 0.8015 0.7852 

3 A1
*/A2

* 0.6295 0.8015 0.7852 

4 Ae/A2
* 1.2590 1.6030 1.5704 

5 Me 0.5473 0.3960 0.4062 

6 pe/po2 0.8158 0.8975 0.8926 

7 pe/po1 0.53135 0.7193 0.7009 

8 % error -26.6 2.8 0.1 

9 As/At 1.467 1.508 1.51 

 
 
 
Problem 26. – A converging-diverging supersonic diffuser is to be used at Mach 3.0. The 
diffuser is to use a variable throat area so as to swallow the starting shock. What percent 
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of increase in throat area will be necessary? Solve for air (γ = 1.4) and for helium (γ = 
5/3) as working fluids. 
 
Air:  

With no shock from Eq.(3.23) at M = 3.0, 2346.4
A

A

throat

i =   

 
With shock at inlet, M1 = 3.0 and from Eq.(4.9), M2 = 0.4752.  Using this Mach 
number downstream of the shock in Eq.(3.23), we find .3904.1AA *

22 =         
 
Throat area must be increased slightly more than: 
 

  %2041001
3904.1
2346.4100

2346.4
A

2346.4
A

3904.1
A

A
i

ii

=⎟
⎠
⎞

⎜
⎝
⎛ −=×

−
=∆     

 
Helium: 

With no shock from Eq.(3.23) at M = 3.0, 0000.3
A

A

throat

i =   

 
With shock at inlet, M1 = 3.0 and from Eq.(4.9), M2 = 0.5222.  Using this Mach 
number downstream of the shock in Eq.(3.23), we find .2819.1AA *

22 =         
 
Throat area must be increased slightly more than: 
 

  %1341001
2819.1
0000.3100

0000.3
A

0000.3
A

2819.1
A

A
i

ii

=⎟
⎠
⎞

⎜
⎝
⎛ −=×

−
=∆     

   
 
 
Problem 27. –A supersonic wind tunnel is to be constructed as shown in Figure 4.27, 
with air (γ = 1.4, R = 287 J/kg·K) at atmospheric pressure passing through a converging-
diverging nozzle into a constant-area test section and then into a large vacuum tank. The 
test run is started with a pressure 0 kPa in the tank. How long can uniform flow 
conditions be maintained in the test section (i.e., how long will it be before the tank 
pressure rises to a value such that a shock will appear in the test section)?  Assume the 
test section to be circular, 10 cm in diameter, with a design Mach number of 2.4. The 
tank volume is 3 m3, with atmospheric conditions of 101 kPa and 20°C. Assume the air to 
be brought to rest adiabatically in the tank. 
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For a shock at the  nozzle exit  
 

 ( )( )( )  kPa272.4510106840.5533.6p
p
p

p
ppp 1o
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2
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 Tunnel will run until  
 

 ( )( )
( )( ) kg 6151.1

K 293kkJ/kg 287.0
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 The mass flow rate is constant while tunnel is running, so 
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Problem 28. – Repeat Problem 27 but assume that there is a diffuser of area ratio 2 to 1 
between the test section and the tank. 
 
Now at M = 2.4 we can find from Eq.(3.23) that 4031.2AA *

1 = .  Furthermore, from 

Eqs.(4.15) and (4.21): 5401.0AApp *
2

*
11o2o == . Therefore, since 0.2AA 2e = , 

then 
 

( )( )( ) 5957.25401.0403.20.2
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A
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A
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A

A
*
2

*
1

*
1

1

1

e
*
2

e ===  

 



 81

Using the area ratio-Mach number numerical procedure, the subsonic solution gives for 
this area ratio 
 

2301.0Me =  
Hence, 
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CChhaapptteerr  FFiivvee  
  

MMOOVVIINNGG  NNOORRMMAALL    
SSHHOOCCKK  WWAAVVEESS 

 
 
Problem 1. – A projectile moves down a gun barrel with a velocity of 500 m/s (Figure 
P5.1). (a) Calculate the velocity of the normal shock that would precede the projectile. 
Assume the pressure in the undisturbed air (γ = 1.4, R = 287 J/kg·K) to be 101 kPa and 
the temperature to be 25°C. (b) How fast would the projectile have to be moving in order 
for the shock velocity to be two times the projectile velocity? 
 

 
 
 
 
 

Figure P5.1 
 
(a) From Eq. (5.10),  

 

( ) ( ) 2
1

22
a

16
V1

4
V1S +

+γ
+

+γ
=  

 

( )( ) m/s 0295.3462982874.1a1 ==  
 

( ) m/s 9699.7570295.3463005006.0S 22 =++=  
 
 (b) For this part of the problem S = 2V. This is inserted into Eq. (5.9) 
 

  ( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−

+γ
=

2
1
V2

a
1

1
V22V  

   
Cancellation and rearrangement brings 
 

s/m5603.273
2649.1

0295.346
3
aV 1 ==

γ−
=    

 

 
Problem 2. – A normal shock moves into still air (γ = 1.4, R = 287 J/kg·K) with a 
velocity of 1,000 m/s. The motionless air is at 101 kPa and 20°C; calculate the following:  

(a) the velocity of the air flow behind the wave, 
(b) the static pressure behind the wave, and  

Air, V = 0 

Projectile 
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(c) the stagnation temperature behind the wave 
 

 (a) 
( )

9146.2
2932874.1

1000
RT
S

a
SM
1

1 =
γ

==  

   
Use this Mach number in the shock relations, to determine that 

   

5799.2
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p
p,7769.3

1

2
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2 ===
ρ
ρ

 

 
Hence, 

 

7769.3
V1000

1000
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S
V
V

2

1

1

2 =
−

=
−

==
ρ
ρ

 

 
From which we find, V = 735.2326 m/s. 

 

 (b) ( )  kPa1440.9841017440.9,   p7440.9
p
p

2
1

2 ===  

 

 (c) ( ) K 9107.7552935799.2T    ,5799.2
T
T

2
1

2 ===  

 

  ( ) s/m1124.5519.7552874.1RTa 22 ==γ=  
   

( ) K9834.1024
1124.551
2326.7352.019107.755

a
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2
11TT
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12o =
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⎟
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⎞
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⎝
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⎥
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⎦

⎤

⎢
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⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−γ
+=

        
 

 
Problem 3. – A normal shock is observed to move through a constant-area tube into air  
(γ = 1.4, R = 287 J/kg·K) at rest at 25°C (Figure P5.3). The velocity of the air behind the 
wave is measured to be 150 m/s. Calculate the shock velocity. 
 
 

 
 
 
 

Figure P5.3 
 
From Eq. (5.10),  
 

Air at rest 
at 25˚C V = 150 m/s S 
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( ) ( ) 2
1

22
a

16
V1

4
V1S +

+γ
+

+γ
=       

 
( ) m/s 0295.3462982874.1RTa 21 ==γ=      

 
  m/s 5.4475.3570.90S =+=      
 
 
Problem 4. – A piston in a tube is suddenly accelerated to a velocity of 25 m/s causing a 
normal shock to move into helium (γ = 5/3, R = 2077 J/kg·K) at rest in the tube and at a 
temperature of 27 C in the tube. One second later, the piston is suddenly accelerated from 
25 to 50 m/s causing a second shock to move down the tube. How much time will elapse 
from the initial acceleration of the piston to the intersection of the two shocks? 
 
First shock:  
 

( ) m/s0682.019,13002077667.1RTa 11 ==γ=  
 
From Eq. (5.10) 

 

( ) ( ) ( ) ( )

s/m8711.1035
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16
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4
V1S 2

2
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2
2

2
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0165.1
0682.1019
8711.1035

a
SM

1

F
1 ===   

 
At this Mach number from Eq.(4.11) or (5.13) 
 

0164.1
T
T

1

2 = ; thus, T2 = (1.0164)300 = 304.9200K 

   
So 
 

( ) m/s3906.027,192.3042077667.1RTa 12 ==γ=    
 
Second shock: 
 
 Following Example 5.4, we may write 
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Hence, with V2 = 25 m/s and V3 = 50 m/s 

( ) ( ) ( ) s/m1924.10693906.10272550
12
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12
254508S 2

2

S =+⎥
⎦

⎤
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⎣

⎡
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⎞
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 ( )1t∆1924.1069t∆8711.1035 −=  
 
 s0874.32t∆ =  
 
 
Problem 5. – Air (γ = 1.4, R = 287 J/kg·K) at 100 kPa and 290 K is flowing in a constant-
area tube with a velocity of 100 m/s (Figure P5.5). Suddenly the end of the tube is closed, 
which causes a normal shock to propagate back through the airstream. Find the absolute 
velocity of this shock. 

 
 
 
 
 
 
 

Figure P5.5 
First fix the shock 

 

 

 

 

 

 
 

 
 

To compute the shock speed use Eq.(5.10).  However, the speed S that appears in the 
expression must be replaced with S + V to agree with the current problem.  Accordingly 
we may write: 

V = 100 m/s S 

V = 100 m/s S V = 0 

Moving Normal Shock  Stationary Normal Shock  

S + 100 S 

x 

1 2 



 86

2
1

2
aV

4
1V

4
1VS +⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +γ

+⎟
⎠
⎞

⎜
⎝
⎛ +γ

=+
 

 
The speed of sound of the gas in front of the moving shock wave, i.e., a1 is required.  
Accordingly we may write  
 

( )( )( ) s/m3532.3412902874.1RTa 11 ==γ=
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Problem 6. – A normal shock traveling at 1,000 m/s into still air (γ = 1.4, R = 287 J/kg·K) 
at 0°C and 101 kPa reflects from a plane wall. Determine the velocity of the reflected 
shock. Compare the pressure ratio across the reflected shock with that across the incident 
shock. Find the stagnation pressure that would be measured by a stationary observer 
behind the reflected wave. 
 
Incident shock: First we must immobilize the shock by redefining a coordinate system 
that moves with the shock 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

s/m1969.3312730449.20RTa 11 ==γ=  
 

 0194.3
1969.331

1000
a
SM

1

I
1 ===  

 
From the normal shock relations: 
 

SI 

Stationary 
Coordinate System

Moving       
Coordinate System 

V 

SI 

Gas at 
rest 

SI - V  

x 

1 2 



 87

  4696.10
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Thus, 
( ) K6187.7372737019.2T2 == ,  
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( ) s/m9255.7414035.54447405.01000aMSV 22I =−=−=  
            
Alternately, 
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Solve to obtain 
 
 V  = 741.9288 m/s 
 
Reflected shock: Again the first step is to fix the moving shock by redefining the 
coordinate system.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
For this configuration, the reflected shock speed is computed from 
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where V = 741.9288 m/s and a2 = 544.4035 m/s; therefore, 

SR 

V 
V = 0 

x 

Moving Reflected Shock 

SR + V SR 

x 

Stationary Coordinate System 
for the Reflected Shock 

2 3 
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From Eq.(5.24) 
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Behind reflected wave, because the velocity = 0 
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Problem 7. – Under a certain operating condition, the piston speed in an auto engine is 10 
m/s. Approximate engine knock as the occurrence of a normal shock wave traveling at 
1000 m/s downward, as shown in Figure P5.7, into the unburned mixture at 700 kPa and 
500 K. Determine the pressure acting on the piston face after the shock reflects from it. 
Assume the gas has the properties of air (R = 287 J/kg·K) and acts as a perfect gas, with  
γ = 1.4. 

 
 

 
 
 
 
 
 
 
 

Figure P5.7 
 
Incident shock: We must first consider the moving incident shock and redefine the 
coordinate system in order to produce a steady flow problem. 

Incident Shock Reflected Shock 

700 kPa 
500K 
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Now s/m1010101000VSV pI1 =+=+=  and 
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 Therefore, from the normal shock relations, 
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 From the continuity equation across the stationary shock 
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Therefore,V = 665.9169 m/s.  Alternately, 
 

Incident Shock in Stationary 
Coordinate System 

Vp = 10 m/s 

SI 

V

Incident Shock in Moving 
Coordinate System 

SI + Vp 

SI - V 

x 

2 

1 



 90

2

I
2 a

VSM −
=  

 
( ) s/m9256.6655418.6185401.01000aMSV 22I =−=−=  

            
Reflected shock:  Fix reflected shock: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the intermediate step, which results in a normal shock moving into a fluid at rest 
(the fundamental problem), we may use the equations of Section 5.2. However, we must 
replace the shock speed, S, in those relations, with SR + V and we must replace the gas 
speed behind the shock V with Vp + V.  Accordingly, we may rewrite Eq.(5.10) as  
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Now V = 665.9256 m/s, Vp = 10 m/s and a2 = 618.5418 m/s, therefore  
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From Eq.(5.24) 
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Reflected Shock in a 
Stationary Coordinate 
System 
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Reflected Shock in a Moving 
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or                            
                                        = 152.9234 atm 
 
 
Problem 8. – A normal shock moves down a tube with a velocity of 600 m/s into a gas 
with static p = 50 kPa and static temperature of 300 K. At the end of the tube, a piston is 
moving with a velocity of 60 m/s, as shown in Figure P5.8. Calculate the velocity of the 
reflected wave and the static pressure behind the reflected wave. Assume the gas has the 
properties of air (γ = 1.4, R = 287 J/kg·K). 
 
 
 
 
 
 

Figure P5.8 
 
Incident Shock: As usual we perform the coordinate transformation to fix the incident 
shock.  Because the gas in front of the shock is moving it is helpful to perform an 
intermediate step in which this gas is brought to rest.  In this way the equations pertaining 
to a normal shock moving into a stationary gas may be transformed to this problem. 
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Now from Eq.(5.9) with S replaced by SI + Vp and V replaced by V + Vp (see the 
intermediate step), i.e., 

P = 50 kPa 
T = 300K 

Incident Normal Shock Reflected Normal Shock 

V SI Vp 

Incident Normal Shock 
in a Stationary 
Coordinate System 

Intermediate Step 

V + Vp SI + Vp 

Gas at rest 2 1 

SI + Vp SI − V 

Incident Normal Shock in 
a Moving Coordinate 
System 

x 
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Reflected Shock: 
 
 
 
 
  
 
 
 
 
 
 
 
 
Now from Eq.(5.10) with S replaced by SR + V and V replaced by V + Vp (see the 
intermediate step), i.e., 
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So  6795.1
3552.440

8030.3377597.401
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+
=

+
=  

From the normal shock relations 1242.3
p
p

2

3 = .  This can be verified by using Eq.(5.24). 

The pressure behind the reflected shock, which is also the  pressure on the piston face is 
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Problem 9. – For both γ = 7/5 and 5/3, determine the limits of the pressure ratio of a 
reflected normal shock, i.e., p3/p2, (a) for a strong incident shock, i.e., p2/p1 → ∞, and (b) 
for a weak incident wave, , i.e., p2/p1 → 1.    
 
From Eq.(5.24) 
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(a) For the strong shock case since p2/p1 is infinite the ratio simply becomes 
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Thus, 
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3 =  for γ = 5/3 and 

 

8
p
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2

3 =  for γ = 7/5 

 
(b) For a weak shock, p2/p1 is very close to 1, thus 
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Problem 10. – A shock tube is to be used to subject an object to momentary conditions of 
high pressure and temperature. To provide an adequate measuring time, the tube is to be 
made long enough so that a period of 100 ms is provided between the time of passage 
over the body of the initial shock and the time of passage of the shock reflected from the 
closed end of the tube. The initial pressure ratio across the diaphragm is 400 to 1, with 
the object located 3 m from the diaphragm. The initial temperature of the air (γ = 1.4, R = 
287 J/kg·K) in the shock tube is 35°C. Determine a suitable length for the low-pressure 
end of the tube. 
 
Incident Shock: 
 
To begin we can calculate ( )( )( ) s/m7874.3513082874.1a1 == .  For p4/p1 = 400 we 
find p2/p1 using the iterative procedure described in Example 5.6.  From that calculation 
the shock pressure ratio is determined to be p2/p1 = 9.2853.  Now from Eq,(4.12) 
 

8463.2
6
12853.9

7
6

1
1

p
p

2
1M

1

2
1 =⎟

⎠
⎞

⎜
⎝
⎛ +=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+γ
−γ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γ
+γ

=  

 
( )( ) s/m3087.10017874.3518463.2aMS 11I ===  

               
Now at M1 we can also find the density ratio and temperature ratio across the shock.  The 
first ratio will give the velocity behind the shock, V2, and the second will produce a2. 
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From which we find, V2 = 731.4287 m/s.  Also, 
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( )( )( ) s/m5139.5568008.7702874.1a 2 ==  
 
Reflected Shock: 
 
 
 
 
 
 
 
 
 
 
 
 
 
To compute the reflected shock speed use Eq.(5.10).  However the speed S that appears 
in the expression must be replaced with SR + V2 and V is replaced with V2 to agree with 
the current problem.  Accordingly we may write: 
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Thus, 
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Time to test s10100
1622.416

3-L
3087.1001
3-L 3−×=+=  

 
 L = 3 + 29.3979 = 32.3979 m 
 
 
Problem 11. – Air (γ = 1.4, R = 287 J/kg·K) is stored in a tube at 200 kPa and 300 K 
(Figure P.5.11). A diaphragm at the end of the tube separates the high-pressure air and 
the ambient, which has a pressure of 101 kPa.  The diaphragm is suddenly ruptured, 
which causes expansion waves to move down the duct. Determine the time required for 
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SR V2 
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System 

Intermediate Step 
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at 
Rest 

SR+V2 V2 
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x 

SR+V2 SR 

2 3 



 96

the first expansion wave to reach the closed end of the tube and the velocity of the air 
behind the expansion waves. 
 

 
 
 
 
 
 

 
Figure P5.11 
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Problem 12. – Write a computer program that will yield values of the diaphragm pressure 
ratio for given values of the shock pressure ratio for a shock tube with helium (γ = 5/3) 
with the same temperature on both sides of the diaphragm. Determine values of 
diaphragm pressure ratio for shock pressure ratios from 1.0 to 5.0, using increments of 
0.2.   
 
From Eq.(5.36), with γ4 = γ1, a4 = a1, and p = p2/p1 
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and with γ = 5/3 this becomes 
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The spreadsheet program developed for this problem is as follows: 

p2/p1 p4/p1 
1 =H4/(1-((0.2)*(H4-1)/(SQRT(1+0.8*(H4-1)))))^5 
=H4+0.2 =H5/(1-((0.2)*(H5-1)/(SQRT(1+0.8*(H5-1)))))^5 
=H5+0.2 =H6/(1-((0.2)*(H6-1)/(SQRT(1+0.8*(H6-1)))))^5 

 
The results are 
 

p2/p1 p4/p1 p2/p1 p4/p1 
1.00 1.00000 3.00 12.48052
1.20 1.44998 3.20 14.90276
1.40 2.00841 3.40 17.68189
1.60 2.68922 3.60 20.86205
1.80 3.50817 3.80 24.49276
2.00 4.48295 4.00 28.62954
2.20 5.63343 4.20 33.33473
2.40 6.98190 4.40 38.67827
2.60 8.55335 4.60 44.73876
2.80 10.37576 4.80 51.60453
3.00 12.48052 5.00 59.37489

 

 
Problem 13. – A circular tube of length 1.5 m is evacuated to a pressure of 2.5 kPa, with 
the ambient pressure at 101 kPa. A diaphragm at the end of the tube is ruptured, which 
causes a normal shock to move down the tube. Determine the velocity of the initial shock 
that moves down the tube, the velocity and Mach number of the air (γ = 1.4, R = 287 
J/kg·K) behind the shock, and the velocity of the shock that reflects from the closed end. 
Initial air temperature before diaphragm rupture is 300 K. A test object is located midway 
along the tube. Determine the time that this object is subjected to the pressure and 
temperature conditions behind the initial shock (before arrival of the reflected shock). 
Find the static pressure and temperature behind the initial shock. 
 
Initial Shock:  Fix the shock by redefining the coordinate system 
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To begin we can calculate ( )( )( ) s/m1887.3473002874.1a1 == .  Since we are given   
p2 = 101 kPa and p1 = 2.5 kPa, then 
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From Eq,(4.12) 
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( ) s/m2781.20471887.3478967.5aMS 11 ===  

               
Now at M1 we can also find the density ratio and temperature ratio across the shock.  The 
first ratio will give the velocity behind the shock, V2, and the second will produce a2. 
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From which we find, V2 = 1,657.0007 m/s (the velocity of the air behind shock).  Also, 
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Mach number of the air behind the initial shock = 7198.1
5097.963
0007.657,1

a
V

2

2 == .  The 

pressure behind the shock is p2 = 101 kPa. 
 
 
Reflected Shock:  Define a moving coordinate system for the reflected wave as usual.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Replace S and V in Eq.(5.10) with SR + V2 and V2, respectively and rewrite the 
expression as 
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s001406.010392.1010663.3
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Problem 14. – The pressure ratio across the diaphragm in a shock tube is set at 10. The 
diaphragm is ruptured. Determine the velocity of the initial normal shock, the Mach 
number of the gas behind the shock, and the static pressure and temperature behind the 
shock for air (γ = 1.4, R = 287 J/kg·K) as the working fluid and for helium (γ = 5/3, R = 
2.077 kJ/kg·K).as the working fluid. Assume the initial temperature on each side of the 
diaphragm to be 25°C and the initial pressure in the low-pressure end to be 25 kPa. 
 
Air: 

3 2 

    SR  
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( )( )( ) s/m0295.3462982874.1RTa 11 ==γ=  

 
Using the iterative procedure described in Example problem 5.6 for p4/p1 = 10 and γ =1.4, 
we find : 
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( )( ) s/m2548.5560295.3466075.1aMS 11 ===  

  
Now at M1 = 1.6075 from the shock relations 
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From Eq.(5.9)  
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Finally the Mach number behind the shock is  
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Helium: 
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Using the iterative procedure described in Example problem 5.6 for p4/p1 = 10 and           
γ =5/3, we find : 
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Now at M1 = 1.5521 from the shock relations 
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From Eq.(5.9)  
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Finally the Mach number behind the shock is  
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4935.264,1
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Problem 15. – A normal shock moves down an open-ended tube with a velocity of    
1,000 m/s (Figure P5.15). The ambient air (γ = 1.4, R = 287 J/kg·K) pressure and 
temperature are 101 kPa and 25°C, respectively. Determine the velocity of the first and 
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last expansion waves that move down the tube after reflection of the shock from the open 
end. 
  
 
 
 
 
 
 
 
 
 

Figure P5.15 
 
Shock: Fix the moving shock by defining a moving coordinate system 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

( )( )( ) s/m0295.3462982874.1RTa 11 ==γ=  
 

8899.2
0295.346

1000
a
SM
1

1 ===  

 
From the shock relations at this Mach number we obtain 
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 V2 = 733.5536 m/s 
     

 ( )( ) K 4066.7602985517.2T2 ==  
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Expansion Waves: 
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The minus sign means that it is moving to the right, i.e., because V2 exceeds the speed of 
sound, the disturbance is unable to move upstream.  Because the flow in the expansion 
fan is isentropic 
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 Velocity of last wave s/m6753.10959458.14952705.400Va 33 −=−=−=  
   
 
 
Problem 16. – A shock tube is 10 m long with a 30-cm diameter. The high-pressure 
section is 4 m long and contains air (γ = 1.4, R = 287 J/kg·K) at 200 kPa; the low-
pressure section is 6 m long and contains air at 5 kPa. A test object is placed in the low-
pressure section, 3 m from the diaphragm. Both sections initially contain air at 25°C. The 
diaphragm is suddenly ruptured, which causes a shock to move into the low-pressure 
section. Determine the following:  

(a) Shock velocity  
(b) Contact surface velocity  
(c) Mach number of air behind shock  
(d) Time between passage of normal shock and contact surface over test object 
(e) Reflected shock velocity  
(f) Sketch a x-t diagram showing the initial shock, reflected shock, and contact 
surface as functions of time.  

 
  
 
 
 
 
 
 
 
 
 
 
 
(a) For a diaphragm pressure ratio = 40, we may use the method described in Example 
5.6 to find that the shock pressure ratio is,  
 

7726.4
p
p

1

2 =  

 
With this pressure ratio and the speed of sound in Zone 1, (a1 = 346.0295 m/s), we can 
find the shock speed from Eq. (5.8)  
 

s/m9821.711S =  

4 1 

p = 200 kPa   p = 5 kPa   

4 m 6 m 
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(b) ( )
( )

m/s 1740.453
0576.2

11
4.2
9821.7112

S
a1

1
S2V 22

2
1

2 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+γ
=  

 

(c) 

( )

( )( )( ) s/m7480.4559704.5162874.1a    

K 9704.5162987348.1T
T
TT

2

1
1

2
2

==

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

 

 

9944.0
7480.455
1740.453

a
VM

2

2
2 ===  

 

(d) s002406.0004214.006620.
9821.711
3

174.453
3

S
L

V
Lt∆

2
=−=−=−=  

 
  
(e) From Eq.(5.21) 
 

s/m3752.349
174.4539821.711

748.455174.453
VS

aVS
2

2

2
2

2R =
−

+−=
−

+−=  

 
(f) 
   
 
 
 
 
 
 
 
   
 

x 

t reflected shock

contact surface 

incident shock

1 

1 

1 

SR 

V2 

S 
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CChhaapptteerr  SSiixx  
  
  

OOBBLLIIQQUUEE  SSHHOOCCKK  
WWAAVVEESS 

 
 
Problem 1. – Uniform airflow (γ = 1.4, R = 287 J/kg·K) at Mach 3 passes into a concave 
corner of angle 15°, as shown in Figure P6.1. The pressure and temperature in the 
supersonic flow are, respectively, 72 kPa and 290 K. Determine the tangential and normal 
components of velocity and Mach number upstream and downstream of the wave for the 
weak shock solution. Also find the static and stagnation pressure ratios across the wave. 
How great would the corner angle have to be before the shock would detach from the 
corner?  

 
 
 
 
 
 
 
 
 
 
 

 
Figure P6.1 

 
For    : 15    ,0.3M1 °=δ= Collar’s method (refer to Example 6.2 for details of the 
method) is used to find the shock angle.  The following provides the iteration details. 
 

Collar's Method    

A B C B - AC 1rst guess
8.0000 26.0447 3.1618 0.7503 2.8284 

 
Newton-Raphson 
Method     

iteration xold f fprime xnew 
1 2.8284 26.0447 33.8858 2.0598 
2 2.0598 6.4264 17.7542 1.6979 
3 1.6979 1.1765 11.3848 1.5945 
4 1.5945 0.0871 9.7107 1.5856 
5 1.5856 6.3779E-04 9.5684 1.5855 
6 1.5855 3.5182E-08 9.5674 1.5855 
7 1.5855 0.0000E+00 9.5674 1.5855 

1M  = 3 

∆ = 15° 
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 cotθ tanθ angle (deg)

weak 1.5855 0.6307 32.24 
strong 0.0977 10.2387 84.42 

neg root -4.8450 -0.2064 -11.66 
 
So for the weak solution, the shock angle is 32.24° 
 

( ) 6004.124.32sin3sinMM 1n1 =°=θ=   
 
From the shock tables at this Mach number M n 2 = 0.6683, p2/p1 = 2.8215, T2/T1 = 1.3882 
and po2/po1 = 0.8950.  From Eq.(6.9b) 
 

( ) ( ) 2549.2
1524.32sin

6683.0
 sin
M

M n2
2 =

−
=

δ−θ
=  

 
Too be sure, these could also be computed from the oblique shock relations of this 
Chapter [Eqs.(6.10), (6.12), (6.13) and (6.17)].  
 
From the isentropic tables at M1 = 3.0, T/To = 0.3571  
 

 K 1.812
3571.0
290TT o1o2 ===  

Also, 
 ( ) ( ) K6.4022903883.1T3883.1T 12 ===  
 
So the speeds of sound may be computed as  
 

s/m4.34129005.20RTa 11 ==γ=  
 

s/m3.4026.40205.20RTa 22 ==γ=  
And the normal velocity components are 
 
 ( ) m/s 9.5454.3416004.1aMV 11nn1 ===  
 
 ( ) m/s 9.2683.4026683.0aMV 22nn2 ===  
Also, 
 

( ) m/s 2.10244.3410.3aMV 111 ===  
 

( ) m/s 1.9073.4022549.2aMV 222 ===  
 

The tangential velocity component can be computed from either Eq.(6.6a) or (6.7a) 
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( ) m/s 3.86624.32cos2.1024 cos VV 1t =°=θ=  

 
  ( ) ( ) m/s 3.8661524.32cos1.907cosVV 2t =−=δ−θ=  
 

  54.2
4.341
3.866

a
V

M
1

t
1t ===  

 

  15.2
3.402
3.866

a
V

M
2

t
2t ===  

 
 From Table 6.4 for γ = 1.4 and M1 = 3.0, δmax is found to be 34.07°. 
 
 
Problem 2. – In a helium (γ = 5/3) wind tunnel, flow at Mach 4.0 passes over a wedge of 
unknown half-angle aligned symmetrically with the flow. An oblique shock is observed 
attached to the wedge, making an angle of 30° with the flow direction. Determine the 
half-angle of the wedge and the ratios of stagnation pressure and stagnation temperature 
across the wave. 
 
Method 1: Use of normal shock tables. 
 
 ( )    0.230sin 4Mn1 =°=  
 
Using this value we can enter the normal shock table at a γ = 5/3 to find 
 

0781.2
T
T

1

2 =  

763.0
p
p

1o

2o =  

 

0.1
T
T

1o

2o =  

 
607.0Mn2 =  

 
Entering the isentropic flow table at M1 = 4 we find that 
 

1579.0
T
T

1o

1 =  

Thus, 
 



 109

( )( ) 3281.01579.00781.2
T
T

T
T

T
T

1o

1

1

2

2o

2 ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

 
Entering the isentropic flow tables with this temperature ratio provides the downstream 
Mach number 
 

479.2M2 =  
 

( ) 2449.0
479.2
607.0

M
Msin

2

2n ===δ−θ  

 
°=δ−=δ−θ 17.1430  

 
Therefore, the deflection angle δ = 15.83°. 

 
Method 2: Oblique shock equations 
 

γ M1 θ δ p2/p1 ρ2/ρ1 T2/T1 po2/po1 M2 
1.6667 4.0000 30.0000 15.8241 4.7500 2.2857 2.0781 0.7630 2.4785 

 
 
 
Problem 3. – A wedge is to be used as an instrument to determine the Mach number of a 
supersonic airstream (γ = 1.4); that is, with the wedge axis aligned to the flow, the wave 
angle of the attached oblique shock is measured; this permits a determination of the 
incident Mach number. If the total included angle of such a wedge is 45°, give the Mach 
number range over which such an instrument would be effective.  
 
Refer to Example 6.3.  That example concerned the prediction of the minimum upstream 
Mach number to produce an attached oblique shock.  This is a similar problem; only here, 
the half angle ∆ = 45/2 = 22.5°. So for a deflection angle δ of 22.5° and γ = 1.4, 
computations following Example 6.3 are as follows: 
 

Iteration θ (deg) θ(rad) f(θ) df/dθ θnew θ (deg) 1/M1
2 M1 

1 45.00000 0.78540 0.85858 -1.41421 1.39250 79.78466 0.13234 2.74886
2 79.78466 1.39250 -0.64460 -1.72985 1.01987 58.43444 0.24273 2.02971
3 58.43444 1.01987 3.2111E-01 -2.88069 1.13134 64.82124 0.25692 1.97287
4 64.82124 1.13134 -6.5888E-03 -2.92848 1.12909 64.69233 0.25693 1.97284
5 64.69233 1.12909 3.5501E-06 -2.93161 1.12910 64.69240 0.25693 1.97284
6 64.69240 1.12910 9.9343E-13 -2.93161 1.12910 64.69240 0.25693 1.97284
7 64.69240 1.12910 0.0000E+00 -2.93161 1.12910 64.69240 0.25693 1.97284

 
Thus as long as M1 ≥ 1.97284 the shock will remain attached to the wedge. 
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Problem 4. – The leading edge of a supersonic wing is wedge shaped, with a total 
included angle of 10° (Figure P6.4). If the wing is flying at zero angle of attack, 
determine the lift and drag force on the wing per meter of span. Repeat for an angle of 
attack of 3°. Assume the wing is traveling at Mach 2.5.  
 
 

 
 
 
 

 
Figure P6.4 

 
Case I: Zero angle of attack: 
 
First draw a figure (exaggerated) showing the forces acting on the surface: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Lift  = 0sinpAsinpAFy =∆−∆=∑  

 
For °=δ= 5   ,5.2M1  using Collar’s method we find θ = 27.4227º.  With this 
shock angle and the Mach number we can determine the pressure ratio across the 
shock to be 

 

 ∞== p 3799.1p  , 3799.1
p
p

surface
1

2  

 
 Drag force ∆=∆+∆== ∑ sinpA2sinpAsinpAFx  
 

M∞ = 2.5 

2.0 m 

10º 

10º 

10º 

∆ 

∆ 

c 

( ) A1
cos

c
=⎟

⎠
⎞

⎜
⎝
⎛

∆
 

pA 

x 

y 

DU 

LU 

LL 

DL 
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Thus,  

 Drag ( ) ∞∞ =°⎟
⎠
⎞

⎜
⎝
⎛

°
= p4829.05 sin 

5 cos
2p3799.12  

 
Case II: Angle of attack = 3°: 
  

For upper surface: δ = 2° and M1 = 2.5, we find θ = 25.0496°.  So that 
 
   0585.10496.25sin5.2sinMM 1n1 ==θ=  
 

Using the normal shock relations we obtain 
 

   1405.1
p
pU =

∞
 

 
         For lower surface: δ = 2° and M1 = 2.5, we find θ = 30.0053°.  So that 
 
   2502.10053.30sin5.2Mn1 ==  
 

   6568.1
p
pL =

∞
 

 
 Drag °+°= 2 sinA  p8 sinA  p UL  
 

   ( ) ( ) °
°

+°
°

= ∞∞ 2 sin 
5cos

2p1405.18 sin 
5cos

2p6568.1  

 
   ∞∞ += p0799.0p4629.0  
 
   kN/mDrag in in kPa,    pwith p5428.0 ∞∞=  
 

 Lift °
°

−°
°

= 2 cos 
5cos

2p8 cos 
5cos

2p UL  

 

   ( ) ( ) °
°

−°
°

= ∞∞ 2 cos 
5cos

2p1405.18 cos 
5cos

2p6568.1  

 
   ∞∞ −= p2883.2p2939.3  
 
   kN/mLift in in kPa,    pwith p0056.1 ∞∞=  
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Problem 5. – An oblique shock wave is incident on a solid boundary, as shown in Figure 
P6.5. The boundary is to be turned through such an angle that there will be no reflected 
wave. Determine the angle β.  

 
 

 
 
 
 
 
 
 

 
Figure P6.5 

 
The given information M1 = 3.5, γ = 1.4 and θ = 45°is inserted into Eq.(6.18) 
 

( )1sinMM
2

1
1sinMcottan
22

1
2
1

22
1

−θ−
+γ

−θ
θ=δ  

 
And we find that δ = 28.1578°. If the wall is turned through the same angle then there 
will be no need of a reflected oblique shock to turn the flow further.   
 
 
Problem 6. – Explain in physical terms why the angle of incidence and the angle of 
reflection of a reflected oblique shock are not equal. 
 
 Whereas each shock turns the flow through the same angle, the shocks are of 

different strengths so the wave angles must be different.  
 
 
Problem 7. –A converging-diverging nozzle is designed to provide flow at Mach 2.0. 
With the nozzle exhausting to a back pressure of 80 kPa, however, and a reservoir 
pressure of 280 kPa, the nozzle is overexpanded, with oblique shocks at the exit (Figure 
P6.7). Determine the flow direction and flow Mach number in region R with air the 
working fluid. 
 

 
 
 
 
 
 

 
Figure P6.7 

θ 

θ  = 45° 

β 

M1 = 3.5 

Very Large 
Reservoir 

po ≈ constant 

R 

R 
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At the exit plane, 

( )  kPa7840.352801278.0p
p
p

pp   ,0.2MM o
1o

1
1e1e ==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
====  

 

Across shock, 2356.2
7840.35
80

p
p

p
p

e

b

1

2 ===  

 
Entering the normal shock tables at this pressure ratio we find, 4350.1M 1n =  

  

°=⎟
⎠
⎞

⎜
⎝
⎛=θθ= − 8485.45

2
4350.1sin     sosin MM 1

11n  

 Now at Mn1  
 
 

 . 2774.1
T
T

1

2 =  Also at M1 = 2.0 5556.0
T
T

1o

1 = . 

 

  Therefore, ( )( )( ) 7097.00.15556.02774.1
T
T

T
T

T
T

T
T

2o

1o

1o

1

1

2

2o

2 ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

 
 At this static to total temperature ratio we can find M2 = 1.4301 
 

( ) 5072.0 
4301.1
7254.0

M
M

sin
2

n2 ===δ−θ   

 
 ( ) R in 3685.154800.308485.455072.0sin 1 °=−=−θ=δ −  
     
 
Problem 8. –(a) Oblique shock waves appear at the exit of a supersonic nozzle, as shown 
in Figure P6.8. Air is the working fluid.  If the nozzle back pressure is 101 kPa, 
determine the nozzle inlet stagnation pressure. The stagnation temperature of the flow is 
500 K.  Nozzle throat area is 50 cm2, and nozzle exit area is 120 cm2. (b) Find the 
velocity at the nozzle exit plane. (c) Find the mass flow rate through the nozzle. 
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Figure P6.8 

 

 (a) 4.2
50

120
*A

A
A
A e

throat

exit ===  

 
At this area ratio, the Mach number at the exit plane is  Me = M1 = 2.3986, which 
with a shock angle θ = 30º, when used in Eq.(6.18), the deflection equation gives 

δ = 6.6970º and 5114.1
p
p

1

2 = .  Thus,  kPa8255.66
5114.1
101p  1 == .  Now at M1 = 

2.3986,  0685.0
p
p

1o

1 = .  Therefore, 

 

   kPa5542.975
0685.0
8255.66p 1o ==  

 

 (b) ( )  K5000.2325004650.0T
T
T

T  hus,T    4650.0
T
T

o
o

e
e

o

e ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==  

 
  s/m7214.305T05.20a ee ==  
 
  ( ) m/s 3034.7337214.3053986.2aMV eee ===  
 
 
 (c) ( )throatAVm ρ=&  
 
  
 

Reservoir 

30º 

30º 
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( )
( )

( )( )
( )( ) ( )( ) ( )5008333.005.200.11050

5008333.0287.0
5542.9755283.0

aMA
TTTR

ppp
m

4

ttt
oot

1o1ot

−×=

⎥
⎦

⎤
⎢
⎣

⎡
=&

 

 
     ( )( )( )m/s 2607.409m1050kg/m 3100.4 243 −×=  
 
     = 8.8196 kg/s 
 
 
Problem 9. – A supersonic flow leaves a two-dimensional nozzle in parallel, horizontal 
flow (region A) with a Mach number of 2.6 and static pressure (in region A) of 50 kPa. 
The pressure of the atmosphere into which the jet discharges is 101 kPa. Find the 
pressures in regions B and C of Figure P6.9. 
 

 
 
 
 
 
 
 

Figure P6.9 
 

0200.2
50

101
p
p

     kPa,101p
1

2
2 === .  At this pressure ratio we can find the normal 

component to the shock, MnA = 1.3690.  Thus, at MA = 2.6 and MnA,  we can find 
the shock wave angle, 
 

 ( ) °==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=θ −− 7719.315265.0sin

M
M

sin 1

A

nA1  

 
°=δ→°=θ= 0346.117719.31    ,6.2M1  So second shock must turn flow back 

by 11.0346°.  With the flow angles and MA, the temperature ratio across the shock 
is found to be 
 

( )( )( ) 5250.04252.00.12348.1
T
T

T
T

T
T

T
T

    ,2348.1
T
T

o

1

1

A

A

B

o

B

A

B ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==   

 
Using this value with the isentropic flow relations gives 
 

A 
B C 
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 1269.2MB =  
 
 For °=θ→°=δ= 0563.380346.11    ,1269.2M  
 

 ( )  kPa7188.1851018388.1p  so8388.1
p
p

C
B

C ===  

 
 
Problem 10. – For the two-dimensional diffuser shown in Figure P6.10, find Vi and poi, 
 
 
 
 
 

 
 
 
 
 
 

 
Figure P6.10 

 
For an oblique shock with 3.2M   , 3 =°=δ ∞  we can determine the shock wave 
angle using Collar’s method: °=θ 0886.28 .  Also at the freestream Mach number, 
T∞/T o∞ = 0.4859 and p∞/po∞ = 0.0800.   
 

 kPa 0000.625
0800.
50po ==∞  

 
There is enough information to determine the Mach number downstream of the 

shock M2 = 2.1823 as well as several other ratios, viz.,     0540.1
T
T

1

2 = and  

.9994.0
p
p

1o

2o =   Across the normal shock, at M2 = 2.1823, 6362.0
p
p

2o

3o =  and M3 

= Mi = 0.5495 
 

 ( )( )( ) kPa 3864.3970000.6250.19994.6362.0p
p
p

p
p

p
p

p o
o

1o

1o

2o

2o

3o
o1 ==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∞

∞
 

 

 Now at 9430.0
To
T    ,5495.0M i

i ==  

6º 

Vi, poi 

Vi, poi 

M∞ = 2.3 

p∞ = 50 kPa 

T∞ = 0º C 
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 ( ) K 8189.529273
4859.0
19430.0T

T
T

T
TT o

o

i
i =⎟

⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∞

∞
 

 
 s/m5068.461T05.20a ii ==  
 
 ( ) m/s 5980.2535068.4615495.0aMV iii ===      
 
 
Problem 11. – A two-dimensional supersonic inlet is to be designed to operate at Mach 
2.4. Deceleration is to occur through a series of oblique shocks followed by a normal 
shock, as shown in Figure 6.12. Determine the loss of stagnation pressure for the cases of 
two, three, and four oblique shocks. Assume the wedge turning angles are each 6°.  
 
Case I: 

Two oblique shocks: 

  
⎭
⎬
⎫

°=δ
=
6

4.2M1
9948.0

p
p

1589.2M

1o

2o

2

=

=
 

 

  
⎭
⎬
⎫

°=δ
=

6
1589.2M2

9959.0
p
p

9354.1M

2o

3o

3

=

=
 

Normal Shock 

  M3 = 1.9354, 7510.0
p
p

3o

4o =  

 

( )( )( ) 7440.09948.09959.07510.0
p
p

p
p

p
p

p
p

1o

2o

2o

3o

3o

4o

1o

4o ===   

 
 Three oblique shocks: 
 

  
⎭
⎬
⎫

°=δ

=

6
9354.1M3

9966.0
p
p

7240.1M

3o

4o

4

=

=
 

Normal Shock 

  M3 = 1.7240, 8457.0
p
p

4o

5o =  
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  ( )( )( )( ) 8350.09948.09959.09966.08457.0
p
p

p
p

p
p

p
p

p
p

1o

2o

2o

3o

3o

4o

4o

5o

1o

5o ===   

 
 Four oblique shocks: 
 

  
⎭
⎬
⎫

°=δ
=

6
7240.1M4

9972.0
p
p

5184.1M

4o

5o

5

=

=
 

Normal Shock 

  M5 = 1.5184, 9239.0
p
p

5o

6o =  

    

( )( )( )( )( ) 9097.09948.09959.09966.09972.09239.0
p
p

p
p

p
p

p
p

p
p

p
p

1o

2o

2o

3o

3o

4o

4o

5o

5o

6o

1o

6o ===  

 
 
Problem 12. – Two oblique shocks intersect as shown in Figure P6.12. Determine the 
flow conditions after the intersection, with γ = 1.4.  
 

 
 
 
 
 
 
 
 
 

 
Figure P6.12 

 
 At °=θ= 40   , 2.2M1  

                      2638.1
T
T

1664.2
p
p

6691.1M   , 9176.13
1

2

1

2
2 ===°=δ    

 
At  9176.13   , 6691.1M2 °=δ=  

                                  2359.1
T
T

0253.2
p
p

,1402.1M
2

3

2

3
3 ===  

( )( ) 3876.41664.20253.2
p
p

p
p

p
p

1

2

2

3

1

3 ===  

 

M = ? 
p  = ? 
T  = ? 
V  = ? 

40º 

40º 

M = 2.2 

p = 70 kPa 
T = 270 K 
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( )  kPa1327.307703876.4p
p
p

p 1
1

3
3 ==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 

( ) K 7123.421270
5081.0
17936.0T

T
T

T
T

T 1
1

o

o

3
3 =⎟

⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

 
s/m7395.411T05.20a 33 ==  

 
( ) m/s 4653.4697395.4111402.1V3 ==  

 
 
Problem 13. – Show that the entropy increase across an oblique shock is given by,    
(Ref. 7) 
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From Eq.(6.13)    
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and since cv = R/(γ – 1), the above can be written as  
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Problem 14. – Repeat the computations of Example 6.2. However, instead of using the 
successive substitution method proposed by Collar, and described in Section 6.3, solve 
the problem using the Newton-Raphson method. 
 

γ M1 A B C B - AC 1rst guess 
1.3 2.0 3.0000 2.9143 0.8870 0.2534 1.7321 

 
Newton-Raphson Method 

iteration xold f fprime xnew 
1 1.7321 2.9143 9.0725 1.4108 
2 1.4108 0.5945 5.4740 1.3022 
3 1.3022 0.0591 4.3974 1.2888 
4 1.2888 0.0009 4.2690 1.2886 
5 1.2886 0.0000 4.2671 1.2886 

 
 
Problem 15. – For the two-dimensional case shown in Figure P6.15, determine M3 and 
p3. γ = 1.4.  
 

 
 

 
   
 
 
 
 
 

Figure P6.15 
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Problem 16. – Prove that: (a) at the minimum shock angle, M2 = M1 and (b) at the 
maximum value of the shock angle, Eq.(6.17) becomes Eq.(4.9) 
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(a) at the minimum shock angle 
 
The minimum shock angle is the angle of a Mach wave for which θ = sin−1(1/M1).  
Accordingly, (M1sinθ)2 = 1 and (M1cosθ)2 = M1

2 – 1.  Therefore, 
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(b) at the maximum value of the shock angle 
 
At the maximum shock angle θ = π/2 so that (M1sinθ)2 = M1

2 and (M1cosθ)2 = 0.  
Therefore, 
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which is Eq.(4.9). 
  
 
Problem 17. –Develop Prandtl’s relation for oblique shocks from conservation principles. 
 

Begin by writing the energy equation, Eq.(6.5c), as 
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From the momentum equation, Eq.(6.5b), 
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Combining these yields 
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Rearrangement gives 
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Using the continuity equation, Eq.(6.5a), the expression can be simplified to 
obtain Prandtl’s relation for an oblique shock wave 
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Problem 18. – The largest deflection angle for the limiting upstream Mach number,      
M1 → ∞, can be found by differentiating Eq.(6.26), setting the result to zero and then 
solving for θ.  In other words, verify that Eq.(6.27) is correct. 
 
From Example 6.4 it was shown that 
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Cancel the 2 and rewrite the numerator as 
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Problem 19. – In general, the angle of incidence, θi, and the angle of reflection, θr, of an 
oblique shock reflected from a flat surface are not equal.  However, see Refs. 8 and 9, 
there is an angle θ* such that the two angles are equal.  Also, if θi < θ*, then (θr – δ) < θi, 
and if θi > θ*, then (θr – δ) > θi.  Computationally verify that for M1 = 2, 3 and 4 at           
γ = 1.4, the angle of incidence and the angle of reflection of an oblique shock reflected 
from a flat surface will be equal if 
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At M1 = 2 and γ = 1.4, the computations yield the following values  
 

γ M1 θ(deg) δ(deg) M2 
1.4 2.0 -39.2315 -9.9242 1.6433 

 M2 θ(deg) δ(deg) M3 
 1.6433 49.1557 9.9242 1.2910 
 incidence reflection  = (θ - δ)  
 -39.231520 39.231520   

At M1 = 3 and γ = 1.4, the computations yield the following values 
 

γ M1 θ(deg) δ(deg) M2 
1.4 3.0 -39.2315 -21.2229 1.9282 

 M2 θ(deg) δ(deg) M3 
 1.9282 60.4544 21.2229 1.0221 
 incidence reflection  = (θ - δ)  
 -39.231520 39.231520   

 
Note the flow in region 3 is just barely supersonic 
 
At M1 = 4 and γ = 1.4, the computations yield the following values 
 

γ M1 θ(deg) δ(deg) M2 
1.4 4.0 -39.2315 -25.6060 2.1656 

 M2 θ(deg) δ(deg) M3 
 2.1656 64.3940 25.6060 0.9349 
 incidence reflection  = (θ - δ)  
 -39.231520 38.788033   

 
And as seen the incident and reflected angles are not equal.  Also M3 is subsonic, which 
is possible for a weak shock.  However, when we use the shock shock solution instead, 
the following is obtained 
 

     
γ M1 θ(deg) δ(deg) M2 

1.4 4.0 -39.2315 -25.6060 2.1656 
 M2 θ(deg) δ(deg) M3 
 2.1656 64.8375 25.6060 0.9239 
 incidence reflection  = (θ - δ)  
 -39.231520 39.231534   
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Problem 20. – Complete the computations of Example 6.7, i.e., use the computed flow 
angles to determine the deflection angles, and with M1 and M2, determine all parameters 
in regions 3 and 4 of Figure 6.18. 
 
 

region 1 to region 3         
γ M1 α1 p2/p1 ρ3/ρ1 T3/T1 po3/po1  

1.4 2.0 0.00 1 1 1 1  
 δ13 θ p3/p1 ρ3/ρ1 T3/T1 po3/po1 M3 
 -5.7977 -35.0485 1.3723 1.2525 1.0957 0.9968 1.7928 

region 2 to region 4          
γ M2 α2 p2/p1 ρ2/ρ1 T2/T1 po2/po1  

1.4 3.0 -10.00 1 1 1 1  
 δ24 θ p4/p2 ρ4/ρ2 T4/T2 po4/po2 M4 
 4.2023 22.5101 1.3723 1.2525 1.0957 0.9968 2.7889 

 
 
 

δ13 -5.7977 δ24 4.2023 
α1 0.00000 α2 -10.0000
α3 -5.7977 α4 -5.7977 

δ13=α3−α1  δ24=α4−α2  
 
 
 
Problem 21. – Derive the pressure-deflection equation, i.e., Eq.(6.30). 
 
The expression for the pressure ratio across an oblique shock, is given in Eq.(6.10)   
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The following identity is also used in this development 
 
 



 126

         

( )

( ) ( )
( ) 11sinM

1sinM1M

11sinM

11sin1M

sin
sin1

sin
sin1

sin
coscot

22
1

22
1

2
1

22
1

22
1

2

22

+−θ

−θ−−
±=

+−θ

+−θ−
±=

θ

θ−
±=

θ
θ−

±=
θ
θ

=θ

  

 
 
Now the deflection angle is connected to the shock wave angle and the upstream Mach 
number by Eq.(6.18) 
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Dividing the expression on the right into two pieces 
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Combining these two pieces yields the pressure-deflection equation 
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Problem 22. – Repeat the computations of Example 6.8 to find the angle the slip line 
makes with the horizontal for γ = 1.4 and 1.667.  How does the angle vary with γ? 
 
Results of the computations for all three specific heat ratios (1.3, 1.4 and 5/3) is as 
follows: 
 
γ = 1.3 
 

region 1 to region 2 to region 4       
γ M1 δ1−2 θ1−2 p2/p1 ρ2/ρ1 T2/T1 po2/po1  

1.3000 3.5000 10.0000 23.9901 2.1587 1.7862 1.2085 0.9500  
 M2 δ2−4 θ2−4 p4/p2 ρ4/ρ2 T4/T2 po4/po2 M4 
 2.9976 -14.8926 -31.4440 2.6339 2.0575 1.2802 0.9032 2.3580 

region 1 to region 3 to region 5       
γ M1 δ1−3 θ1−3 p3/p1 ρ3/ρ1 T3/T1 po3/po1  

1.3000 3.5000 -15.0000 -28.5011 3.0227 2.2615 1.3366 0.8598  
 M3 δ3−5 θ3−5 p5/p3 ρ5/ρ3 T5/T3 po5/po3 M5 
 2.7361 10.1074 29.1782 1.8810 1.6152 1.1646 0.9719 2.3422 

 
Downstream
flow angles       

δ24 -14.8926 δ35 10.1074 
α2 10.00000 α3 -15.0000 
α4 -4.8926 α5 -4.8926 

δ24=α4−α2  δ35=α5−α3  
 
γ = 1.4 
 

region 1 to region 2 to region 4       
γ M1 δ1−2 θ1−2 p2/p1 ρ2/ρ1 T2/T1 po2/po1  

1.4000 3.5000 10.0000 24.3840 2.2693 1.7675 1.2839 0.9463  
 M2 δ2−4 θ2−4 p4/p2 ρ4/ρ2 T4/T2 po4/po2 M4 
 2.9044 -14.8780 -32.8511 2.7293 1.9905 1.3711 0.9042 2.1906 

region 1 to region 3 to region 5       
γ M1 δ1−3 θ1−3 p3/p1 ρ3/ρ1 T3/T1 po3/po1  

1.4000 3.5000 -15.0000 -29.1916 3.2331 2.2093 1.4634 0.8528  
 M3 δ3−5 θ3−5 p5/p3 ρ5/ρ3 T5/T3 po5/po3 M5 
 2.6053 10.1220 30.8502 1.9157 1.5784 1.2137 0.9726 2.1708 
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Downstream
flow angles       

δ24 -14.8780 δ35 10.1220
α2 10.00000 α3 -15.0000
α4 -4.8780 α5 -4.8780 

δ24=α4−α2  δ35=α5−α3  
 
 
γ = 5/3 
 

region 1 to region 2 to region 4       
γ M1 δ1−2 θ1−2 p2/p1 ρ2/ρ1 T2/T1 po2/po1  

1.6667 3.5000 10.0000 25.4710 2.5820 1.7211 1.5002 0.9366  
 M2 δ2−4 θ2−4 p4/p2 ρ4/ρ2 T4/T2 po4/po2 M4 
 2.6768 -14.8530 -36.9465 2.9858 1.8528 1.6115 0.9057 1.8187 

region 1 to region 3 to region 5       
γ M1 δ1−3 θ1−3 p3/p1 ρ3/ρ1 T3/T1 po3/po1  

1.6667 3.5000 -15.0000 -31.1387 3.8446 2.0879 1.8414 0.8356  
 M3 δ3−5 θ3−5 p5/p3 ρ5/ρ3 T5/T3 po5/po3 M5 
 2.2982 10.1470 35.7646 2.0052 1.5022 1.3349 0.9740 1.7900 

 
Downstream
flow angles       

δ24 -14.8530 δ35 10.1470 
α2 10.00000 α3 -15.0000
α4 -4.8530 α5 -4.8530 

δ24=α4−α2  δ35=α5−α3  
 

As can be seen, the angle of the slip line (α4 = α5) is diminished slightly as γ is increased. 
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Chapter Seven 
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Problem 1. – Use a trigonometric development to demonstrate that for an expansion flow 
around a convex corner, Vn2 > Vn1 (see Figure 7.2 in Section 7.2).  
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The momentum equation in the tangential direction reveals that Vt1 = Vt2.  Therefore, 
equating the above brings 
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Since, tan(θ + ∆) > tanθ, it follows that Vn2 > Vn1. 
 
 
 
Problem 2. – A uniform supersonic flow of air (γ = 1.4) at Mach 2.6, with stagnation 
pressure of 5 MPa and stagnation temperature of 1000 K, expands around a 20° convex 
corner. Determine the downstream Mach number, the stagnation pressure and 
temperature, and the static pressure and temperature.  
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Using the solver developed in Example 7.1, we obtain 
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Now from the isentropic flow relations  
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Problem 3. – Integrate Eq.(7.7).  To accomplish this first use a transformation in which 
x2 = M2 – 1 and then use the method of partial fractions to break the transformed 
integrand into two groups of terms, which may be integrated using: 
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Let x2 = M2 – 1 or M2 = 1 + x2.  Therefore, 2MdM = 2xdx or 
 

2x1
xdx

M
dM

+
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Perform the transformation of the terms on the right to obtain 
 

 

 

20º

 

M2

M1 = 2.6
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Next use partial fractions to divide the right hand side into two groups of terms 
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Solving this pair yields: A = γ + 1 and B = −1. Thus, the transformed equation can be 
arranged into two groups and leads to the following two integrals:  
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Making use of the given integral identity we get 
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Problem 4. – A reservoir containing air (γ = 1.4) at 2 MPa is connected to ambient air at 
101 kPa through a converging-diverging nozzle designed to produce flow at Mach 2.0, 
with axial flow at the nozzle exit plane (Figure P7.4). Under these conditions, the nozzle 
is underexpanded, with a Prandtl Meyer expansion fan at the exit. Find the flow direction 
after the initial expansion fan. How does this turning angle affect the net axial thrust 
forces exerted by the fluid on the nozzle? 
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Figure P7.4 

At °=ν== 3798.26,1278.0
p
p    ,0.2M 1
o1

1
1  

°=ν=== 3044.41thereforeand,595.2M    ,    so0505.0
2000
101

p
p

22
1o
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The angle through which the flow turned is: 

 

°=−=ν=α 14.92463798.263044.41ν- 12  
 
The turning does not affect thrust, because the expansion occurs outside nozzle. 
 

 
Problem 5. – Develop a computer program that will yield values of ν and µ versus M for 
Prandtl-Meyer flow for γ = 1.3 over the range M = 1.0 to M = 2.5, using Mach number 
increments of 0.1.  
 

A table of the Prandtl-Meyer function and wave 
angle versus Mach number for γ = 1.3  

 
M ν (rad) ν (deg) µ (rad) µ (deg) 

1.000 0.0000 0.0000 1.5708 90.0000 
1.100 0.0244 1.4004 1.1411 65.3800 
1.200 0.0654 3.7454 0.9851 56.4427 
1.300 0.1138 6.5230 0.8776 50.2849 
1.400 0.1665 9.5414 0.7956 45.5847 
1.500 0.2215 12.6928 0.7297 41.8103 
1.600 0.2777 15.9089 0.6751 38.6822 
1.700 0.3341 19.1436 0.6289 36.0319 
1.800 0.3903 22.3645 0.5890 33.7490 
1.900 0.4459 25.5491 0.5543 31.7569 
2.000 0.5006 28.6809 0.5236 30.0000 
2.100 0.5541 31.7483 0.4963 28.4369 
2.200 0.6064 34.7433 0.4719 27.0357 
2.300 0.6573 37.6605 0.4498 25.7715 
2.400 0.7068 40.4962 0.4298 24.6243 
2.500 0.7548 43.2486 0.4115 23.5782 

 

 

α = ?  

2 MPa 
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Problem 6. – A uniform supersonic flow of a perfect gas with γ = 1.3 and Mach number 
3.0 expands around a 5° convex corner. Determine the downstream Mach number, ratio 
of downstream to upstream velocity, and ratio of downstream to upstream stagnation 
temperature.  
 

 For °==γ= 7584.55ν   ,3.1   ,3M 11 , and 4255.0
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Problem 7. – For flow at Mach 2.5 and γ = 1.4 over the symmetrical protrusion shown in 
Figure P7.5, find M2, M3, M4, T2, T3, and T4.  

 
 
 
 
 
 
 

 
Figure P7.7 
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M1 = 2.5 M3M2
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 ( ) K 6625.3740675.6755550.0T2 ==  
 
 ( ) K 4212.2370675.6753517.0T3 ==  
 
 ( ) K 9784.3080675.6754577.0T4 ==  
 
 
Problem 8. – A uniform supersonic flow of a perfect gas with γ = 1.4, Mach number 3.0 
and an upstream static pressure of 100kPa flows over a geometry as shown in P7.8.  
Determine the downstream static pressure for both profiles.  
 
 
 
 
 
 
 
 
 
 

(a) Expansion Fan-Oblique Shock Geometry     (b) Oblique Shock- Expansion Fan Geometry    
 

Figure P7.8 
 
Divide the flow field of both cases shown in Figure P7.8 into 3 regions of uniform flow 
with region 1 on the left and region 3 on the right. 
 
Case (a) 
From the isentropic and Prandtl-Meyer relations at γ = 1.4 and M1 = 3.0 

  

°=ν= 7573.49,02722.0
p
p 1
o1

1  

 

p1 = 100 kPa 

10° 

M1 = 3 

M3M2α1 = 0° 

α3 = 0°

p1 = 100 kPa 

10° 

M1 = 3 
M3M2 

α3 = 0° 

α1 = 0°
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Region 2 is reached by passing through an expansion fan in which the flow is turned 10º.  
Therefore,  
 

01174.0
p
p

and5783.3M    so    ,7573.5910ν
2o

2
212 ==°=+ν=

 

Region 3 is reached by passing through an oblique shock in which the flow is turned back 
10º.  Therefore, using the oblique shock relations 
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Case (b) 
Region 2 is reached by passing through an oblique shock in which the flow is turned 
through 10º.  Therefore, using the oblique shock relations with γ = 1.4, M1 = 3.0 and       
δ = 10º, 

9631.0
p
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and0545.2
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2 ===

 

From the isentropic and Prandtl-Meyer relations at γ = 1.4 and M2 = 2.5050 
  

°=ν= 2402.39,05807.0
p
p 2
o2

2  

 
Region 3 is reached by passing through an expansion fan in which the flow is turned 10º.  
Therefore,  
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Problem 9. – A two-dimensional, flat plate is inclined at a positive angle of attack in a 
supersonic air stream of Mach 2.0 (Figure P7.6). Below the plate, an oblique shock wave 
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starts at the leading edge, making an angle of 42° with the stream direction. On the upper 
side, an expansion occurs at the leading edge. 
(a) Find the angle of attack, AoA, of the plate.  
(b) What is the pressure on the lower surface of the plate? 
(c) What is the pressure on the upper surface of the plate?  

 
 
 
 
 
 
 
 
 
 

Figure P7.9 
 

 
From the oblique shock relations,  
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  ( ) kPa1383.96509228.1p2 ==  
 

(c) At M1 we find, °= 3798.26ν1  and since the flow on the top of the plate 
must be turned through the same amount as on the bottom, we may write 

 
°=+=δ+ν= − 7387.383589.123798.26ν 2113  

 
With this value of the Prandtl-Meyer function, we find 
 

4836.2M3 =  
Now because the flow through the expansion fan is isentropic, i.e., po1 = 
po3,   

 

1278.0
p
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p
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M1 = 2 

ΑοΑ 
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( ) kPa4900.23504698.0p3 ==  

 
 
Problem 10. – A two-dimensional supersonic wing has the profile shown in Figure P7 .7. 
At zero angle of attack, determine the drag force on the wing per unit length of span at 
Mach 2 and at Mach 4. Repeat for the lift force. Take the maximum thickness of the 
airfoil to be 0.2m. 

 
 
  
 
 
 
 
 

 
 

 
Figure P7.7 

 
 
M1 = 2.0 computations 
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At this Mach number and deflection angle, the shock wave angle is found to be °= 8.38θ  

and 6604.1
p
p   , 6604.1M

1

2
2 == .  Furthermore, from the isentropic flow relations at M2, 

we have 2150.0
p
p

2o

2 = and the Prandtl-Meyer function at this Mach number is 16.6446º. 

Now since the flow must be turned through 2δ in passing from region 2 to 3, we may 
write  
 ( ) °=+=δ+ν= 5692.354623.926446.162ν 23  
 
From this value we can determine the Mach number in region 3 to be M3 = 2.3518.  At 
this value we can return to the isentropic relations to find the static to total pressure ratio 
in region 3 to be p3/po3 = 0.0737. We are now in a position to compute the pressure on the 
rear side of the airfoil, i.e., p3. 
 

t = 0.2m 

L/2 = 1.2m 

L = 2.4m 

M1 

1 
2 4 3

5



 138

 ( )( ) 3428.0
2150.0
110737.0

p
p

p
p

p
p

p
p

2

2o

2o

3o

3o

3

2

3 =⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

 
 

 ( )( )

( )( )  kPa3837.11208.333428.0p
p
p

p

kPa,208.33206604.1p
p
p

p

 kPa,20pp

2
2

3
3

1
1

2
2

1

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

== ∞

 

 

 
( ) ( ) ( ) ( )

m/kN3649.4

2.03837.112080.33tppsin
sin

tpsin
sin

tpDrag 3232

=

−=−=δ⎟
⎠
⎞

⎜
⎝
⎛

δ
−δ⎟

⎠
⎞

⎜
⎝
⎛

δ
=

 

 

( )( ) ( ) ( ) ( )

( )

( )( ) ( )( ) m/kN510.52.13837.112080.334.220
2
LppLp

cot
tppLpcos

sin
tpcos

sin
tpLpLift

321

321321

−=+−=

=+−=

δ
+−=δ⎟

⎠
⎞

⎜
⎝
⎛

δ
−δ⎟

⎠
⎞

⎜
⎝
⎛

δ
−=

      

 
M1 = 4.0 computations 
 
At this Mach number and the deflection angle of 9.4623º, °= 7505.21θ  
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Hence, M3 = 4.7575.  The static to total pressure ratio in region 3 is  p3/po3 = 0.00252. 
The pressure on the rear side of the airfoil, i.e., p3 is computed as 
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Problem 11. In Problem 10, a compression occurs at the trailing edge, with the resultant 
flows in regions (a) and (b) parallel (Figure P7.11). Is there any difference in pressure, 
velocity, or entropy between regions (a) and (b)? Discuss. 
 
 

 
 
 
 
 
 

 
Figure P7.11 

 
The flow over the top of the wing has gone through two shocks, and an isentropic 
expansion fan, whereas, the flow over the bottom has undergone no shocks.  Therefore, 
 

entropy (4)   >   entropy (5) 
 
Consequently, a contact discontinuity or slip line separates the two regions. The flow 
direction in the two regions is the same and there can be no pressure difference between 
(4) and (5).  However, there is a velocity difference between (4) and (5). 
 

  

1 
2 4 3
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Problem 12. – A reservoir containing air at 10 MPa is discharged through a converging-
diverging nozzle of area ratio 3.0. An expansion fan is observed at the exit, with the flow 
immediately downstream of the fan turned through an angle of 10°. Determine the 
pressure of the region into which the nozzle is exhausting, if the air can be assumed to 
behave as a perfect gas with constant γ = 1.4. 
 

For the given area ratio:     0.3
*A

A
= we can determine the corresponding Mach number 

for the supersonic case to be Me = 2.6374.  At this Mach number, the Prandtl-Meyer 
function is found to be νe = 42.2498°. After the exiting flow is turned through 10º the 
Prandtl-Meyer function is 
 
 °=+ν= 2498.5210ν eb  
 
From this value, we can find the corresponding Mach number 
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Problem 13. –Determine the value of γ for which νmax = 180°. 
 
From Eq.(7.15) 
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Solving we find that: 8γ =  10 or γ = 1.25. 
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Problem 14. – For the geometry shown in P7.15 along with the given values of the fan 
angle and the deflection angle, determine M1 and M2. 
 
 
 
 
 
 
 
 
 
 
 

Figure P7.14 
 
 
The solution of this problem requires a trial and error approach involving the following 
two equations 
 

∆+ν=ν

∆+µ−µ=φ

12

21
 

 
Since φ = 30º and ∆ = 15º, this pair of equations can be written as 
 

21

12

15

15

µ−µ=

ν−ν=
 

 
Now since both µ1 and ν1 depend only on M1 and since both µ2 and ν2 depend only on 
M2, then the above pair represents two equations with two unknowns. One procedure to 
solve the pair is  

1. assume an M1,  
2. determine ν1 from the Prandlt-Meyer relation,   
3. with ν1 use the first expression to compute ν2,  
4. from ν2 obtain M2,   
5. with M2 we can determine µ2,  
6. with µ2 use the second expression above to compute µ1,  
7. from µ1 determine M1, and  
8. repeat the process until the computed M1 value in step7 agrees with the assumed 

value in step 1. 
 

(α2 – α1) = −15° µ1

 
 

φ = 30° 
 

µ2
α1 = 0°  

α2 = −15° 
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The following table contains some of the computations from this process 
 

M1 ν1 ν2 M2 µ2 µ1 M1 
2.0 26.38 41.38 2.5984 22.634 37.634 1.6377 

1.6377           1.4822 
1.4822           1.4142 
1.4142           1.3848 
1.3848           1.3722 
1.3722           1.3669 
1.3669           1.3646 
1.3646           1.3637 
1.3637           1.3633 
1.3633           1.3631 
1.3631           1.3630 
1.3630 7.9286 22.929 1.8768 32.196 47.196 1.3630 

 
Therefore, M1 = 1.3630 and M2 = 1.8768. 

 
 
Problem 15. – For the geometry of Figure P7.14, and for given values of the wall turning 
angle, ∆, and the static pressure ratio across the expansion fan, p2/p1, define a process that 
will yield M1 and M2.  Use the process to solve for these Mach numbers if p2 = 0.4p1 and 
∆ = 10°.  Take γ = 1.4. 
 
The following outlines a computational process  
 

1. assume an M1,  
2. determine p1/po from the isentropic pressure relation,   
3. compute p2/po =(p2/p1)(p1/po), 
4. obtain M2 from p2/po,   
5. determine ν2 from M2,  
6. compute ν1 =  ν2  − ∆,  
7. determine M1 from ν1, and  
8. repeat the process until the computed M1 value in step7 agrees with the 

assumed value in step 1. 
 
The results of the computations are contained in the following table 
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M1 p1/po p2/po M2 ν2 ν1 M1 

2.0000 0.1278 0.051122 2.5872 41.1251 31.1251 2.1767 
2.5000 0.0585 0.023411 3.1011 51.6699 41.6699 2.6114 
3.0000 0.0272 0.010889 3.6318 60.5757 50.5757 3.0428 
3.2000 0.0202 0.0081 3.8472 63.7088 53.7088 3.2134 
3.3000 0.0175 0.0070 3.9554 65.1907 55.1907 3.2982 
3.2982 0.0175 0.007009 3.9535 65.1649 55.1649 3.2967 
3.2967 0.0176 0.007025 3.9518 65.1421 55.1421 3.2954 
3.2954 0.0176 0.007038 3.9504 65.1235 55.1235 3.2943 
3.2943 0.0176 0.007049 3.9492 65.1079 55.1079 3.2934 
3.2934 0.0176 0.007058 3.9483 65.0951 55.0951 3.2926 
3.2926 0.0177 0.007066 3.9474 65.0837 55.0837 3.2920 
3.2900 0.0177 0.007093 3.9446 65.0455 55.0455 3.2897 
3.2895 0.0177 0.007098 3.9441 65.0384 55.0384 3.2893 
3.2891 0.0178 0.007102 3.9436 65.0327 55.0327 3.2890 

 
 
The method produces M1 = 3.289 and M2 = 3.9436, however, it converges very slowly. 
 
 
 
Problem 16. – A gas (γ = 1.44, R = 256 J/kg·K) flows towards a convex corner with     
M1 = 3 and T1 = 300 K.  Determine the downstream Mach number M2 and the 
downstream velocity V2 if the wall is turned 15°.  Repeat the calculations if the wall is 
turned 30°. 
 
Case (a) ∆ = 15º 
 
 °== 7334.47ν    ,0.3M 11                                
 

   7334.6215ν12 °=+=ν  
 
 

Using the solver developed in Example 7.1, we obtain 
 

0021.4M2 =  
 

Now from the isentropic flow relations  
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T
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3356.0
T
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2
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1 ==  

 
Since the flow is adiabatic, To1 = To2 and therefore, 
 

 

 
∆º 

 

M2

M1 = 3.0 
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( )( )( ) s/m9263.2696460.19725644.1RTa 22 ==γ=  

 
V2 = (M2)(a2) = (4.0021)(269.9263) = 1,080.2722 m/s 

 
 
Case (b) ∆ = 30º 
 

°== 7334.47ν    ,0.3M 11  
 

   7334.7730ν12 °=+=ν  
 
Using the solver developed in Example 7.1, we obtain 

 
6003.5M2 =  

 
Now from the isentropic flow relations  
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Since the flow is adiabatic, To1 = To2 and therefore, 
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( )( )( ) s/m2527.2041704.11325644.1RTa 22 ==γ=  

 
V2 = (M2)(a2) = (5.6003)(204.2527) = 1,143.8762 m/s 

 
 
 
Problem 17. – Air (γ = 1.4) at M1 = 2 and p1 = 150 kPa flows in a duct as shown in 
Figure 7.15.  The upper wall turns the uniform supersonic stream through 5° “away” 
from the flow resulting in the formation of a Prandtl-Meyer fan at the corner.  Waves of 
the fan reflect off the lower surface of the duct.  Determine the Mach number and 
pressure downstream of the leading reflected expansion wave. 
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The flow configuration is shown in the following 
 
 
 
 
 
 
 
 
 
 
 
 
 

°== 3798.26ν    ,0.2M 11  
 

   3798.3153798.26ν12 °=+=∆+=ν  
 
Using the solver developed in Example 7.1, we obtain 

 
,1864.2M2 =  

 
Since the flow just downstream of the reflected leading wave was turned twice through 
the expansion, we may write 
 

   3798.36103798.262νν 123 °=+=∆+=∆+=ν  
 
So 
 

,3849.2M3 =  
 
Now from the isentropic relations at M1 and M3 
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Hence, 
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Problem 18. – When Theodor Meyer presented his dissertation in 1908, the Mach 
number had not been named; it appeared 20 years later (see Ref. 2).  Accordingly, at that 

 

 

∆º 

 

M2 
M1 = 2.0 

M3 
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time of Meyer’s thesis the static to total pressure ratio was used.  Write the Prandtl-Meyer 
function much like Meyer would have using the pressure ratio.  
 
From Eq.(7.9) the Prandtl-Meyer function is written 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −−⎥

⎦

⎤
⎢
⎣

⎡
−

+γ
−γ

−γ
+γ

=ν −− 1Mtan1M
1
1tan

1
1 2121  

 
The static to total pressure relation is 
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Replacing the Mach number in the Prandtl-Meyer expression brings 
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Problem 19. – Obtain the following pressure-Mach number relation from the continuity 
and normal momentum equations applied to a control volume containing a Mach wave: 
 

M
dM

M
2

11

M
p

dp
2

2

−γ
+

γ
−=  

 
Integrate this relation to derive the expression for the pressure ratio across the Mach 
wave, p2/p1 in terms of M1 and M2, i.e., obtain Eq.(7.13). 
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From the normal momentum equation, 
 

0VdVdp =ρ+  
 

Hence, 
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But from Eq.(7.6) 
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So that 
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If  
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Take the logarithm and then differentiate to obtain 
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Integration produces 
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Problem 20. – Repeat Example 7.5 for γ = 1.25. 
 
The pressure-flow direction diagram obtained for this flow is 
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The numerical solution for the intersection of the two curves is contained in the following 
table 
 
iteration yold y+∆ y-∆ f(y) f(y+∆) f(y-∆) ∆f/∆y ynew x x (deg) 

1 2.0000 2.0001 1.9999 -0.0380 -0.0380 -0.0380 0.2965 2.12816 0.20459 1.7223 
2 2.1282 2.1283 2.1281 -0.0009 -0.0009 -0.0009 0.2826 2.13137 0.20504 1.7478 
3 2.1314 2.1315 2.1313 0.0000 0.0000 0.0000 0.2823 2.13137 0.20504 1.7478 
4 2.1314 2.1315 2.1313 0.0000 0.0000 0.0000 0.2823 2.13137 0.20504 1.7478 

  
Thus, 
 

    
p3/pref = p4/pref α3 = α4  

2.1314  1.7478  
Expansion Region Shock Region 

δ13 11.7478 δ24 11.7478
ν3 41.7478 θ24 28.2649

p3/p1 0.5328 p4/p2 2.1314 
ρ3/ρ1 0.6043 ρ4/ρ2 1.8131 
T3/T1 0.8817 T4/T2 1.1755 
po3/po1 1.0000 po4/po2 0.9495 

M3 2.3686 M4 2.5419 
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Chapter Eight 
 
 

AAPPPPLLIICCAATTIIOONNSS  IINNVVOOLLVVIINNGG  
SSHHOOCCKKSS  AANNDD  EEXXPPAANNSSIIOONN  FFAANNSS    

 
 
Problem 1. – A supersonic inlet (Figure P8.1) is to be designed to handle air (γ = 1.4,     
R = 287 J/kg·K) at Mach 1.75 with static pressure and temperature of 50 kPa and 250 K. 
Determine the diffuser inlet area Ai if the device is to handle 10 kg/s of air. 
 

 
 
 
 
 
 
 
 
 

Figure P8.1 
  
Using the oblique shock solution method we obtain 
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Subscript 2 represents conditions just upstream of the normal shock 
 

Ai 
Ae 

M1 = 1.75 
14° 

1 2 3



 150

kg/s 10RTMA
RT
p

aMA
RT
p

VAρm 222
2

2
222

2

2
222 =γ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==&  

So 
 

 ( ) ( ) ( )( )( ) 109750.2762874.15090.1A
9750.276287.0

2550.71
2 =⎥

⎦

⎤
⎢
⎣

⎡  

 

 
( )

2
32 m 0222.0

s/m4015.503)kg/m 8964.0(
kg/s 10A ==  

 
 
Problem 2. – The diffuser in Problem 1 is to further decelerate flow after the normal 
shock so that the velocity entering the compressor is not to exceed 25 m/s. Assuming 
isentropic flow after the shock, determine the area Ae required. For this condition, find 
the static pressure pe. Take γ = 1.4 and cp = 1.004 kJ/kg·K. 
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For M2 = 1.5090, the Mach number downstream of the normal shock is found to be 

6979.0M3 = .  Hence, the area ratio for this Mach number can be obtained from the 

isentropic flow tables, 0959.1
A

A
*
3

3 = . And since the flow downstream of the normal 

shock is assumed to be isentropic *
3

*
e AA = .  Now 
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At this Mach number we can find 3405.9
A

A
*
e

e = .  Thus, 
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Using the various Mach numbers that have been determined we can find the following 
corresponding pressure ratios from isentropic flow and normal shock relations 
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Problem 3. – Compare the loss in total pressure incurred by a one-shock spike diffuser 
with that incurred by a two-shock diffuser operating at Mach 2.0. Repeat at Mach 4.0 (see 
Figure 8.5). Assume that each oblique shock turns the flow through an angle of 10°. Take 
γ = 1.3. 

   
 
 

                
                 

 
 
 
 
 

 
  (a) One-shock inlet              (b) Two-shock inlet  

 
Figure 8.5 Flow Regions within the Spike Diffusers of Example 8.1 
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From the oblique shock solver at γ = 1.3, M1 = 2.0 and δ = 10°, the weak solution yields 
θ = 38.8127°. Moreover the Mach number downstream of the shock is, M2 = 1.6765. For 
the one-shock diffuser,  
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From the oblique shock relations at M1 = 2.0, po2/pol = 0.9861 and from the normal shock 
relations at M2 = 1.6765, po3/po2 = 0.8570. Hence,  
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For the two-shock inlet, M2 = 1.6765. At the latter Mach number and δ = 10°, the wave 
angle for the weak shock solution is θ = 47.3152º, po3/po2 = 0.9889 and M3 = 1.3533. At 
M3 from the normal shock relations po4/po3 = 0.9677.  Thus, 
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Now at M1 = 4.0 and δ = 10°, the weak solution yields θ = 21.8411°, po2/pol = 0.9301  
and M2 = 3.4050. From the normal shock relations at M2 = 3.4050, po3/po2 = 0.1853.  
Therefore, for the one oblique shock diffuser,  
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For the two-shock inlet, M2 = 3.4050. At M2 = 3.4050 and δ = 10°, θ = 24.4808°,                
po3/po2 = 0.9533 and M3 = 2.9186. Using M3 in the normal shock relations gives       
po4/po3 = 0.3065. For this case,  
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Problem 4. – A converging nozzle is supplied from a large air (γ = 1.4, R = 287 J/kg·K) 
reservoir maintained at 600K and 2 MPa. If the nozzle back pressure is 101 kPa, 
determine the pressure and Mach number that exist at the nozzle exit plane. Since the 
nozzle is operating in the underexpanded regime, expansion waves occur at the nozzle 
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exit. Determine the flow direction after the initial expansion fans and the flow Mach 
number.  
 
Since the nozzle is operating in the underexpanded flow regime, the nozzle is choked.  
Accordingly, the Mach number at the exit is Me = 1.0 and the exit pressure to reservoir 
pressure ratio is pe/po = 0.5283 for γ = 1.4.  Thus the exit pressure is 
 
 ( )  kPa6.1056 MPa25283.0pe ==  
 
The expansion fans turn the supersonic flow and reduce the pressure to that of the back 
pressure.   Now 
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From this pressure ratio we can find the corresponding Mach number 
 

   5951.2Mb =  
Since the flow expands from Me = 1 to Mb = 2.5951, we need only determine the Prandlt-
Meyer function for the latter Mach number. This provides the angle through which the 
flow is turned, i.e., νb – νe = 41.3044 – 0 = 41.3044° = αb – αe = αb   
 
 
Problem 5. – An oblique shock wave occurs in a supersonic flow in which M1 = 3.  The 
shock turns the supersonic stream through 10°.  The shock impinges on a free surface 
along which the pressure is constant and equal to p1, i.e., the pressure upstream of the 
shock.  The shock is reflected from the free surface as an expansion fan.  Determine the 
Mach number and the angle of the flow just downstream of the fan. Assume γ = 1.4. 
 
 
 
 
 
 
 
 

Figure P8.5 
 
Using the oblique shock solution method we obtain 
 

M1 = 3 10˚ 

free surface 

1
2
3

p1 = p3 
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In region 2 from the Prandtl-Meyer and isentropic relations 
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Because the flow across the expansion fan is isentropic po2 = po3 and because of the 
constant pressure free surface p1 = p3, thus we may form the following string of pressure 
ratios  
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With this pressure ratio, using the static to total pressure-Mach number relation, we 
obtain M3 = 2.9750 and therefore from the Prandtl-Meyer relation ν3 = 49.2727˚.  Finally 
then, for this flow geometry 
 

°=−=α−α=ν−ν 0325.102402.392727.492323  
 
Accordingly, 
 

°=+=+α=α 0325.200325.10100325.1023  
 
 
Problem 6. – A converging-diverging nozzle is designed to provide exit flow at Mach 
2.2. With the nozzle exhausting to a back pressure of 101 kPa, however, and a reservoir 
pressure of 350 kPa, the nozzle is overexpanded, with oblique shocks appearing at the 
exit. Determine the flow direction, static pressure, and Mach number in regions 1,2, and 
3 of Figure P8.6.  
 

 
 
 
 
 
 

 
Figure P8.6 

 

1 2
3
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Consider the following geometry 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the isentropic flow relations at Me = 2.2 
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From this pressure ratio, essentially p2/p1, and the normal shock pressure-Mach number 
relation, we can determine the upstream normal component to the oblique shock as 
 
 6698.1Mne =  
 
And since the ratio of Mne to Me is the sinθ we can therefore determine the shock wave 
angle  

 °−==== 3761.49θ    enceh    θ,sin7590.0
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M
M

e
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With Me and θ, we can find the deflection angle to be δ = −20.8875º.  Accordingly, the 
flow in 1 is turned 20.8875° from the horizontal.  Moreover, the Mach number in this 
region is M1 = 1.3596.   
 
At this Mach number and for a flow deflection of +20.8875º, there is no solution (see 
Figure 6.6).  Reflection must be as in Figure 6.14, i.e., a Mach reflection will occur. 
 
 
Problem 7. – Determine the flow directions in regions 1 and 3 of Figure P8.6 if the 
reservoir pressure were increased to 2 MPa. 
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Because the nozzle is designed for an exit Mach number, Me, of 2.2, it follows that the 
static to total pressure ratio at the nozzle exit is 
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The back pressure is 101 kPa  and the reservoir pressure is 2,000 kPa, therefore,  
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Since pb/po < pe/po, the nozzle is underexpanded for this back pressure-reservoir pressure 
combination.  The following provides nomenclature and a sketch of the flow field.  
  
 
 
 
 
 
 
 
  
 
 
 
From the Prandtl-Meyer relation at Me = 2.2, we find that νe = 31.7325˚.  Since pb = p1 in 
region 1.  Then, from the static to total pressure ratio, p1/po = 0.0505, we find that         
M1 = 2.5950 and therefore ν1 = 41.3044˚. So the exit flow is turned through the following 
angle as it passes into region 1 
 
 °=−=ν−=α−α 5719.97325.313044.41ν e1e1  
 
Since αe = 0˚, then it follows that α1 = 9.5719˚. The flow in region 2 must be horizontal, 
i.e., α2 = 0˚, and since we must pass through another expansion fan, we may write that 
 

( ) 1212 ν ν−=α−α−  
 
Hence,  
 

°=+=α+ν= 8763.505719.93044.41ν 112  
 
From this we find M2 = 3.0587 and therefore p2/po2 = 0.0249.  Since the flow is isentropic 
across both expansion fans, po2 = po1 = po = 2,000 kPa.  This enables us to determine      
p2 = (0.0249)(2,000) = 49.8000 kPa.  Now since p3 = pb = 101 kPa, we have the pressure 

p1 = pb p3 = pb 

1 2 3

e 
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ratio across the oblique shock, i.e., p3/p2 = 101/49.8 = 2.0281. With this pressure ratio 
and M2 = 3.0587 we can first determine the shock angle from Eq.(6.10)   
 

1
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1
sinM2

p
p 22

1

1

2
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−
+γ

θγ
=  

 
Hence 
 

( )( )
( )( )

4484.0
0587.38.2

4.04.20281.2sin 2 ±=
+

±=θ  

 
From which we find that θ = ±26.6423˚.  With this angle and the Mach number we enter 
the oblique shock solver to find δ = ±9.6362˚.  From this we see that α3 = −9.6362˚. 
 
 
Problem 8. – A plug nozzle is designed to produce Mach 2.5 flow in the axial direction at 
the plug apex. Flow at the throat cowling must therefore be directed toward the axis. 
Determine the flow direction at the throat cowling to produce axial flow at the apex. 
Assume γ = 1.4. 
 
 

ththapthapapth 01236.3901236.39    ,5.2M  to  1M α−=α−α=°=−=ν−==   
 
 
Problem 9. – A rocket nozzle is designed to operate with a ratio of chamber pressure to 
ambient pressure (pc/pa) of 50. Compare the performance of a plug nozzle with that of a 
converging-diverging nozzle for two cases where the nozzle is operating overexpanded; 
pc/pa = 40 and pc/pa = 20. Compare on the basis of thrust coefficient; CT = T/(pcAth), 
where T is the thrust and Ath is the area of throat. Assume γ = 1.3 and in both cases 
neglect the effect of nonaxial exit velocity components. 
 
 
For the design case,  
From pe/po = pa/pc = 1/50 = 0.02, since in the design case the flow is isentropic, we can 
determine the Mach number at the exit, i.e., Me = 3.1267 (see Eq. (3.15)), and therefore        
Te/To = Te/Tc = 0.4054.  Now from the definition of the thrust coefficient  
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Because the nozzle is choked, Mth = 1 and for γ = 1.3, 
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Using these values and the values at the exit, we get  
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Note, R, pc and Tc drop out of the above expression. 
 
For the converging-diverging nozzle operating off design, 
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where at Me = 3.1267, Ae/Ath = Ae/A* = 5.9590.  So for pc/pa = 40, 
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And for pc/pa = 20,  
 

( ) 3357.105.002.09590.55145.1CT =−+=  
 

For the plug nozzle, 
Flow in the plug nozzle does not continue to expand below ambient pressure, so there is 
no pressure term in the expression for thrust.  
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Whereas for pc/pa = 20,  5009.0
T
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      and5773.2M
c

e
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 3876.1CT =  

 
When these results are compared to those of Example 8.4, it is seen that the effect of 
changing γ from 1.4 to 1.3 is relatively small. 
 
 
Problem 10. – Compute the lift and drag coefficients for a flat plate airfoil of chord 
length c = 1m in supersonic flow through air (γ = 1.4) at M∞ = 3 and α = 8°. 
 
Because this is a companion to Example 8.5 rather than repeat the same format, instead 
the results of the spreadsheet program for a flat plate at an angle of attack are presented. 
 
          

    
 
       

Input Parameters        Flow Regions    
M∞ 3.0000         
α 8.0         
γ 1.4         
c 1.0         

          
          
          
        Results            
          
Region ∞: freestream          

γ M∞ α∞ ν∞ ρv2/(2p∞)   p∞/po∞     
1.4 3.0 0 49.7573 6.3000   0.02722     

          
Region 1: lower region behind oblique shock      

γ M∞ δ θ α M1 po1/po∞ p1/p∞      
1.4 3.0 8.0 25.6114 8.0 2.6031 0.9799 1.7953   

          
Region 2: upper region behind expansion fan      

γ M∞ ν∞ α ν2 M2 p2/po2 p2/p∞   
1.4 3.0 49.7573 8.0 57.7573 3.4519 0.01404 0.51574   

∞

1

2
4

3
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Region 3: lower region behind expansion fan      

γ M1 δ13   ν3 M3 po3/po1 p3/p1   
1.4 2.6031 8.0233   49.5077 2.9871 1.0000 0.5565   

          
Region 4: upper region behind oblique shock      

γ M2 δ24 θ24   M4 po4/po2 p4/p2   
1.4 3.4519 8.0233 22.8937   2.9812 0.9712 1.9372   

          
Direction of trailing flow     Lift and Drag Coefficents 

α3 = α4       CL CD  
0.0233       0.2011 0.0283  

       L/(cp∞) D/(cp∞)  
Mach numbers and pressure ratios    1.2671 0.1781  

M∞ M1 M2 M3 M4      
3.0 2.6031 3.4519 2.9871 2.9812      

p∞/p∞    p1/p∞    p2/p∞ p3/p∞ p4/p∞      
1.0000 1.7953 0.5157 0.9991 0.9991      

 
 
 
Problem 11. – Compute the drag coefficient for a symmetric, diamond-shaped airfoil 
(Figure P8.11) with a thickness to chord ratio, t/c, equal to 0.10 flying at Mach 3.5 in air 
(γ = 1.4) at 10 km at zero angle of attack.  

 
 
 
 
 
 

 
Figure P8.11 

 
For an oblique shock at the nose of the airfoil, 
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Using this value of the Prandtl-Meyer function we find the corresponding Mach number 
is M3 = 3.8760 and in turn the corresponding static to total pressure ratio is                
p3/po3 = 0.007781.  Accordingly, we may form the following ratio 
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Because of the symmetry and the 0º angle of attack, the lift coefficient is zero.  The drag 
coefficient may be determined in the following way 
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Problem 12. Compute the lift and drag coefficients for the airfoil described in Problem 
11 for an angle of attack of 5°. 
 
Upper Surface 
 

°=ν= ∞∞ 5298.58,5.3M  
 

( ) °=−=α−ν= ∞ 2404.597106.05298.58ν 22  
 

5450.3M2 =  
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Lower Surface 
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Problem 13. – Compare the lift to drag ratio of the diamond airfoil in problem 12 with 
that of a flat-plate airfoil for the same freestream Mach number of 3.5 and angle of attack 
of 5°. Assume γ = 1.4. 
 
Flat plate airfoil 
The various flow regions are numbered as follows 
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Upper Surface 
 
Using the freestream Mach number 
 

°=∞ 5298.58ν  
 
From this and the angle of attack we can find ν2 from which we can find M2 
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and so M2 = 3.8344. Furthermore using the Mach of the freestream and in region 2 we 
can use the isentropic relations to determine the corresponding static to stagnation 
pressure ratios.  Since the flow from the freestream into region 2 is isentropic  
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Lower Surface 
Because the freestream flow must be turned through 5º as it passes through the oblique 
shock  
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Problem 14. – Consider a flat-plate supersonic airfoil with a flap, as shown in Figure 
P8.10. For a flap angle of 5°, an angle of attack 10°, and a flight Mach number of 2.2, 
find the lift and drag coefficients of the airfoil.  
 
 

 
 
 
 
 
 
 

Figure P8.14 
 
Except for the trailing edge phenomena, there will be two expansion fans on the top of 
the plate and two oblique shocks on the lower portion.  The regions for the calculations 
are numbered as follows 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From this and the angle of attack we can find ν2, which will lead to M2 
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and so M2 = 2.6142. This process is repeated in passing through the expansion fan at the 
corner of the flat plate and the flap 
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and so M4 = 2.8478. Furthermore using M∞, M2, M4, we can use the isentropic relations 
to determine the corresponding static to stagnation pressure ratios.  Since the flows from 
the freestream into region 2 and from region 2 to 4 are isentropic  
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Lower Surface 
The freestream flow is turned through 10º as it passes through the first oblique shock.  
Therefore, 
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The stream in region 1 is turned through 5º as it passes through the second oblique shock 
as it flows into region 3.  Therefore, 
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And so 
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Problem 15. – Compute the lift and drag coefficients for the supersonic, symmetric 
airfoil shown flying in air (γ = 1.4) at Mach 2.5 at an angle of attack of 5° in Figure 
P8.15.  
 

 
 
 

 
 

Figure P8.l5 
 
Because the angle of attack and the wedge angle have the same value, the flow will 
experience only one expansion fan on the upper surface where the slope changes and an 
oblique shock on the bottom at the leading edge.   
 
Upper Surface 
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and so M2 = 2.9674. 
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Lower Surface 
The freestream flow is turned through 5º as it passes through the forward oblique shock.  
Therefore, 
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Problem 16. – A supersonic jet plane is flying horizontally at 150 m above ground level 
at a Mach number of 2.5, as shown in Figure P8.16. The airfoil is symmetric and 
diamond shaped, with 2∆ = 10º and a chord length of 4m. As the plane passes over, a 
ground observer hears the “sonic boom” caused by the shock waves. Find the time 
between the two “booms,” one from the shock at the leading edge and one from the shock 
at the trailing edge. Ambient pressure and temperature are 100 kPa and 20°C.  
 
 
 
 

 
 
 
 
 
 
 
 

Figure P8.l6 
 
 
The region numbering is shown in the following figure 
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Only the lower surface need be considered.  For the first shock wave  
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Finally for the second oblique shock wave, 
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If the airfoil is H above the surface and if the distance between shocks at the surface is 
called D.  Then  
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Chapter Nine 
 
 

FFLLOOWW  WWIITTHH  FFRRIICCTTIIOONN    
 
 
Problem 1. – Draw the T-s diagram for the adiabatic flow of a gas with γ = 1.4 in a 
constant diameter pipe with friction.  The reference Mach number, M1, for the flow is 3.0. 
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Equation (9.7) may now be written as 
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In this expression there are two values of To/T that will cause ∆s/cp to vanish.  Clearly, 
both will cause the argument of the natural log function to be exactly equal to 1.  One 
value occurs at To/T1, i.e., when T = T1.  Because of the nonlinearity of the function 
involving To/T, the other value must be found numerically.  This is readily accomplished 
using a spreadsheet program to implement the Newton-Raphson method. Setting the 
argument of the natural log function to unity gives 
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Rearranging this produces 
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In this problem c = 0.003735.  The results of the computations are  
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To/T f f ′ (To/T)new Mmin 

1.0000 -0.0037 0.9776 1.0038 0.138219
1.0038 0.0000 0.9772 1.0038 0.138235
1.0038 0.0000 0.9772 1.0038 0.138235
1.0038 0.0000 0.9772 1.0038 0.138235
1.0038 0.0000 0.9772 1.0038 0.138235
1.0038 0.0000 0.9772 1.0038 0.138235
1.0038 0.0000 0.9772 1.0038 0.138235
1.0038 0.0000 0.9772 1.0038 0.138235
1.0038 0.0000 0.9772 1.0038 0.138235
1.0038 0.0000 0.9772 1.0038 0.138235
1.0038 0.0000 0.9772 1.0038 0.138235

    answer 
 
So 
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or                                              1382.0M 0s ==∆  
 
The coordinates for the Fanno-Line at this reference state are shown in the following 
table.  The figure shown below is a plot of this data. 
 

M ∆s/cp T/T1 
0.1382 0.0000 2.7893 
0.33 0.2327 2.7407 
0.52 0.3366 2.6564 
0.71 0.3886 2.5432 
0.90 0.4099 2.4086 
1.09 0.4104 2.2607 
1.28 0.3959 2.1066 
1.47 0.3702 1.9521 
1.66 0.3363 1.8017 
1.86 0.2963 1.6584 
2.05 0.2518 1.5240 
2.24 0.2042 1.3995 
2.43 0.1546 1.2852 
2.62 0.1036 1.1808 
2.81 0.0519 1.0860 
3.00 0.0000 1.0000 
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Problem 2. – Draw the T-s diagram for the adiabatic flow of a gas with γ = 1.3 in a 
constant diameter pipe with friction.  The reference Mach number, M1, for the flow is 4.0. 
 
Following the same procedure as indicated in Problem 1  
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In this problem c = 0.0002021.  The results of the computations are  
 

To/T f df/dt (To/T)new Mmin 
1.0000 -0.0002 0.9985 1.0002 0.0367 
1.0002 0.0000 0.9984 1.0002 0.0367 
1.0002 0.0000 0.9984 1.0002 0.0367 
1.0002 0.0000 0.9984 1.0002 0.0367 
1.0002 0.0000 0.9984 1.0002 0.0367 
1.0002 0.0000 0.9984 1.0002 0.0367 

pc/s∆  

1T
T  
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1.0002 0.0000 0.9984 1.0002 0.0367 
1.0002 0.0000 0.9984 1.0002 0.0367 
1.0002 0.0000 0.9984 1.0002 0.0367 
1.0002 0.0000 0.9984 1.0002 0.0367 
1.0002 0.0000 0.9984 1.0002 0.0367 

    answer 
 
The coordinates for the Fanno-Line at this reference state are shown in the following 
table.  The figure shown below is a plot of this data. 
 

M ∆s/cp T/T1 
0.0367 0.0000 3.3993 
0.30 0.4736 3.3544 
0.57 0.5896 3.2445 
0.83 0.6326 3.0820 
1.09 0.6373 2.8828 
1.36 0.6173 2.6634 
1.62 0.5800 2.4379 
1.89 0.5308 2.2169 
2.15 0.4732 2.0075 
2.41 0.4102 1.8137 
2.68 0.3437 1.6374 
2.94 0.2752 1.4787 
3.21 0.2059 1.3370 
3.47 0.1366 1.2109 
3.74 0.0678 1.0991 
4.00 0.0000 1.0000 
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Problem 3. – Air (γ = 1.4) flows into a constant-area insulated duct with a Mach number 
of 0.20. For a duct diameter of 1 cm and friction coefficient of 0.02, determine the duct 
length required to reach Mach 0.60. Determine the length required to attain Mach 1. 
Finally if an additional 75 cm is added to the duct length needed to reach Mach 1, while 
the initial stagnation conditions are maintained, determine the reduction in flow rate that 
would occur.  
 
Using the Fanno flow and isentropic flow relations we have at the upstream location 
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and at the downstream location 
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Since f = 0.02 and D = 1 cm, L = (14.0425)(1)/(0.02) = 702.1250cm = 7.0213 m 
 
To reach Mach 1 at the exit  
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Since f = 0.02 and D = 1 cm, L = (14.5333)(1)/(0.02) = 726.6650 cm.  
 
Now if 75 cm is added to this duct length, the flow rate will be reduced (M1 will be 
reduced). To determine the reduced value of M1R we compute 
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From this value we find that M1R = 0.1917.  Note the subscript R has been added to 
indicate the reduced value. Using the isentropic flow relations we have 
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The original mass flow rate and the reduced flow rate may be written respectively as 
 

R1R1
1R

1R
1R1RR

11
1

1
11

RTAM
RT
pAVρm

RTAM
RT
p

AVρm

γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

&

&

 

 
Since the stagnation conditions are maintained we may write the following 
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So the % reduction is (1 – 0.9604)100 = 3.9622% 
 
 
Problem 4. – Air (γ = 1.4 and R = 0.287 kJ/kg · K) enters a constant-area insulated duct 
with a Mach number of 0.35, a stagnation pressure of 105 kPa, and stagnation 
temperature of 300 K. For a duct length of 50 cm, duct diameter of 1 cm, and friction 
coefficient of 0.022, determine the air force on the duct wall.  
 
 
A force-momentum balance on a control volume within the duct reveals that  
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 ( )12airon  wall2211 VVmFApAp −=−− &  
 
Thus to compute the force we must first determine the entry and exit values of the static 
pressure and velocity as well as the mass flow rate.  
 
Using the Fanno flow and isentropic flow relations we have at the upstream location 
 

4.1
35.0M1

=γ
=

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

=

==
ρ

ρ

=

=⎟
⎠

⎞
⎜
⎝

⎛

∗

∗

∗

9761.0
T
T

9188.0
p
p

6400.2
V
V

0922.3
p

p

4525.3
D

fL

1o

1

1o

1

1

1

1

1

max

 

 
( ) 3525.2

1
50022.04525.3

D
fL

D
fL

D
fL

1

max

2

max =−=−⎟
⎠

⎞
⎜
⎝

⎛=⎟
⎠

⎞
⎜
⎝

⎛  

 
From this value we find that M2 = 0.3976.  Using the Fanno and isentropic flow relations 
we have 
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Since po1 = 105 kPa,  
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Because the flow is adiabatic: To1 = To2 = 300 K. 
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Finally, 
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Problem 5. – Hydrogen (γ = 1.4 and R = 4124 J/kg · K) enters a constant-area insulated 
duct with a velocity of 2600 m/s, static temperature of 300 K, and stagnation pressure of 
520 kPa. The duct is 2 cm in diameter, and 10 cm long. For a friction coefficient of 0.02, 
determine the change of static pressure and temperature in the duct and the exit velocity 
of the hydrogen.  
 

 
( )

9756.1
30041244.1

2600
RT
V

a
V

M
1

1

1

1
1 ==

γ
==  

 
Using the Fanno flow and isentropic relations we have at the upstream location 
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From this value we find that M2 = 1.6712.  Using the Fanno and isentropic flow relations 
we have 
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Problem 6. – A constant-area duct, 25 cm in length by 1.3 cm in diameter, is connected 
to an air reservoir through a converging nozzle, as shown in Figure P9.6. For a constant 
reservoir pressure of 1 MPa and constant reservoir temperature of 600 K, determine the 
flow rate through the duct for a back pressure of 101 kPa. Assume adiabatic flow in the 
tube with f = 0.023. 

 
 
 
 
 
 

 
Figure P9.6 

 
First determine the exit pressure assuming the duct is choked. Therefore,  
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From this value we can determine that M1 = 0.6129.  At this Mach number using the 
isentropic and Fanno flow pressure relations we may write that 
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Since the back pressure is well below this value the assumption that the duct is choked is 
correct and we may proceed to determine the flow rate.  Now at M1 = 0.6129, 
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Problem 7. – Find the time required for the pressure in the tank filled with Nitrogen       
(γ = 1.4 and R = 296.8 J/kg · K) shown in Figure P9.7 to drop from 1 MPa to 500 kPa. 
The tank volume is 8 m3 and the tank temperature is 300K.  Assume the tank temperature 
remains constant and the flow in the 3 m long, 1 cm diameter connecting tube is adiabatic 
with f = 0.018.   The back pressure is 101 kPa.  
 
 
 
 
 
 
 
 

Figure P9.7 
 
First determine the exit pressure assuming the duct is choked. Therefore,  
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From this value we can determine that M1 = 0.2979.  At this Mach number using the 
isentropic and Fanno flow pressure relations we may write that 
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The lowest value of reservoir pressure is 500 kPa; therefore, the smallest value of p* is 
(0.2580)500 = 129 kPa and since this value is above pb = 101 kPa, the duct is choked for 
the entire process. 
 
At M1 = 0.2979, 
 

1 2 
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Now within the reservoir, 
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Taking the time derivative of this expression gives 
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From a mass balance on the reservoir, 
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Problem 8. – A converging-diverging nozzle has an area ratio of 3.3, i.e., the exit and 
therefore the duct area is 3.3 times the throat area, which is 60 cm2. The nozzle is 
supplied from a tank containing air (γ = 1.4 and R = 0.287 kJ/kg · K) at 100 kPa at 270 K. 
For case A of Figure P9.8, find the maximum mass flow possible through the nozzle and 
the range of back pressures over which the mass flow can be attained. Repeat for case B, 
in which a constant-area insulated duct of length 1.5 m and f = 0.022 is added to the 
nozzle.  
 
 

    
 
 
 
 
 
 
 
 
 
 
 
 
                 Case A                                                                                Case B 

Figure P9.8 
 
Case A 
The maximum flow rate will occur when the throat Mach number is 1.  At this Mach 
number, the throat static to total pressure and temperature ratios are:  0.5283 and 0.8333, 
respectively.  Accordingly, the flow rate is computed to be 
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For A/A* = 3.3, we can determine that the exit Mach number is 0.1787.  At this value the 
exit static to total pressure ratio is 0.9780.  Thus, the maximum flow rate will occur for 
 

( ) kPa7952.971009780.0p0 b =≤≤  
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Case B 
Here too, the maximum flow rate will occur when the throat Mach number is 1.  At this 
Mach number, the throat static to total pressure and temperature ratios are: 0.5283 and 
0.8333, respectively.  Accordingly, the maximum flow rate will be the same as that in 
Case A, viz., 1.4760 kg/s. 
 
Now for subsonic flow at the nozzle exit, and the duct inlet, M1 = 0.1787. 
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The diameter of the duct is computed as follows 
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So the exit Mach number is 0.1796.  The exit pressure which is equal to the back pressure 
is computed as follows 
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Thus, the maximum flow rate will occur for 
 

kPa3183.97p0 b ≤≤   
 
 
Problem 9. – A 3-m3 volume tank, R, is to be filled to a pressure of 200 kPa (initial 
pressure 0 kPa).  The tank is connected to a reservoir tank, L, containing air at 3 MPa and 
300 K, whose volume is also 3 m3. A 30-m length of 2.5 cm-diameter tubing is used to 
connect the two vessels, as shown in Figure P9.9.  Determine the time required to fill the 
tank to 200 kPa.  Assume Fanno flow with f = 0.02.  
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Figure P9.9 

 
Because R, the tank on the right, is evacuated, it may be safely assumed that Me = 1.  
Therefore,  
 

( )( )
( ) i

max

i

max

e

max

i

max
D

fL
0.0

D
fL

D
fL

D
fL

0.24
025.0

3002.0
D
fL

⎟
⎠

⎞
⎜
⎝

⎛=−⎟
⎠

⎞
⎜
⎝

⎛=⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛===  

 
From this value we find that Mi = 0.1606.  Using the isentropic flow relations we have 
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Now in order that there be Fanno flow, To must remain constant.  So for tank L 
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Differentiate this with respect to time to get 
 

dt
dmRT

dt
dp L

o
oL =∀  

So 

( )( ) dt
dp

03484.0
dt

dp
300287.0

3p10x1302.3m
dt

dp
RTdt

dm oLoL
oL

4
i

oL

o

L ==−=−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∀
= −&  

i e 

Tank L Tank R 



 184

 
Similarly, for the tank on the right 
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Problem 10. Find the mass flow rate of air (γ = 1.4 and R = 0.287 kJ/kg · K) through the 
system shown in Figure P9.10. Assume Fanno line flow in the duct and isentropic flow in 
the converging sections; f = 0.01.  
 
 

 
 
 
 
 
 
 

 
Figure P9.10 

15 m 

2 cm in diameter pb = 30 kPa 

p = 101 kPa 
 
T = 20˚C 

1.75 cm in diameter 
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Assume that the system is choked so that M3 = 1, A3 = A*.  So (A/A*) = (A2/A3) = 
(2/1.75)2 = 1.3061, which yields M2 = 0.5184.  In turn, (fLmax/D)2 =  0.9287.  Also, (fL/D) 
= (0.01)(15)/(0.02) = 7.5; therefore, 
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From this, we find that M1 = 0.2506.  Consequently, with M1, M2 and M3 we are able to 
compute the following static pressures 
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Since p3 = pe and since pe must be equal to or greater than pb, the nozzle is not choked as 
assumed.  Therefore, p3 = pe = 30 kPa and M3 = Me < 1. 
 
Assume M3 = 0.9 and from the isentropic relations we find 
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From this we find M2 = 0.5119, from which we obtain 
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From this, we find that M1 = 0.2501.  Consequently, with M1, M2 and M3 we are able to 
compute the following static pressures 
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Too large; therefore M3 needs to be increased.  After a few tries M3 = 0.973 and from the 
isentropic relations we find 
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From this we find M2 = 0.5180, from which we obtain 
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From this, we find that M1 = 0.2506.  Consequently, with M1, M2 and M3 we are able to 
compute the following static pressures 
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Slightly too high but close enough. Note from the isentropic relations at M1, (T/To)1 = 
(0.9876)293  = 289.3668K 
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Problem 11. – For the flow of air (γ = 1.4 and R = 0.287 kJ/kg · K) from the reservoir at 
650 kPa and 1000 K shown in Figure P9.11, assume isentropic flow in the convergent-
divergent nozzle and Fanno flow in the constant-area duct, which has a length of 20 cm 
and a diameter of 1 cm.  The area ratio A2/A1 of the C-D nozzle is 2.9.  Take the friction 
factor to be 0.02. 

(a) Find the mass flow rate for a back pressure of 0 kPa.  
(b) For part (a), find the pressure at the exit plane of the duct.  
(c) Find the back pressure necessary for a normal shock to occur at the exit plane 

of the nozzle (2).  
(d) Find the back pressure necessary for a normal shock to appear just 

downstream of the nozzle throat (1).  
 
 

 
 
 
 
 
 
 

Figure P9.11 
 

1 2 e 
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(a) For A2/A1 = A2/A* = 2.9, M2 = 2.6015.  Therefore, (fLmax/D)2 = 0.45288.  Now fL/D 
= (0.02)(20)/(1) = 0.4.  Hence, L < Lmax so the flow cannot reach Me = 1.  To compute the 
exit Mach number we have  
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From which we find Me = 1.2636.  Now at the nozzle throat, M = 1 so 
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(c) In this case a shock stands at the nozzle exit – station 2.  We will call the duct inlet, 

(on the downstream side of the shock), station 3. Now at M2 = 2.60147, from the 
normal shock relations M3 = 0.50374 and p3/p2 = 7.7289.  Therefore,  

 

( ) kPa1947.2515007.327289.7p
p
p

p 2
2

3
3 ==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 



 189

Also from the Fanno relations at M3, (fLmax/D)3 = 1.03895.  Since fL/D = 0.4 it 
follows that  

 

63895.04.003895.1
D
fL

D
fL

D
fL

3

max

e

max =−=−⎟
⎠

⎞
⎜
⎝

⎛=⎟
⎠

⎞
⎜
⎝

⎛  

 
From which we find Me = 0.5668.   
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(d) In this case a shock appears just downstream of the nozzle throat.  Consequently, 

subsonic flow exits the nozzle. For A2/A1 = A2/A* = 2.9, M2 = 0.2046.  Therefore, 
(fLmax/D)2 = 13.7780.  Since, fL/D = 0.4, then (fLmax/D)e = 13.7780 – 0.4 = 13.3780 
from which we find Me = 0.2072 
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Problem 12. – In which configuration of Figure P9.12, (a) or (b), will the high-pressure 
tank empty faster? Explain.  
 
 
 
 
 
 
 

(a) 
 
 
 

 
 

 
 

 
(b) 

Figure P9.12 
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Both (a) and (b) are choked at section 4, thus, M4 = 1. However, because of the loss of 
total pressure, po4 is smaller in (a) than in (b). This results in a smaller m&  for the tank in 
(a); hence, tank (b) will empty faster than (a).  
 
 
Problem 13. – Air (γ = 1.4 and R = 0.287 kJ/kg · K) flows through a converging-
diverging nozzle with area ratio of 2.9 (Figure P9.13), which exhausts into a constant-
area insulated duct with a length of 50 cm and diameter of 1 cm. If the system back 
pressure is 50 kPa, determine the range of reservoir pressures over which a normal shock 
will appear in the duct. Let f = 0.02 in the duct. 
 

 
 

 
 
 
 
 

 
Figure P9.13 

 
Now fL/D = (0.02)(50)/(1) = 1.0 
 
Shock at Duct Inlet 
 
For A1/At = A1/A* = 2.9, M1 = 2.6015.  From the isentropic relations at this Mach 
number we obtain p1/po1 = 0.0500.  From the normal shock relations at this Mach number 
we obtain M2 = 0.50374 and p2/p1 = 7.7289.  From Fanno flow relations at M2 we obtain 
(fLmax/D)2 = 1.03895.  Therefore, 
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From which we find Me = 0.8455. Consequently,  
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Shock at Duct Exit 
 

pr 

pb = 50 kPa 

1 2 e i 



 191

Since, at M1 = 2.6015, (fLmax/D)1 = 0.4529, we see that L > Lmax , hence a shock  will 
exist within the duct for reservoir pressures that exceed 226.4832 kPa.  Using the method 
described in Example 9.5 we can determine that the shock will penetrate only 0.8097 cm 
into the duct.    
 
 
Problem 14. – A converging-diverging nozzle with area ratio of 3.2 (Figure P9.14) 
exhausts air (γ = 1.4 and R = 0.287 kJ/kg · K) into a constant-area insulated duct with a 
length of 50 cm and diameter of 1 cm. If the reservoir pressure is 500 kPa, determine the 
range of back pressures over which a normal shock will appear in the duct (f = 0.02).  
 
 

 
 
 
 
 
 
 
 
 

Figure P9.14 
 
Now fL/D = (0.02)(50)/(1) = 1.0 
 
Shock at Duct Inlet 
 
For A1/At = A1/A* = 3.2, M1 = 2.7056.  From the isentropic relations at this Mach 
number we obtain p1/po1 = 0.04258.  From the normal shock relations at this Mach 
number we obtain M2 = 0.4952 and p2/p1 = 8.3737.  From Fanno flow relations at M2 we 
obtain (fLmax/D)2 = 1.1090.  Therefore, 
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From which we find Me = 0.7645. Consequently,  
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Shock at Duct Exit 
 
Since, at M1 = 2.7056, (fLmax/D)1 = 0.4729, we see that L > Lmax , hence a shock  will 
exist within the duct for back pressures that are below 111.9199 kPa.  Using the method 
described in Example 9.5 we can determine that the shock will penetrate only 2.2360 cm 
into the duct.    
 
 
Problem 15. – A converging-diverging nozzle is connected to a reservoir containing gas 
(γ = 1.4). The area ratio of the nozzle is such that the Mach number is 3.5 exiting the 
nozzle and entering a constant-area duct of length-to-diameter ratio, L/D, of 100 to 1 and 
friction coefficient of 0.01. (a) Determine the normal shock location, if the Mach number 
at the exit is 0.75. (b) With the shock at this location, how much longer can the duct be 
made before choking occurs at the exit with no change of Mi?  Refer to Figure 9.19 for 
the nomenclature. 
 
(a) Determining shock location: 
 
At Mi = 3.5, (fLmax/D)i = 0.5864, and at Me = 0.75, (fLmax/D)e = 0.1273.  For the duct 
under consideration, fL/D = 0.01(100)/1 = 1.0; hence, L > (Lmax)i. To determine the 
location of the shock for this case, first calculate the value of F(M1) from Eq.(9.29) 
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The value of M1 can be obtained by numerically solving Eq.(9.33) using a spreadsheet 
program that implements the Newton-Raphson method.  The following table contains the 
history of the iteration process: 
 

Iteration M f(M)  f(M+∆M) f(M-∆M) ∆f/∆M Mnew 
1 2.0000 -0.25799 0.2878 0.2779 0.4960 2.5201 
2 2.5201 0.005189 0.5510 0.5411 0.4959 2.5097 
3 2.5097 -5.3E-06 0.5458 0.5359 0.4969 2.5097 
4 2.5097 3.76E-11 0.5458 0.5359 0.4969 2.5097 
5 2.5097 0 0.5458 0.5359 0.4969 2.5097 
6 2.5097 0 0.5458 0.5359 0.4969 2.5097 
7 2.5097 0 0.5458 0.5359 0.4969 2.5097 
8 2.5097 0 0.5458 0.5359 0.4969 2.5097 

      Answer 
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At M1 = 2.5097, M2 is found from Eq.(9.31) to be 0.5121.  At these Mach numbers,      
(fLmax/D)1 = 0.4340 and (fLmax/D)2 = 0.9749.  The shock location is determined from 
Eq.(9.34) 
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(b) Determining the duct length to accelerate the flow to Mach 1 for the same shock 
location determined above. 
 
Because Me = 1.0, (fLmax/D)e = 0.0. Also, because the shock location is fixed             
F(M1) = 0.54085 and for the same inlet Mach number, i.e, Mi = 3.5, (fLmax/D)i = 0.5864; 
hence, 
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Therefore, L/D = 112.7280 or an additional 12.7280D must be added to the original 
length to produce sonic conditions for the same Mi and shock location as in part (a). 
 
 
Problem 16. – Air (γ = 1.4) enters a pipe of diameter 2 cm at a Mach number of Mi = 3.0.  
A normal shock wave stands in the pipe at a location where the Mach number on the 
upstream side of the shock is M1 = 2.0.  The Mach number exiting the pipe is Me = 1.0.  
For steady, adiabatic, one-dimensional flow in the pipe, i.e., Fanno flow, determine the 
location of the shock and the total length of the pipe.  Assume f = 0.02. 
 
Now from the normal shock relations at M1 = 2.0 and γ = 1.4, we obtain M2 = 0.577350. 
At the various Mach numbers we can determine the corresponding fLmax/D ratios, which 
are needed to locate the shock and determine the pipe length. 
 

Mi =  3.0,  (fLmax/D)i = 0.522159 
M1 =  2.0,  (fLmax/D)i = 0.522159 
M2 =  0.577350,  (fLmax/D)i = 0.522159 
Me =  1.0,  (fLmax/D)i = 0.522159 

 
The shock location is determined from Eq.(9.34) 
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The total length of the pipe can be readily determined from Eq.(9.29) 
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Hence, 
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Problem 17. – A rocket nozzle is operating with a stretched out throat, (L = 50 cm and   
D = 10 cm) as shown in Figure P9.17. If the inlet stagnation conditions are po1 = 1 MPa 
and To1 = 1500 K, determine the nozzle exit velocity and mass flow for a back pressure of 
30 kPa. The diameter of the nozzle at the exit station is the same as at the inlet station:    
30 cm.  Treat the exhaust gases as perfect, with γ = 1.4 and R = 0.50 kJ/kg · K. Assume 
isentropic flow in variable-area sections and Fanno flow in constant-area sections with     
f = 0.22. 
 
 
 

 
 
 
 
 

 
 
 

Figure P9.17 
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Assume the system is choked so that M2 = 1 and (fLmax/D)2 = 0. Also, (p/po)2 = 0.5253 
and p2 = p*. Now fL/D = (0.022)(50)/(10) = 0.110 = (fLmax/D)1.  The corresponding 
Mach number to this value is M1 = 0.7637. At this Mach number from the isentropic 
relations: (p/po)1 = 0.67966 and from the Fanno flow relations: (p/p*)1 = 1.35745. 
 
Now for an area ratio of 9, from the isentropic relations we find that Me = 3.8061.  At this 
Mach number from the isentropic relations: (p/po)e = 0.0.008558. Therefore, 
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If there is a normal shock at the exit, the pressure ratio across the shock is: (pe2/pe1) = 
16.7337.  Therefore, pe2 = pb = 135.7230 kPa.  Because this is well above the stated back 
pressure of 30 kPa, pe = 8.1108 kPa and the flow is further compressed outside the nozzle 
by oblique shocks. 
 
At Me = 3.8061 from the isentropic relations, (T/To)e = 0.2566. Hence, 
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Problem 18. – Air (γ = 1.4 and R = 0.287 kJ/kg · K) flows adiabatically in a tube of 
circular cross section with an initial Mach number of 0.5, initial T1 = 500 K, and             
pl = 600 kPa. The tube is to be changed in cross-sectional area so that, taking friction into 
account, there is no change in the temperature of the stream. Assume the distance 
between inlet and exit, L, is equal to 100 Dl, with Dl = initial duct diameter; f = 0.02. Find 
the following: 

(a) Mach number M2 
(b) D2/Dl 
(c) Static pressure p2  

 
(a) Since T1 = T2 = 500 K and since the flow is adiabatic for which To1 = To2, it therefore 
follows that M1 = M2 = 0.5, i.e., the Mach number remains constant as well. 
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(b) From Eq.(9.42) 

 

f
4

M
dx
dD 2γ

=  

 
Integration yields 

 

1
22

12 D
4

Mf100L
4

MfDD ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ γ
=

γ
=−  

Hence, 

( )( )( ) 175.1)5.0(4.102.0251
4

Mf1001
D
D 2

2

1

2 =+=
γ

+=  

 
(c) Since both the static temperature and the Mach number are constant, then so are the 
speed of sound and the velocity.  Accordingly, p1A1 = p2A2. So that 
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Problem 19. – In a rocket nozzle of area ratio 8 to 1, combustion gases (γ = 1.2 and         
R = 0.50 kJ/kg · K) are expanded from a chamber pressure and temperature of 5 MPa and 
2000 K. For a nozzle coefficient Ch equal to 0.96, determine the rocket exhaust velocity 
in space.  
 

From the isentropic relations with γ = 1.2 and an area ratio, A/A* = 8, the supersonic 
solution is M = 3.1219.  The corresponding temperature ratio T/To = 0.5064.  
Accordingly, the exit temperature is Te = (0.5064)(2000) = 1012.8 K.  The exit velictiy is 
readily determined as follows: 
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Problem 20. – Air (γ = 1.4) enters a constant-area, insulated duct (Figure 9.9) with a 
Mach number of 0.50. The duct length is 45 cm; the duct diameter is 3 cm; and the 
friction coefficient is 0.02. Use Euler’s explicit method on a coarse grid containing 11 
grid points to determine the Mach number at the duct outlet. Compare the result obtained 
to the value obtained using Fanno relations. 
 
Exact Solution 
From the Fanno relations at M1 = 0.5, (fLmax/D)1 = 1.0691.  Also, from the given 
information fL/D = 0.3.  Hence,  
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From this value we find that M2 = 0.542923. 
 
Numerical Solution 
Proceeding as in Example problem 9.9, we have 
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The same grid in the example is used here in which the duct length is divided into 10 
evenly spaced increments, i.e., ∆x = 4.5 cm.  The computations are straightforward and 
the results from a spreadsheet program are 
 

pt x Mi F(xi,Mi) Mi+1 
1 0.0000 0.5000 0.0008 0.5037 
2 4.5000 0.5037 0.0008 0.5075 
3 9.0000 0.5075 0.0009 0.5113 
4 13.5000 0.5113 0.0009 0.5153 
5 18.0000 0.5153 0.0009 0.5195 
6 22.5000 0.5195 0.0009 0.5237 
7 27.0000 0.5237 0.0010 0.5281 
8 31.5000 0.5281 0.0010 0.5326 
9 36.0000 0.5326 0.0010 0.5373 

10 40.5000 0.5373 0.0011 0.5421 
11 45.0000 0.5421   
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Hence, the error between the results is (0.5421/0.5429 – 1)100 = -0.1429%. 
 
 
Problem 21. –If the problem described in the above is solved on finer grids using the first 
order Euler explicit method, the following results for the exit Mach number are obtained 
 

n ∆x Me 
11 4.5 0.542147
21 2.25 0.542529
41 1.125 0.542725
81 0.5625 0.542824

 
Determine the error when compared to the exact value of the exit Mach number is 
0.542923.  Use Richardson’s extrapolation method to obtain improved values.  Also, 
compute the error of these values. 
 
Richardson’s extrapolation for Euler’s explicit method is given by  
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Using this relation, the following table is easily prepared 
 

n ∆x Me % error Me (Extr) % error 
11 4.5 0.542147 -0.1429     
21 2.25 0.542529 -0.0726 0.5429115 -0.0022 
41 1.125 0.542725 -0.0366 0.5429203 -0.0006 
81 0.5625 0.542824 -0.0184 0.5429225 -0.0001 

 
 
 
Problem 22. – Heun’s predictor-corrector method is 2nd order and the Runge-Kutta 
method used in this Chapter is 4th order.  Obtain an expression for each of these methods 
that could be used to perform Richardson’s extrapolation of results, R2 and R1 that were 
determined on two grids that differ by a factor of two, i.e., ∆x2 = ∆x1/2. 
 
The extrapolated value, E, in Richardson’s extrapolation method, is given by 
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where R1 and R2 are the values that have been computed using the same method on two 
grids of known width, say ∆x1 and ∆x2.  Also, the accuracy of the method is of order n.  
For this problem ∆x1 = 2∆x2.  Thus, 
 
Heun’s method: n = 2 
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Runge-Kutta: n = 4 
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Problem 23. – An airstream (γ = 1.4, R = 0.287 kJ/kg·K) at Mach 2.0 with a pressure of 
100 kPa and a temperature of 270 K, enters a diverging, linear, conical channel with a 
ratio of exit area to inlet area of 3.0 (see Figure P9.23). The inlet area is 0.008 m2 and the 
length is 10.0 cm.  The average friction factor is 0.03.  Use Heun’s predictor-corrector 
method on a coarse grid of 11 grid points to determine the back pressure, pb, necessary to 
produce a normal shock in the channel at 5 cm from the inlet. Assume one-dimensional, 
steady flow with the air behaving as a perfect gas with constant specific heats. Compare 
results to the pressure value obtained by assuming isentropic flow except across the 
normal shock (see Example 4.3).  Does friction significantly change the isentropic flow 
results? 
 
 
 
 
 
 
 
 
 
 
 
 

Figure P9.23 
 
 
Solution Using Fanno Flow, Isentropic Flow and Normal Shock Relations 
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The inlet diameter is m1009.0/032.0/A4D ii =π=π=  and the exit diameter is 

m1749.0/096.0/A4D ee =π=π= . Since the shock is located at Ls = 5cm and 
since the channel is linear, the diameter at the shock location is  
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Therefore the area at the shock is As = A1 = πDs

2/4 = 0.0149 m2.  At Mi = 2.0, from the 
isentropic relations with γ = 1.4,  
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Using the Newton-Raphson iterative procedure and taking the supersonic root because 
the flow on the upstream side of the shock must be supersonic, we obtain M1 = 2.6882.  
Note the Mach number on the downstream side of the shock is found to be 0.4966.  With 
the upstream shock Mach number determined, ratios of properties across the shock can be 
found from normal shock relations, which are then combined with Eq.(4.21) to give 
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Again, using the Newton-Raphson procedure, this area ratio produces the following 
subsonic value at the exit: Me = 0.2800.  We can now solve for the exit pressure, pe: 
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With subsonic flow at the channel exit, the channel back pressure is equal to the exit 
plane pressure, i.e., 
  

pe = 100(3.1700) = 317.0000 kPa =  pb 
 
 
Solution Obtained by Solving ODE Using Heun’s Method and Normal Shock Relations 
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The equation which governs the Mach number distribution within the channel when both 
area variation and frictional effects are considers is  
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Since the nozzle is conical, the local cross sectional area is given by 
 

A(x), = π[D(x)]2/4 = π[Di + (De – Di)x/L]2/4,  
 
Thus the area term in Eq(9.52) can be written as 
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Consequently, Eq.(9.52) becomes 

            ( ) ( )
( )

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛γ+

−
−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −γ+

==
)M1(

D
fM

2
1

LD
DD2

2
]M12[MM,xF

dx
dM

2

2ie
2  

 
where D = D(x) = Di + (De – Di)x/L. Heun’s method is  
 
 
Predictor step: ( ) xM,xFMM iiip ∆+=  
 (9.49) 

Corrector step:           
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where Mp is the predicted Mach number.   
 
For this problem, we will divide L into 10 pieces of uniform length, i.e., the grid spacing 
is therefore ∆x = 1 cm = 0.01 m.   
 
First, we will assume that f = 0.  Inserting Mi and the given information into F(x,M) at    
x = 0 results in F(0.0,2.0) = 17.5692 and for the grid spacing we can compute the 
predicted Mach number, i.e., Mp to be 0.2.1757.  This is then used to compute      
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F(∆x,Mp) = 15.4760.  Hence, M2 =2.1602.  The static pressures at each x are computed 
from  
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Across the shock located at x = 0.05 m, the normal shock relations are used, viz.,  
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The results of the calculations for f = 0 obtained from a spreadsheet program are 
presented in the following 
 

pt x Di Mi F(xi,Mi) Mp F(xi+1,Mp) Mi+1 pi pi+1 
1 0.0000 0.1009 2.0000 17.5692 2.1757 15.4760 2.1652 100 77.2967 
2 0.0100 0.1083 2.1652 15.5185 2.3204 14.0379 2.3130 77.2967 61.3513 
3 0.0200 0.1157 2.3130 14.0569 2.4536 12.9317 2.4480 61.3513 49.6999 
4 0.0300 0.1231 2.4480 12.9408 2.5774 12.0449 2.5729 49.6999 40.9315 
5 0.0400 0.1305 2.5729 12.0494 2.6934 11.3123 2.6897 40.9315 34.1775 
6 0.0500 0.1379 2.6897       0.4964 34.1775 282.7671
7 0.0500 0.1379 0.4964 -7.4092 0.4224 -5.1538 0.4336 282.7671 293.2710
8 0.0600 0.1453 0.4336 -5.6371 0.3773 -4.3793 0.3835 293.2710 301.4360
9 0.0700 0.1526 0.3835 -4.4814 0.3387 -3.6142 0.3431 301.4360 307.4827

10 0.0800 0.1600 0.3431 -3.6748 0.3063 -3.0396 0.3095 307.4827 312.0861
11 0.0900 0.1674 0.3095 -3.0789 0.2787 -2.5940 0.2811 312.0861 315.6645
12 0.1000 0.1748 0.2811     315.6645  

 
The computed exit pressure is 315.6645 kPa, which differs from the value computed 
from Fanno relations, i.e., 317.0000kPa by –0.4213%.  This is very good for the 
particularly coarse mesh used in the computations.  
 
Repeating  the calculations for f = 0.03, we obtain, 
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pt x Di Mi F(xi,Mi) Mp F(xi+1,Mp) Mi+1 pi pi+1 
1 0.0000 0.1009 2.0000 17.0698 2.1707 14.9773 2.1602 100 77.5617 
2 0.0100 0.1083 2.1602 15.0239 2.3105 13.5300 2.3030 77.5617 61.7557 
3 0.0200 0.1157 2.3030 13.5524 2.4385 12.4090 2.4328 61.7557 50.1781 
4 0.0300 0.1231 2.4328 12.4209 2.5570 11.5053 2.5524 50.1781 41.4465 
5 0.0400 0.1305 2.5524 11.5121 2.6676 10.7552 2.6638 41.4465 34.7072 
6 0.0500 0.1379 2.6638       0.4985 34.7072 281.5335
7 0.0500 0.1379 0.4985 -7.4504 0.4240 -5.1778 0.4354 281.5335 292.0486
8 0.0600 0.1453 0.4354 -5.6645 0.3787 -4.3986 0.3851 292.0486 300.2143
9 0.0700 0.1526 0.3851 -4.5016 0.3401 -3.6295 0.3444 300.2143 306.2590

10 0.0800 0.1600 0.3444 -3.6906 0.3075 -3.0521 0.3107 306.2590 310.8600
11 0.0900 0.1674 0.3107 -3.0917 0.2798 -2.6045 0.2822 310.8600 314.4358
12 0.1000 0.1748 0.2822     314.4358  

 
Friction has reduced the exit pressure from 315.6645 kPa to 314.4358 kPa, slightly less 
than 0.4%.  Therefore, an isentropic flow assumption would be acceptable for this 
problem.   
 
 
Problem 24. – Helium (γ = 5/3) flows through a symmetrical, C-D nozzle with a circular 
cross-section.  The shape of the nozzle is given by  
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The nozzle length is two times the throat diameter, i.e., L = 2Dt.  Assuming that the 
nozzle is choked, determine the Mach number distribution for both subsonic and 
supersonic flow in the diverging portion of the nozzle. Assume that the friction 
coefficient is 0.4. Use the Method of Beans and the 4th order Runge-Kutta method to 
solve this problem on a grid in which ∆x/L = 0.05. 
 
Except for the value of γ, this problem is exactly the same as Example 9.10.  
 
First the location of the sonic point must be computed from,  
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For γ = 1.4, f = 0.4 and L = 2Dt, we find that xsp = 1.0388L, (the correct angle that 
appears in the profile equation is186.0907˚). Moreover, Dsp/Dt = 1.0056 and  
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The slopes that are used to begin the solution at the sonic point must be computed. This is 
accomplished by solving the following quadratic 
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With these coefficients, the two roots for (dM/dx)sp are computed to be 
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The results of the computations are contained in the following tables 
 

    xi xi xi - ∆x/2 xi - ∆x/2 xi - ∆x  
    Mi Mi Mi - k1∆x/2 Mi - k2∆x/2 Mi - k3∆x  

pt x/L Di/Dt Mi F(xi,Mi) k1 k2 k3 k4 Mi-1 
22 1.0338 1.0056 1.0000 3.1922 3.1922 3.0024 3.2560 3.0355 0.8943
21 1.0000 1.0000 0.8943 3.0158 3.0158 2.8504 2.9446 2.7595 0.7496
20 0.9500 1.0123 0.7496 2.7239 2.7239 2.5400 2.5983 2.4077 0.6212
19 0.9000 1.0489 0.6212 2.3930 2.3930 2.2005 2.2439 2.0529 0.5101
18 0.8500 1.1090 0.5101 2.0442 2.0442 1.8566 1.8900 1.7094 0.4163
17 0.8000 1.1910 0.4163 1.7036 1.7036 1.5308 1.5568 1.3946 0.3391
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16 0.7500 1.2929 0.3391 1.3905 1.3905 1.2387 1.2587 1.1192 0.2765
15 0.7000 1.4122 0.2765 1.1162 1.1162 0.9881 1.0033 0.8874 0.2266
14 0.6500 1.5460 0.2266 0.8853 0.8853 0.7804 0.7917 0.6979 0.1872
13 0.6000 1.6910 0.1872 0.6964 0.6964 0.6125 0.6207 0.5463 0.1563
12 0.5500 1.8436 0.1563 0.5452 0.5452 0.4791 0.4850 0.4265 0.1322
11 0.5000 2.0000 0.1322 0.4258 0.4258 0.3741 0.3783 0.3326 0.1133
10 0.4500 2.1564 0.1133 0.3322 0.3322 0.2918 0.2947 0.2591 0.0986
9 0.4000 2.3090 0.0986 0.2588 0.2588 0.2272 0.2292 0.2012 0.0872
8 0.3500 2.4540 0.0872 0.2010 0.2010 0.1761 0.1775 0.1553 0.0783
7 0.3000 2.5878 0.0783 0.1552 0.1552 0.1353 0.1362 0.1183 0.0715
6 0.2500 2.7071 0.0715 0.1182 0.1182 0.1020 0.1026 0.0879 0.0664
5 0.2000 2.8090 0.0664 0.0878 0.0878 0.0743 0.0747 0.0622 0.0626
4 0.1500 2.8910 0.0626 0.0622 0.0622 0.0505 0.0508 0.0398 0.0601
3 0.1000 2.9511 0.0601 0.0398 0.0398 0.0293 0.0295 0.0194 0.0586
2 0.0500 2.9877 0.0586 0.0194 0.0194 0.0096 0.0097 0.0000 0.0581
1 0.0000 3.0000 0.0581       

  
    xi xi xi + ∆x/2 xi + ∆x/2 xi + ∆x  

Subsonic decelerating 
flow   Mi Mi Mi + k1∆x/2 Mi + k2∆x/2 Mi + k3∆x  

pt x/L Di/Dt Mi F(xi,Mi) k1 k2 k3 k4 Mi+1 
23 1.0338 1.0056 1.0000 -4.0761 -4.0761 -3.5747 -4.0292 -3.5432 0.9385
24 1.0500 1.0123 0.9385 -3.9813 -3.9813 -3.3956 -3.7328 -3.3190 0.7589
25 1.1000 1.0489 0.7589 -3.1672 -3.1672 -2.8402 -2.9343 -2.6295 0.6143
26 1.1500 1.1090 0.6143 -2.6052 -2.6052 -2.3246 -2.3823 -2.1245 0.4965
27 1.2000 1.1910 0.4965 -2.1125 -2.1125 -1.8753 -1.9145 -1.6986 0.4015
28 1.2500 1.2929 0.4015 -1.6916 -1.6916 -1.4946 -1.5223 -1.3448 0.3260
29 1.3000 1.4122 0.3260 -1.3403 -1.3403 -1.1799 -1.1998 -1.0566 0.2663
30 1.3500 1.5460 0.2663 -1.0536 -1.0536 -0.9254 -0.9396 -0.8259 0.2196
31 1.4000 1.6910 0.2196 -0.8239 -0.8239 -0.7228 -0.7330 -0.6438 0.1831
32 1.4500 1.8436 0.1831 -0.6425 -0.6425 -0.5636 -0.5707 -0.5013 0.1546
33 1.5000 2.0000 0.1546 -0.5004 -0.5004 -0.4392 -0.4441 -0.3902 0.1325
34 1.5500 2.1564 0.1325 -0.3897 -0.3897 -0.3421 -0.3455 -0.3036 0.1153
35 1.6000 2.3090 0.1153 -0.3032 -0.3032 -0.2661 -0.2685 -0.2356 0.1019
36 1.6500 2.4540 0.1019 -0.2353 -0.2353 -0.2061 -0.2077 -0.1817 0.0915
37 1.7000 2.5878 0.0915 -0.1815 -0.1815 -0.1582 -0.1593 -0.1383 0.0835
38 1.7500 2.7071 0.0835 -0.1382 -0.1382 -0.1193 -0.1200 -0.1027 0.0775
39 1.8000 2.8090 0.0775 -0.1027 -0.1027 -0.0868 -0.0873 -0.0726 0.0732
40 1.8500 2.8910 0.0732 -0.0726 -0.0726 -0.0590 -0.0593 -0.0464 0.0702
41 1.9000 2.9511 0.0702 -0.0464 -0.0464 -0.0342 -0.0344 -0.0226 0.0685
42 1.9500 2.9877 0.0685 -0.0226 -0.0226 -0.0112 -0.0112 0.0001 0.0679
43 2.0000 3.0000 0.0679       
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    x xi xi + ∆x/2 xi + ∆x/2 xi + ∆x  
Supersonic accelerating flow M Mi Mi + k1∆x/2 Mi + k2∆x/2 Mi + k3∆x  

pt x/L Di/Dt Mi F(xi,Mi) k1 k2 k3 k4 Mi+1 
23 1.0338 1.0056 1.0000 3.1922 3.1922 3.3531 3.1553 3.2836 1.0525 
24 1.0500 1.0123 1.0525 3.2282 3.2282 3.3841 3.2681 3.3517 1.2182 
25 1.1000 1.0489 1.2182 3.4150 3.4150 3.4503 3.4388 3.4513 1.3902 
26 1.1500 1.1090 1.3902 3.4561 3.4561 3.4439 3.4463 3.4104 1.5623 
27 1.2000 1.1910 1.5623 3.4113 3.4113 3.3534 3.3617 3.2830 1.7300 
28 1.2500 1.2929 1.7300 3.2829 3.2829 3.1857 3.1965 3.0825 1.8894 
29 1.3000 1.4122 1.8894 3.0820 3.0820 2.9533 2.9651 2.8234 2.0373 
30 1.3500 1.5460 2.0373 2.8227 2.8227 2.6699 2.6819 2.5196 2.1710 
31 1.4000 1.6910 2.1710 2.5189 2.5189 2.3486 2.3604 2.1836 2.2887 
32 1.4500 1.8436 2.2887 2.1830 2.1830 2.0008 2.0123 1.8260 2.3890 
33 1.5000 2.0000 2.3890 1.8254 1.8254 1.6358 1.6469 1.4551 2.4710 
34 1.5500 2.1564 2.4710 1.4545 1.4545 1.2610 1.2717 1.0774 2.5343 
35 1.6000 2.3090 2.5343 1.0768 1.0768 0.8820 0.8922 0.6977 2.5787 
36 1.6500 2.4540 2.5787 0.6972 0.6972 0.5030 0.5128 0.3197 2.6041 
37 1.7000 2.5878 2.6041 0.3192 0.3192 0.1271 0.1363 -0.0543 2.6107 
38 1.7500 2.7071 2.6107 -0.0547 -0.0547 -0.2439 -0.2351 -0.4225 2.5987 
39 1.8000 2.8090 2.5987 -0.4229 -0.4229 -0.6087 -0.6005 -0.7845 2.5685 
40 1.8500 2.8910 2.5685 -0.7848 -0.7848 -0.9673 -0.9595 -1.1404 2.5203 
41 1.9000 2.9511 2.5203 -1.1407 -1.1407 -1.3204 -1.3131 -1.4917 2.4545 
42 1.9500 2.9877 2.4545 -1.4920 -1.4920 -1.6702 -1.6635 -1.8419 2.3712 
43 2.0000 3.0000 2.3712       
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Chapter Ten 
 
 

FFLLOOWW  WWIITTHH  HHEEAATT  
AADDDDIITTIIOONN  OORR  HHEEAATT  LLOOSSSS 

 
 
Problem 1. – Draw the T-s diagram for the flow of a gas with γ = 1.4 in a constant 
diameter pipe with heat addition or loss.  The reference Mach number, M1, for the flow is 
3.0. 
 
This is a companion to Example 10.2.  In that problem the reference state is the same as 
given here, however, γ = 1.3.  To draw the Rayleigh line for the given reference state we 
have  
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It should be noted that the entropy change is zero for M = M1 and therefore at T = T1.  
The second value is determined by setting the argument of the natural logarithm to 1 and 
solving the nonlinear equation using the Newton-Raphson method.  The function that is 
solved and its derivative are  
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where ( ) ( )12bandMM1c b
1

2
1 +γγ=γ+= .  For M1 = 3.0 and γ = 1.4 the solution 

procedure yields M = 0.37307.  The calculations to draw the Rayleigh line were 
performed within a spreadsheet program and the results are contained in the following 
table and figure 
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M ∆s/cp T/T1 
0.3731 0.0000 2.0035 
0.50 0.3861 2.8429 
0.64 0.6026 3.3878 
0.77 0.7167 3.6356 
0.90 0.7667 3.6562 
1.03 0.7757 3.5302 
1.16 0.7581 3.3231 
1.29 0.7236 3.0798 
1.42 0.6782 2.8281 
1.56 0.6259 2.5838 
1.69 0.5696 2.3550 
1.82 0.5111 2.1453 
1.95 0.4516 1.9554 
2.08 0.3919 1.7847 
2.21 0.3327 1.6318 
2.34 0.2742 1.4952 
2.47 0.2168 1.3732 
2.61 0.1606 1.2641 
2.74 0.1057 1.1664 
2.87 0.0522 1.0788 
3.00 0.0000 1.0000 
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Problem 2. – Draw the T-s diagram for the flow of a gas with γ = 1.3 in a constant 
diameter pipe with heat addition or loss.  The reference Mach number, M1, for the flow is 
4.0. 
 

(s – s1)/cp 

T/T1 
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This is a companion to Example 10.2 and problem 1.  In this problem the reference state 
differs from these previous problems, however, γ = 1.3.  For M1 = 4.0 and γ = 1.4 the 
solution procedure yields M = 0.2864.  The calculations to draw the Rayleigh line were 
performed within a spreadsheet program and the results are contained in the following 
table and figure 
 

M ∆s/cp T/T1 
0.2864 0.0000 1.9894 
0.47 0.7287 3.9795 
0.66 1.0527 5.2640 
0.84 1.1809 5.7033 
1.03 1.2057 5.5685 
1.21 1.1742 5.1463 
1.40 1.1123 4.6233 
1.59 1.0341 4.0973 
1.77 0.9481 3.6116 
1.96 0.8588 3.1812 
2.14 0.7691 2.8073 
2.33 0.6806 2.4855 
2.51 0.5941 2.2093 
2.70 0.5102 1.9724 
2.89 0.4290 1.7685 
3.07 0.3507 1.5926 
3.26 0.2752 1.4401 
3.44 0.2026 1.3075 
3.63 0.1325 1.1915 
3.81 0.0651 1.0897 
4.00 0.0000 1.0000 
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Problem 3. – Air (γ = 1.4 and R = 0.287 kJ/kg · K) flows in a constant-area duct of 5-cm 
diameter at a rate of 2 kg/s. If the inlet stagnation pressure and temperature are, 
respectively, 700 kPa and 300 K, plot T versus s for Rayleigh line flow. For the same 
inlet conditions and mass flow rate, plot a T-s diagram for Fanno flow. From the points of 
intersection of Rayleigh and Fanno lines, show the states on either side of a normal 
shock. Assume the air to behave as a perfect gas with constant specific heats.  
 
 
 
 
 
 
 
The flow rate may be written as 
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This is a nonlinear algebraic equation that can be solved by the Newton-Raphson method.  
The following is a table that presents the iterations to determine the two Mach numbers 
by this approach. The function that is to be solved to determine the Mach numbers and its 
derivative are  
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where  

D = 0.05 m 
po1 = 700 kPa 

 
To1 = 300K 

s/kg2m =&  
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The calculations performed on a spreadsheet are as follows: 
 

n Mold f(M)  df/dm Mnew   n Mold f(M)  df/dm Mnew 
1 0.2000 -0.0974 0.3299 0.4951   1 3.0000 -150.5055 -499.5166 2.6987 
2 0.4951 0.0751 0.8468 0.4064   2 2.6987 -52.4180 -195.1466 2.4301 
3 0.4064 0.0071 0.6864 0.3960   3 2.4301 -17.6948 -79.0430 2.2062 
4 0.3960 0.0001 0.6679 0.3959   4 2.2062 -5.5758 -34.5185 2.0447 
5 0.3959 1.85E-08 0.6677 0.3959   5 2.0447 -1.4866 -17.6427 1.9604 
6 0.3959 8.33E-16 0.6677 0.3959   6 1.9604 -0.2525 -11.9319 1.9393 
7 0.3959 -2.22E-16 0.6677 0.3959   7 1.9393 -0.0127 -10.7471 1.9381 
8 0.3959 0.00E+00 0.6677 0.3959   8 1.9381 0.0000 -10.6836 1.9381 
9 0.3959 0.00E+00 0.6677 0.3959   9 1.9381 -3.31E-10 -10.6834 1.9381 

10 0.3959 0.00E+00 0.6677 0.3959   10 1.9381 0.00E+00 -10.6834 1.9381 
    Answer      Answer

 
Thus, two possible Mach numbers are obtained-one subsonic and the other supersonic.  
Since we seek to show that the intersection of the Rayleigh and Fanno lines correspond to 
the states on either side of a normal shock, only the supersonic result needs to be 
considered, i.e., the reference Mach number, M1 = 1.9381. 
 
Rayleigh line:  Following the procedure of Example 10.2 we may write 
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Incorporating these into a spreadsheet program results in the following table of data 
 

M ∆s/cp T/T1 
0.5393 0.0000 1.5317 
0.60 0.0992 1.6597 
0.70 0.2117 1.7976 
0.80 0.2775 1.8566 
0.90 0.3104 1.8549 
1.00 0.3197 1.8105 
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1.10 0.3123 1.7386 
1.20 0.2927 1.6509 
1.30 0.2646 1.5555 
1.40 0.2304 1.4582 
1.50 0.1919 1.3624 
1.60 0.1504 1.2705 
1.70 0.1071 1.1836 
1.80 0.0625 1.1025 
1.90 0.0173 1.0272 

1.9381 0.0000 1.0000 
 
Fanno line:  Following the procedure of Example 9.1 we may write 
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Incorporating these into a spreadsheet program results in the following table of data 
 

M ∆s/cp T/T1 
0.3959 0.0000 1.6980 
0.40 0.0024 1.6969 
0.50 0.0514 1.6679 
0.60 0.0857 1.6336 
0.70 0.1092 1.5949 
0.80 0.1242 1.5525 
0.90 0.1324 1.5071 
1.00 0.1349 1.4594 
1.10 0.1327 1.4100 
1.20 0.1264 1.3597 
1.30 0.1166 1.3089 
1.40 0.1039 1.2581 
1.50 0.0886 1.2078 
1.60 0.0711 1.1582 
1.70 0.0518 1.1098 
1.80 0.0310 1.0626 
1.90 0.0088 1.0170 

1.9381 0.0000 1.0000 
Plotting the data in a single figure results in  
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To obtain the intersection point of the two lines we must obtain the value of T/T1 from an 
equation that includes Eq.(10.17) and Eq.(9.7), i.e., 
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For the given value of M1 = 1.9381 we must iteratively solve to this nonlinear equation to 
obtain T/T1 = 1.6378.  Using the normal shock relations at M1 = 1.9381, we find that 
T2/T1 = 1.6378. 
 
 
Problem 4. – Air (γ = 1.4,  R = 0.287 kJ/kg · K and cp = 1.004 kJ/ kg · K) flows in a 
constant-area duct of diameter 1.5 cm with a velocity of 100 m/s, static temperature of 
320 K, and static pressure of 200 kPa. Determine the rate of heat input to the flow 

∆s/cp 

T/T1 
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necessary to choke the duct. Assume Rayleigh line flow; express your answer in 
kilowatts. Assume the air to behave as a perfect gas with constant specific heats. 
 
The Mach number at the initial station is 
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At this Mach number from the isentropic relation (T/To)1 = 0.9847.  Thus, To1 = 
T1/0.9847 = 320/0.9847 = 324.9721K.  Now using the initial Mach number in the 
Rayleigh relation we find that To1/To* = 0.3084.  Hence, To* = 324.9721/0.3084 = 
1053.7356K.   
 
The flow rate is given by  
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The heat transfer rate for choked flow is 
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Problem 5. – Air (γ = 1.4,  R = 0.287 kJ/kg · K and cp = 1.004 kJ/ kg · K) flows in a 
constant-area duct of 10 cm diameter at a rate of 0.5 kg/s. The inlet stagnation pressure is 
100 kPa; inlet stagnation temperature is 35°C. Find the following:  
(a) Two possible values of inlet Mach number.  
(b) For each inlet Mach number of part (a), determine the heat addition rate in kilowatts  
necessary to choke the duct.  
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This is a nonlinear algebraic equation that can be solved by the Newton-Raphson method.  
The following is a table that presents the iterations to determine the two Mach numbers 
by this approach. The function that is to be solved to determine the Mach numbers and its 
derivative are  
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where c = 0.5/(3.1256) = 0.1600. 
 

Iteration Mold f(M)  df/dm Mnew   Iteration Mold f(M)  df/dm Mnew 
1 0.4000 0.1332 0.8166 0.2369   1 3.0000 -9.3419 -76.0257 2.8771 
2 0.2369 0.0291 0.4662 0.1745   2 2.8771 -1.8595 -47.5194 2.8380 
3 0.1745 0.0039 0.3404 0.1630   3 2.8380 -0.1408 -40.4679 2.8345 
4 0.1630 0.0001 0.3173 0.1626   4 2.8345 -0.0010 -39.8816 2.8345 
5 0.1626 1.75E-07 0.3165 0.1625   5 2.8345 -5.5E-08 -39.8773 2.8345 
6 0.1625 3.04E-13 0.3165 0.1625   6 2.8345 0.00E+00 -39.8773 2.8345 
7 0.1625 0.00E+00 0.3165 0.1625   7 2.8345 0.00E+00 -39.8773 2.8345 

 
(a) So M1 = 0.1625 and 2.8345 are the two possible initial Mach numbers for the given 
conditions. 
(b) At M1 = 0.1625, from the Rayleigh relation we find that To1/To* = 0.1185.  Hence, 
To* = 308/0.1185 = 2599.1561K.   
 
The heat transfer rate for choked flow is 
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At M1 = 2.8345, from the Rayleigh relation we find that To1/To* = 0.6702.  Hence, To* = 
308/0.6702 = 459. 5643K.   
 
The heat transfer rate for choked flow is 
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Problem 6. – A. supersonic flow at po = 1.0 MPa and To = 1000 K enters a 5 cm diameter 
duct at Mach 1.8. Heat is added to the flow via a chemical reaction taking place inside the 
duct. Determine the heat transfer rate in kilowatts necessary to choke the duct. Assume 
the air (γ = 1.4,  R = 0.287 kJ/kg · K and cp = 1.004 kJ/ kg · K) to behave as a perfect gas 
with constant specific heats; neglect changes in the composition of the gas stream due to 
the chemical reaction. 
  
At M1 = 1.8 from the Rayleigh relation we find that To1/To* = 0.8363.  Hence, To* = 
1000/0.8363 = 1195.7432K.  Also from the isentropic relations at this Mach number 
(T/To)1 = 0.6068 and (p/po)1 = 0.1740.  Thus, T1 = (T o1)(0.6068) = 606.8 K and p1 = 
(po1)(0.1740) = 174.0 kPa.   
 
The flow rate is given by  
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The heat transfer rate for choked flow is 
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Problem 7. – Heat is added to airflow (γ = 1.4 and R = 0.287 kJ/kg · K) in a constant-area 
duct at the rate of 30 kJ/m. If flow enters at Mach 0.20, T1= 300 K, and p1 = 100 kPa, 
determine M(x), p(x), T(x), and po(x).  
 
From isentropic relations at M1 = 0.2, T1/To1 = 0.9921.  Accordingly, 
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From the Rayleigh relations at M1 = 0.2, To1/T*

o = 0.1736.  Hence, 
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The maximum length that the pipe may have without affecting the mass flow rate is 
obtained when Toe = T*

o.  Therefore from Eq.(10.10), 
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Solving for the maximum length 
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The distribution of To(x) can also be determined from Eq.(10.10)  
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Hence, 
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Now for a given x, Eq.(10.14) may be used to determine M(x), i.e., letting t = To/To*,      
b = 1 – γ(t  − 1) and a = 1 + γ2(t − 1)  we have 
 

a
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Note the − sign in front of the radical is used to obtain a subsonic Mach number.  With 
this Mach number it is an easy matter to obtain the static pressure and temperature 
distributions from Eqs.(10.8) and (10.9), respectively.  The stagnation pressure 
distribution can be obtained from 
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The following table contains the results obtained from a simple spreadsheet program 
 

x To/To
* M p(x) T(x) po(x) 

0.00 0.1736 0.2000 100.0000 300.0000 102.8281 
2.50 0.2165 0.2264 98.5268 373.3398 102.1090 
5.00 0.2593 0.2514 97.0143 446.2152 101.3754 
7.50 0.3022 0.2755 95.4574 518.6717 100.6256 
10.00 0.3451 0.2990 93.8519 590.6699 99.8584 
12.50 0.3879 0.3223 92.1929 662.1641 99.0723 
15.00 0.4308 0.3456 90.4747 733.1003 98.2658 
17.50 0.4737 0.3690 88.6906 803.4142 97.4371 
20.00 0.5165 0.3929 86.8322 873.0279 96.5839 
22.50 0.5594 0.4175 84.8894 941.8461 95.7037 
25.00 0.6023 0.4429 82.8495 1,009.7494 94.7936 
27.50 0.6451 0.4695 80.6965 1,076.5853 93.8497 
30.00 0.6880 0.4977 78.4090 1,142.1534 92.8674 
32.50 0.7308 0.5280 75.9582 1,206.1816 91.8409 
35.00 0.7737 0.5610 73.3031 1,268.2839 90.7624 
37.50 0.8166 0.5978 70.3821 1,327.8795 89.6212 
40.00 0.8594 0.6403 67.0947 1,384.0193 88.4021 
42.50 0.9023 0.6915 63.2538 1,434.9416 87.0806 
45.00 0.9452 0.7595 58.4241 1,476.5406 85.6122 
47.50 0.9880 0.8788 50.7381 1,491.2081 83.8824 

48.1987 1.0000 1.0000 44.0000 1,452.0000 83.2889 
 
 
 
 
Problem 8. – An airstream (γ = 1.4 and R = 0.287 kJ/kg · K) passing through a 5-cm-
diameter, thin-walled tube is to be heated by high-pressure steam condensing on the outer 
surface of the tube at 160°C. The overall heat transfer coefficient between steam and air 
can be assumed to be 140 W/m2·K, with the air entering at 30 m/s, 70 kPa, and 5°C. The 
air is to be heated to 65°C. Determine the tube length required. Assuming Rayleigh line 
flow, calculate the static pressure change due to heat addition. Also, for the same inlet 
conditions, calculate the pressure drop due to friction, assuming Fanno flow in the duct 
with f = 0.018. To obtain an approximation to the overall pressure drop in this heat 
exchanger, add the two results.  
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Because the wall of the pipe is thin, assume the wall has a single temperature, i.e., is 
radially lumped.  Also, since the steam is condensing on the outside of the pipe, the pipe 
temperature may be assumed to be equal to the Ts. The air is treated as a perfect gas, so 
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At this Mach number we find from the Rayleigh relations for static pressure and 
temperature and an isentropic flow temperature relation that 
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Now 
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From this temperature ratio, we may use the Rayleigh relations to find that M2 = 0.09922. 
At this Mach number, we find that (T/To)2 = 0.9980 and that (p/p*)2 = 2.3674. 

D = 0.05 m 

p1 = 70 kPa 
 

T1 = 278K 
V1 = 30 m/s  

T2 = 338K 

Steam, Ts = 433K 
h = 140 W/m2·K 

L = ? m 
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The mass flow rate in the pipe may be computed as follows 
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From an energy balance on a differential control volume 
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Rearranging 
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Integrating along the length of the pipe gives 
 

L
cm

hD
TT
TT

ln
ps2o

s1o
&

π
=

−
−

 

 
To1 and To2 are computed from the given static temperatures and the values of the static 
to total temperature ratios determined above 
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Solving for the pipe length and inserting the various parameters gives 
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Rayleigh flow pressure drop 
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The pressure drop is therefore, 
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Fanno flow pressure drop 
 
At M1 = 0.08976 from the Fanno relations  
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Inserting parameters gives fL/D =(0.018)(1.1657)/0.05 = 0.4197.  Therefore, 
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From which we find M2 = 0.08998 and in turn (p/p*)2 = 12.1651.  Thus, 
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The pressure drop is therefore, 
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The combined pressure drop if added together is 
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Problem 9. – Air (γ = 1.4 and R = 0.287 kJ/kg · K) enters a turbojet combustion chamber 
at 400 K and 200 kPa, with a temperature after combustion of 1000 K. If the heating 
value of the fuel is 48,000 kJ/kg, determine the required fuel-air ratio (on a mass basis). 
Assume Rayleigh line flow in the combustion chamber. What fuel-air ratio would be 
required to choke the combustion chamber?  The inlet velocity is 35 m/s. 
 
The air is treated as a perfect gas, so 
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At this Mach number we find from the Rayleigh relations that 
 

03587.0
T

T

9985.0
T
T

04298.0
T
T

1
*
o

o

1o

1
*

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

 

 
Now 
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From this temperature ratio, we may use the Rayleigh relations to find that M2 = 0.14038. 
At this Mach number, we find that (T/To)2 = 0.9961.  To1 and To2 are computed as follows 
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From an energy balance we have 
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Therefore, the fuel air ratio is  
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To choke the flow To2 = To

*, where  
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So 
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Problem 10. -  Air (γ = 1.4, R = 0.287 kJ/kg · K and cp = 1.0045 kJ/kg · K) flows through 
a constant-area duct is connected to a reservoir at a temperature of 500ºC and a pressure 
of 500 kPa by a converging nozzle, as shown in Figure P10.10. Heat is lost at the rate of 
250 kJ /kg. (a) Determine the exit exit pressure and Mach number and the mass flow rate 
for a back pressure of 0 kPa. (b) Determine the exit pressure and Mach number when a 
normal shock stands in the exit plane of the duct.  
 
 

 
 
 
 
 
 
 
 

Figure Pl0.10 
 
(a)  Because the back pressure is 0 kPa and because heat is removed from the air, the 
flow in the duct will be supersonic and accelerating.  This will occur only if M1 = 1.0.  
Therefore, To1 = To

* = 773K.  From isentropic flow relations, (T/To)1 = 0.8333 and  
(p/po)1 = 0.5283.  So, T1 = (0.8333)773= 644.1667K and p1 = p* = (0.5283)500 = 
264.1500 kPa. From the energy balance on the duct 
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1 2 

q = 250 kJ/kg 

pr = 500 kPa 
 
Tr = 500ºC 

pb = 0 kPa 
D = 0.02m 
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From the Rayleigh relations we find, M2 = 2.7613 and at this Mach number                 
p2/p* = 0.20557.  Accordingly, 
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Expansion waves occur outside the duct to allow the pressure to reach the 0 kPA back 
pressure. 
 
The mass flow rate is computed as follows 
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(b) The Mach number just upstream of the shock is 2.7613.  From the normal shock 
relations we find the Mach number on the downstream side to be 0.4910 and the exit 
pressure is determined by multiplying the static pressure ratio across the shock 8.7289 
times the pressure found in part (a), i.e., pe = (54.3013)8.7289 = 473.9906kPa = pb. 
 

 
Problem 11. – Consider flow in a constant-area duct with friction and heat transfer. To 
maintain a constant subsonic Mach number, should heat be added or removed?  Repeat 
for supersonic flow. 
  
With friction alone, in subsonic flow, M increases, therefore to maintain M constant, 
remove heat. 
 
With friction alone, in supersonic flow, M decreases, therefore to maintain M constant, 
remove heat. 
 
 
 
Problem 12. – For the system shown in Problem 10, determine the mass flow rate if 250 
kJ/kg of heat energy is added to the flow in the duct. The duct diameter is 2 cm. Repeat 
for a back pressure of 100 kPa. Working fluid is air (γ = 1.4, cp = 1004.5J/ kg · K and      
R = 0.287 kJ/kg · K).  
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Assume M2 = 1 so that the duct is choked.  Accordingly, To2 = To

*.  Therefore from an 
energy balance 
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At this value, the Rayleigh relations reveal that M1 = 0.5473 and therefore                   
p1/p* = 1.6909.  The isentropic relations at this Mach number provide 
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Since po1 = pr = 500 kPa and To1 = Tr = 773K, we can use these ratios to compute           
p1 = (0.8158)500 = 407.9000 kPa and T1 = (0.9435)773 = 729.3255K. Furthermore,  
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Consequently, for pb ≤ 241.2345 kPa the duct will be choked due to the heat addition.  So 
for pb = 0 and 100 kPa the maximum flow rate will be realized, which is computed as 
follows 
 

1 2 

q = 250 kJ/kg 

pr = 500 kPa 
 
Tr = 500ºC 

pb = 0 kPa 
D = 0.02m 
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Problem 13. – A detonation wave (Figure P10.13) represents a shock sustained by 
chemical reaction. Give the continuity, momentum, and energy equations for such a 
wave, assuming that a chemical reaction taking place in the wave liberates heat q. Denote 
properties of the unburned gas ahead of the wave by the subscript u and those of the 
burned gases behind the wave by b. Write the equations for an observer traveling with the 
wave. 
 
 
 

 
 
 
 
 
 
 

                                                          
 

 
Figure Pl0.l3 

 
Continuity Equation 
 

bbuu VV ρ=ρ  
 
Momentum Equation 
 

2
bbb

2
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Energy Equation 
 

Detonation wave    
(fixed with respect to observer) 

ρu 
 
Vu 
 
pu 
 

Tu 

ρb 
 
Vb 
 
pb 
 

Tb 
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Problem 14. – Develop a computer program that will yield values of p/p*, T/T*, *

oo T/T , 

and *
oo p/p  for Rayleigh line flow with the working fluid consisting of a perfect gas with 

constant γ = 1.36. Use Mach number increments of 0.10 over the range M = 0 to M = 2.5.  
 
The governing relations are 
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The following is the spreadsheet computed values 
 

M p/p* T/T* To/To* po*/po*
0.0 2.36000 0.00000 0.0000 1.2629 
0.1 2.29633 0.10750 0.0914 1.2459 
0.2 2.18486 0.28137 0.2410 1.2167 
0.3 2.03484 0.48651 0.4210 1.1785 
0.4 1.86321 0.68061 0.5971 1.1366 
0.5 1.68491 0.83637 0.7464 1.0960 
0.6 1.51097 0.94328 0.8588 1.0602 
0.7 1.34831 1.00299 0.9344 1.0318 
0.8 1.20042 1.02352 0.9783 1.0120 
0.9 1.06845 1.01467 0.9975 1.0016 
1.0 0.95205 0.98562 0.9988 1.0009 
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1.1 0.85012 0.94381 0.9879 1.0100 
1.2 0.76116 0.89483 0.9692 1.0289 
1.3 0.68363 0.84266 0.9459 1.0578 
1.4 0.61603 0.78995 0.9203 1.0969 
1.5 0.55699 0.73843 0.8939 1.1464 
1.6 0.50532 0.68913 0.8677 1.2067 
1.7 0.45998 0.64262 0.8423 1.2786 
1.8 0.42005 0.59918 0.8182 1.3626 
1.9 0.38479 0.55886 0.7954 1.4596 
2.0 0.35355 0.52160 0.7741 1.5707 
2.1 0.32577 0.48727 0.7542 1.6969 
2.2 0.30099 0.45569 0.7358 1.8396 
2.3 0.27881 0.42666 0.7188 2.0002 
2.4 0.25890 0.39999 0.7031 2.1802 
2.5 0.24098 0.37547 0.6885 2.3814 

 
 
Problem 15. – Oxygen (γ = 1.4 and R = 0.2598 kJ/kg · K) is to be pumped through an 
uninsulated 2.5-cm pipe, 1000 m long (Figure P10.15). A compressor is available at the 
oxygen source capable of providing a pressure of 1 MPa. If the supply pressure is to be 
101 kPa, determine the mass flow rate through the system and the compressor power 
required. Assume isothermal flow at T = 15˚C.  
 
 
 
 
 
 
 
 
 
 

Figure P10.15 
 
Now from Eq.(9.46) 
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The relation between the pressures and the Mach number is contained in Eq.(9.48), i.e., 
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Calling the ratio p1/p2 p and replacing M2 in the fL/D equation yields after a small 
amount of algebra  
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Solving for M1  
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Since fL/D = (0.018)(1000)/(0.025) = 720, (p1/p2)2 = (1000/101)2 = 98.0296 and γ = 1.4, 
substitution produces M1 = 0.0312.  The mass flow rate is computed as follows: 
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For isothermal compression: 
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The power required is found by multiplying the work by the mass flow rate: 
 

( ) kW3642.115404.1710662.0wmP 21 === −&  
 
 
Problem 16. – Natural gas (assume the properties of methane: γ = 1.32 and                      
R = 0.5182 kJ/kg · K) is to be pumped over a long distance through a 7.5-cm-diameter 
pipe (Figure P10.16). Assume the gas flow to be isothermal, with T = 15°C. Compressor 
stations capable of delivering 20 kW to the flow are available, with each compressor 
capable of raising the gas pressure isothermally to 500 kPa (inlet compressor pressure is 
to be 120 kPa). How far apart should the compressor stations be located? Assume 
isothermal compression in each compressor, with f = 0.017.  
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Figure P10.16 
 
For isothermal compression: 
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The power required is equal to the work times the mass flow rate.  Therefore, we can 
determine the mass flow rate as follows: 
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Therefore, 
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Now from Eq.(9.48) 
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From the isothermal relations at M1 and M2, we find (fLmax/D)1 = 3700.6762 and 
(fLmax/D)2 = 207.1945, thus, 
 

1 2 

compressor compressor 
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Problem 17. – Develop a computer program that will yield values of p/p*, fLmax/D, 

*
oo T/T , and *

oo p/p  for isothermal flow with the working fluid consisting of a perfect 
gas with constant γ = 1.34. Use Mach number increments of 0.10 over the range M = 0.1 
to M = 2.5. 
 
 
The equations that govern this flow are 
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Spreadsheet computation produces, 
 

M p/p* T/T* po*/po* fLmax/D
0.100 10.8075 1.1680 5.8600 69.9953
0.200 5.3900 1.1621 2.9817 15.2311
0.300 3.5783 1.1524 2.0461 5.5670 
0.400 2.6681 1.1390 1.5974 2.4315 
0.500 2.1188 1.1223 1.3446 1.1291 
0.600 1.7500 1.1025 1.1912 0.5199 
0.700 1.4846 1.0800 1.0961 0.2211 
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0.800 1.2840 1.0552 1.0390 0.0770 
0.900 1.1268 1.0284 1.0091 0.0155 
1.000 1.0000 1.0000 1.0000 0.0000 
1.100 0.8955 0.9704 1.0082 0.0107 
1.200 0.8079 0.9399 1.0314 0.0362 
1.300 0.7333 0.9089 1.0687 0.0700 
1.400 0.6691 0.8776 1.1195 0.1080 
1.500 0.6133 0.8463 1.1839 0.1477 
1.600 0.5643 0.8152 1.2624 0.1876 
1.700 0.5210 0.7846 1.3557 0.2267 
1.800 0.4826 0.7544 1.4650 0.2645 
1.900 0.4482 0.7250 1.5913 0.3006 
2.000 0.4173 0.6964 1.7364 0.3348 
2.100 0.3894 0.6687 1.9020 0.3672 
2.200 0.3642 0.6419 2.0902 0.3977 
2.300 0.3412 0.6160 2.3031 0.4263 
2.400 0.3204 0.5911 2.5434 0.4531 
2.500 0.3013 0.5673 2.8139 0.4782 

 
 
 
Problem 18. – A subsonic stream of air (γ = 1.4, R = 0.287 kJ/kg · K and                         
cp = 1.0045 kJ/kg · K) flows through a linear, conically shaped, nozzle, i.e.,                      
D = Di + (De – Di)x/L.  The diameter at the inlet is 2 cm and the diameter at the exit is 5 
cm.  The nozzle is 10 cm long.  The entering Mach number is 0.6.  Heat is added to flow 
at a rate so that the stagnation temperature varies linearly with distance.  The stagnation 
temperature at the inlet is 300K and increases 30K per meter of nozzle. Use Heun’s 
predictor-corrector scheme on a coarse grid that includes 11 grid points to determine the 
Mach number distribution within the duct. To verify the computations determine the exit 
Mach number for the case when the heat transfer is zero and compare it to the value 
determined from isentropic flow computations. 
 
This problem is the same as that described in Example 10.6 with two important 
exceptions: there is no shock in this problem and the inlet Mach number is subsonic.  
Accordingly, there is no need to rewrite the governing equation.  Only the results of the 
computations will be shown here.   
 
Exact solution for the adiabatic case 
 
Here we will determine the exit Mach number against which we can contrast the 
computed value. To obtain this value we follow the usual procedure in which we use the 
inlet Mach number to find (A/A*)i and then determine (A/A*)e from the following 
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Now at Mi = 0.6, we find (A/A*)i 1.1882 and for De = 0.05m and Di = 0.02m, we obtain 
(A/A*)e = 7.4263.  At this value we find Me = 0.07821. 
 
Numerical solution for the adiabatic case 
 
Here the grid is divided into 10 pieces, i.e., ∆x = 0.01m and the results from applying 
Heun’s method are contained in the following table  
 

pt x Mi F(xi,Mi) Mp F(xi+1,Mp) Mi+1 
1 0.0000 0.6000 -30.1500 0.2985 -8.7010 0.4057 
2 0.0100 0.4057 -13.0878 0.2749 -6.9652 0.3055 
3 0.0200 0.3055 -7.9202 0.2263 -4.9848 0.2410 
4 0.0300 0.2410 -5.3540 0.1874 -3.6675 0.1958 
5 0.0400 0.1958 -3.8479 0.1574 -2.7800 0.1627 
6 0.0500 0.1627 -2.8803 0.1339 -2.1606 0.1375 
7 0.0600 0.1375 -2.2213 0.1153 -1.7144 0.1178 
8 0.0700 0.1178 -1.7534 0.1003 -1.3843 0.1021 
9 0.0800 0.1021 -1.4104 0.0880 -1.1344 0.0894 

10 0.0900 0.0894 -1.1525 0.0779 -0.9415 0.0789 
11 0.1000 0.07894     

 
Thus, the accuracy is (0.07894/0.07821 – 1)100 = 0.93%.  However, using a grid 
containing 161 grid points produces Me = 0.07822 , which differs by only 0.012%. 
 
Now introducing heat transfer into the computations on a coarse grid of 11 grid points 
yields    
 

pt x Mi F(xi,Mi) Mp F(xi+1,Mp) Mi+1 
1 0.0000 0.6000 -30.0744 0.2993 -8.7093 0.4061 
2 0.0100 0.4061 -13.0727 0.2754 -6.9632 0.3059 
3 0.0200 0.3059 -7.9144 0.2268 -4.9838 0.2414 
4 0.0300 0.2414 -5.3516 0.1879 -3.6675 0.1963 
5 0.0400 0.1963 -3.8472 0.1578 -2.7805 0.1632 
6 0.0500 0.1632 -2.8804 0.1344 -2.1615 0.1380 
7 0.0600 0.1380 -2.2220 0.1157 -1.7155 0.1183 
8 0.0700 0.1183 -1.7543 0.1007 -1.3855 0.1026 
9 0.0800 0.1026 -1.4115 0.0885 -1.1356 0.0898 

10 0.0900 0.0898 -1.1536 0.0783 -0.9427 0.0794 
11 0.1000 0.07936     

 
This exit Mach number differs from the adiabatic value by only (0.07936/0.07894 – 
1)100 = 0.53%.  Therefore, heat transfer in this flow is not important. 
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Problem 19. – A supersonic stream of air (γ = 1.4, R = 0.287 kJ/kg · K and cp = 1.004 
kJ/kg · K) flows through a linear, conically shaped, nozzle, i.e., D = Di + (De – Di)x/L.  
The diameter at the inlet is 2 cm and the diameter at the exit is 5 cm.  The nozzle is 10 cm 
long.  The entering Mach number is 3.  Heat is added to flow at a rate so that the 
stagnation temperature varies linearly with distance.  The stagnation temperature at the 
inlet is 300K and increases 30K per meter of nozzle.  The pressure is such that a normal 
shock wave stands half way down the nozzle.  Use Euler’s explicit method to determine 
the Mach number distribution within the duct. 
 
This problem is the same as Example 10.6 except that it uses Euler’s explicit method 
instead of Heun’s.  As a demonstration of the expected accuracy, the adiabatic problem 
with no shock is solved on a variety of grids and the results are compared to the value 
obtained using isentropic area relations, i.e., 5.071544.  The results are also compared to 
the results obtained by using Heun’s method. 
 
         Euler’s Adiabatic Results               Heun’s Adiabatic Results 

Pts ∆x M (x=10) % error  Pts ∆x M (x=10) % error 
11 0.01 5.167509 1.8922  11 0.01 5.076171 0.0912 
21 0.005 5.118790 0.9316  21 0.005 5.072687 0.0225 
41 0.0025 5.094975 0.4620  41 0.0025 5.071820 0.0054 
81 0.00125 5.083206 0.2300  81 0.00125 5.071603 0.0012 

161 0.00625 5.077357 0.1146  161 0.00625 5.071550 0.0001 

 
As can be seen, Heun’s method, which is a 2nd order method produces more accuracy for 
the same grid size.  Euler’s results are not great particularly at larger grid sizes. 
Nonetheless, the following are summary results for the problem using Euler on the 
smallest grid in the table above. 
 

    Euler Heun  
pt x Mi F(xi,Mi) Mi+1 Mi+1 % diff 
1 0.0000 3.0000 31.5000 3.0197 3.0191 0.02 

17 0.0100 3.2958 27.6569 3.3131 3.3034 0.29 
33 0.0200 3.5587 24.8735 3.5742 3.5541 0.57 
49 0.0300 3.7970 22.7378 3.8112 3.7792 0.85 
65 0.0400 4.0161 21.0331 4.0292 3.9837 1.14 
81 0.0500 4.21964   0.4295 0.4309 -0.33 
82 0.0500 0.4295 -9.3608 0.4236 0.4251 -0.35 
98 0.0600 0.3509 -6.4740 0.3469 0.3490 -0.61 
114 0.0700 0.2946 -4.8037 0.2916 0.2940 -0.80 
130 0.0800 0.2520 -3.7168 0.2497 0.2521 -0.95 
146 0.0900 0.2186 -2.9593 0.2168 0.2192 -1.09 
162 0.1000 0.1918   0.1941 -1.21 
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Problem 20. – A supersonic stream of air (γ = 1.3, R = 0.287 kJ/kg · K and cp = 1.004 
kJ/kg · K) flows through a linear, conically shaped, nozzle, i.e., D = Di + (De – Di)x/L.  
The diameter at the inlet is 2 cm and the diameter at the exit is 5 cm.  The nozzle is 10 cm 
long.  The entering Mach number is 3.  Heat is added to flow at a rate so that the 
stagnation temperature varies linearly with distance.  The stagnation temperature at the 
inlet is 300K and increases 30K per meter of nozzle.  The pressure is such that a normal 
shock wave stands half way down the nozzle.  Use Heun’s predictor-corrector method to 
determine the Mach number distribution within the duct. 
 
This problem is the same as Example 10.6 except that it uses γ = 1.3 instead of γ = 1.4. 
The computed results follow 
 

pt x Mi F(xi,Mi) Mp F(xi+1,Mp) Mi+1 
1 0.0000 3.0000 25.8779 3.0259 25.4577 3.0257 

17 0.0100 3.2397 22.2699 3.2536 22.0810 3.2536 
33 0.0200 3.4485 19.6154 3.4608 19.4719 3.4608 
49 0.0300 3.6340 17.5579 3.6450 17.4442 3.6450 
65 0.0400 3.8010 15.9031 3.8110 15.8101 3.8110 
81 0.0500 3.95303       0.4072 
82 0.0500 0.4072 -8.5469 0.4019 -8.3413 0.4020 
98 0.0600 0.3354 -6.0469 0.3317 -5.9303 0.3317 
114 0.0700 0.2831 -4.5404 0.2802 -4.4655 0.2803 
130 0.0800 0.2430 -3.5386 0.2408 -3.4869 0.2408 
146 0.0900 0.2113 -2.8311 0.2096 -2.7938 0.2096 
162 0.1000 0.1857     
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Chapter Eleven 
 

EEQQUUAATTIIOONNSS  OOFF  MMOOTTIIOONN  
FFOORR  MMUULLTTIIDDIIMMEENNSSIIOONNAALL  FFLLOOWW 

 
 
Problem 1. – Prove that for a perfect gas 
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(a) For a perfect gas  

RTρp=                                                          (1) 
Tce v=                                                           (2) 

1γ
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=                                                         (3) 

 
Combine Eqs. (2) and (3) and rearrange to get 
 

1)(γeRT −=                                                       (4) 
 
Substitute Eq. (4) into Eq. (1) to the result for part (a) 
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(b) The definition of the total (internal) energy is 
 

2
Vee

2

t +=  

 
Combining this with Eq. (4) brings 
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Substitute RTγa2 =  in the above equation to obtain the result for part (b) 
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Problem 2. – According to the generalized continuity equation given by Eq. (11.1), for 
steady, incompressible, one-dimensional flow, 0xu =∂∂ , or, in other words, u is equal 
to a constant. Previously, for incompressible flow, however, it has been customary to 
assume that, for steady, one-dimensional flow, the product of velocity and cross-sectional 
area (AV) is a constant. Explain this seeming contradiction. 
 
Quasi one-dimensional flow is a one-dimensional approximation to a class of flows that 
are three-dimensional in actuality. This approximation is realized by assuming a uniform 
axial velocity in each cross section. Equation (11.45) describes the original three-
dimensional flow. The approximation, however, cannot be made by simply letting v and 
w vanish in Eq.(11.45), because this would obviously cause a mass imbalance. The 
eliminated v and w velocity components should be compensated for by bringing about 
changes in u, at different cross sections. This is performed by integrating Eq.(1.21) over a 
control volume that is constrained between two cross sections of interest, and this leads to 
VA = constant, as explained in previous chapters. 

 
 
Problem 3. – The continuity equation for steady two-dimensional flow is  
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A function ψ  (the compressible stream function) may be defined so that this equation is 
automatically satisfied. Show that the following accomplish this 
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where ∞ρ  is a constant that is inserted so that the stream function has the same units as 
the incompressible flow stream function. What are the units of the stream function? What 
are the units of the velocity potential, φ ?  
 
Differentiation of the above equations yield 
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Therefore 
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But for a continuous stream function with continuous derivatives 
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and, hence, the continuity equation is automatically satisfied.  
 
The dimensions of both the stream function and velocity potential are: L2T-1. 

 
 
Problem 4. – Expand Eq.(11.10) into the three component equations, and show that  
Eqs.( 11.7), (11.8), and (11.9) result. 
 
Equation (11.10) can be written as 
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Problem 5. – Show that  
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are equivalent. 
 
 
Take the dot product of Eq. (2) with the differential displacement vector, 
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Since Eqs. (1) and (2), have been derived for steady flow, it follows that 
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Substitution of these into Eq.(3) produces Eq. (1). 

 
 
Problem 6. – Derive Eq.(11.8), i.e., prove that  
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Substitution of Eqs.(1) and (2) in Eq.(11.17), then leads to 
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which simplifies to give Eq.(11.18).  



 241

 
Problem 7. – Under what conditions can it be assumed that 

2
Vρp

2

+  is equal to a 

constant? 
 

Consider the dot product ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+•

2
V

ρ
p 2

∇V . It can be expanded as follows 

 

2

2

2

2

22

ρ
ρp

2
V

ρ
p

2
V

ρ
ρppρ

2
V

ρ
p

2
V

ρ
p

∇
∇

∇

∇
∇∇

∇∇∇

•−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+•=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
•+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
•=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
•+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
•=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+•

VV

VVVVV

 

 
But using the vector form of Eq.(11.34) 
 

0
2

V
ρ
p 2

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+ ∇

∇  

 
for irrotational, steady, frictionless flow with no external forces except pressure. 
Therefore the dot product introduced above becomes 
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to vanish, we must have either 0ρ =∇  or V⊥ρ∇ . The former is a constant density flow 
(for our steady assumption), and we can show that the latter also leads to a constant 
density flow:  
The continuity equation  
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can be expanded as 
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Using this, the assumption V⊥ρ∇ , which implies 0ρ =•∇V , leads to 0=•V∇ . This 
is again the continuity description of a constant density flow.  

 
 
Problem 8. – Show that Crocco’s equation along a streamline can be written as  
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Take the dot product of Eq.(11.39) with the velocity vector to get 
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By definition, the product ωV ×  is perpendicular to both vectors V  and ω . Therefore, 
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t
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∂
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Combining the two previous expressions produces 
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Problem 9. – Using the substantial derivative operator within Crocco’s equation, 
Eq.(11.39), develop the following equation for the entropy 
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Under what conditions will the entropy remain constant along a streamline? 
 
As in problem 8, take the dot product of Eq.(11.39) with the velocity vector to get 
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By definition, the product ωV ×  is perpendicular to both vectors V  and ω . Therefore, 

( ) 0=×• ωVV , and the above equation becomes  
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Now add ts ∂∂  to both sides of Eq.(2) to get 
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Now consider Eq.(2) again. For a steady adiabatic flow 0ho =∇•V  and 0
t
=

∂
∂V . 

Therefore, for a steady adiabatic flow, the right hand side of Eq.(2) vanishes, i.e.,  
 

0s =∇•V  
 
Put this into Eq.(3), along with the steady flow assumption, to obtain 
 

0s
t
s

Dt
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∂
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= V  

 
which indicates that for steady, adiabatic flow, entropy is constant along a streamline.  

 
 
Problem 10. – From vector mechanics it is known that the curl of a gradient ( f∇∇× ) is 
identically zero. Demonstrate that this is true and use this face to prove that if a velocity 
potential ( φ=∇V ) exists the flow is irrotational.  
 
By definition 
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The rotation vector is defined as ( )Vω ×∇=
2
1 . If φ=∇V , the rotation vector becomes 

 

( ) 0
2
1

=φ= ∇×∇ω  

 
The flow is, therefore, irrotational. 

 
 
Problem 11. – The velocity components for a possible flow field are given by 

y2x3u 2 +−=  and y2x2v += . Is the flow irrotational? If so, determine the velocity 
potential.  
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Since the flow if two-dimensional, the above relation simplifies to 
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But 2
y
u
=

∂
∂  and 2

x
v
=

∂
∂ . The rotation vector then becomes 

( ) 022
2
1

=−= kω  

 
Therefore, the flow is irrotational. 
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Based on definition of the velocity potential, Eq.(11.4),
x

u
∂
φ∂

=  and 
y

v
∂
φ∂

= . Therefore, 

 
( )∫∫ ++−=+=φ F(y)xdy2x3F(y)xdu 2  

 
or 

F(y)xy2x3 ++−=φ                                                   (1) 
 
Differentiation with respect to y produces 
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But 
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Substitute this into Eq.(2) to get 
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Integration then gives 
 

cyF(y) 2 +=                                                          (3) 
 
where c is a constant. Finally, substitute Eq.(3) into Eq.(1) to obtain 
 

cyxy2x 23 +++−=φ  

 
 
Problem 12. – Show that the velocity potential equation, Eq.(11.47) can be written in 
two-dimensional form as 
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Equation (11.47), in two dimensions, can be written as 
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Rearrangement leads to 
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Divide the above equation by a2 and use the definition of the velocity potential to get 
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Problem 13. – Consider a steady, uniform flow of air ( γ  = 1.4, R = 0.287 kJ/kg.K) with 
velocity components u = 120 m/s and v = w = 0. Determine the velocity potential, 
substitute into Eq.(11.48), and find the resultant difference between static and stagnation 
temperature. 
 
Using the definition of the velocity potential and the above velocity components, we get 
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x
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∂
φ∂  

 
Since the other velocity components are zero, the velocity potential is a function of x 
only. Therefore 
 

cx201 +=φ  
and 
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φ•φ
−

=−=− ∇∇
2

1γT)(TRγaa o
22

o  

 
Therefore 
 



 247

( )
( )( )( ) ( ) K7.1677120

2871.42
11.4

Rγ2
1γTT 2

o ≅
−

=φ•φ
−

=− ∇∇  

 
 
Problem 14. – Using the stream function, as defined in Problem 11.3, develop the 
following expression for steady, two-dimensional, irrotational flow  
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From irrotational flow  
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and from the definition of the stream function 
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Now for isentropic flow 
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From Euler’s equations 
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Rearranging produces the result  
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Problem 15. – Use the technique presented in Example 11.4 to write (a) the velocity 
components in terms of the velocity potential in spherical coordinates and (b) the steady 
energy equation for three-dimensional, adiabatic flow in cylindrical coordinates. 
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b) From Eq.(11.14) 

( ) 0pet =•+•ρ VV ∇∇  
 

r1 VV =  1h1 =  

θ= VV2  rh 2 =  

z3 VV =  1h 3 =  
 
 

( )

( ) ( ) ( ) 0prV
z

pVprV
rr

1
z
e

V
e

r
V

r
e

V

0pe

zr
t

z
tt

r

t

=⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
θ∂
∂

+
∂
∂

+
∂
∂

ρ+
θ∂

∂ρ
+

∂
∂

ρ

=•+•ρ

θ
θ

VV ∇∇
 

 
 
 
 



 250

Chapter Twelve 
 

EEXXAACCTT  SSOOLLUUTTIIOONNSS 
 

 
Problem 1. – The velocity potential equation can be written in a variety of forms. For 
example, Taylor and Maccoll, Ref. 23, used the following forms for problems in 
Cartesian coordinates 
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Derive this expression and then show that it may be written as 
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Equation (11.47), in two dimensions, can be written as 
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Note Eqs. (2) and (3) are identical. Further 
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which leads to 
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Using the definition of velocity potential, the above equation becomes 
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Substitution of this into the right hand side of the Eq. (3) then yields Eq. (1). 

 
 
Problem 2. – Show that polar velocity components vr and vθ are related to the Cartesian 
velocity components u and v by 

θ+θ−=
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θ cosvsinuv
sinvcosuvr  

Find the inverse of these, i.e., develop expressions for u = u (vr, vθ) and v = v (vr, vθ). 
 
Consider the following figure 
 
 
 
 
 
 
 
 
where rê  and θê  are the unit normal vectors of the polar coordinate system. These unit 

vectors are related to the Cartesian unit vectors, î and ĵ , through a counterclockwise 
rotation of angle θ. In other words 
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Now consider the velocity vector expressed in both coordinate systems 
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Substituting for the polar unit vectors from Eq. (1) in the above yields 
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x

y 

rê  θê  

θ
r



 252

which after equating components gives 
 

θ+θ=
θ−θ=

θ

θ

cosvsinvv
sinvcosvu

r

r  

 
Taking the inverse of Eq. (1) leads to 
 

⎥
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⎤
⎢
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⎡
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⎢
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⎡
θθ
θ−θ

=⎥
⎦

⎤
⎢
⎣

⎡

θê
ê

cossin
sincos

ĵ
î r  

 
Using this and substituting for the Cartesian unit vectors in Eq.(2) 
 

 ( ) ( )θθθθ θ+θ+θ−θ=+ êcosêsinvêsinêcosuêvêv rrrr  
 
which after equating components gives 
 

θ+θ−=
θ+θ=

θ cosvsinuv
sinvcosuvr  

 
 
Problem 3. – For a uniform flow in the +y direction, show that the expressions for the 
velocity components in the previous problem give 
 

θ=θ=== θ cosVvandsinVv,0u,Vv r  
 
Obtain expressions for the velocity components for a uniform flow that is directed at an 
angle π/2 + ∆. 
 
Now 

α=
α=

cosVu
sinVv  

 
at α = π/2, it is obvious that v = V and u = 0. Substituting these into the relations of the 
previous problem produces 
 

θ=θ+θ=θ+θ−=
θ=θ+θ=θ+θ=

θ cosVcosVsin0cosvsinuv
sinVsinVcos0sinvcosuvr  

 
For a uniform flow that is directed at an angle of α = π/2 + ∆ 
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π
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⎝
⎛ ∆+

π
=

sinV
2

cosVu

cosV
2

sinVv
 

 
Substituting these into the relations of the previous problem produces 
 

( )
( )θ−∆=θ∆+θ∆=θ+θ−=

θ−∆=θ∆+θ∆−=θ+θ=

θ cosVcoscosVsinsinVcosvsinuv
sinVsincosVcossinVsinvcosuvr  

 
 
Problem 4. – Prove that as the limit line for radial flow is approached the acceleration of 
the flow approaches ∞. 
 
Flow acceleration is composed of an unsteady and convection terms 
 

VV
t
V

Dt
VD rr
r

∇•+
∂
∂

=  

 
Since the flow is steady and purely radial ∂V/∂t = 0 and rr êvV =

r
.  In cylindrical 

coordinates 
 

z
ê

r
ê

r
ê zr ∂

∂
+
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Now  
 

r
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rr ê
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=
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=∇•
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The radial derivative of the Mach number is 
 

( ) ( )
dr
da

a
M

dr
dv

M
v

dr
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a
v
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a
1
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aVd
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dM rr
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rrr −=−===  
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2
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2
2
1

oo

M
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T
T

a
a −

⎟
⎠
⎞

⎜
⎝
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⎞
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⎛
=  

so 
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Take the logarithmic derivative of this to get  
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M
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a
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Insert this into the expression for the radial derivative of the Mach number and obtain 
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M
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M
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2
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Hence, 
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M
2
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2
1
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M
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2
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⎟
⎠
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Rearranging gives 
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M
2
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M
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dvv
2

r
r

⎟
⎠
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⎜
⎝
⎛ −γ

+
=  

 
The radial derivative of the Mach number can also be obtained from Eq.(12. 7), i.e.,  
 
 

MM
2

11

1M
n
r

dM
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2

2

⎟
⎠
⎞

⎜
⎝
⎛ −γ

+

−
=  

Therefore, 
 

( )1M
M

r
n

dr
dvv 2

2
r

r −
=  

 
As r → r* M→ 1, hence, the convective acceleration is infinite.  
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Problem 5. – Starting from the concept that the streamlines are straight for radial flow 
and therefore have the form ψ = cθ = ctan−1(y/x), develop an equation for the velocity 
field of a compressible fluid. 
 
As defined in Problem 11.3 
 

x
v

y
u

ref

ref

∂
ψ∂

ρ
ρ
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∂
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ρ
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Now ψ = ctan−1(y/x), so 
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So the velocity components are 
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⎠
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Hence, 
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Problem 6. – Sketch the ellipse of Eq.(12.13) in the first quadrant.  Indicate roughly 
subsonic and hypersonic regimes. Use the sketch to explain which effect, thermodynamic 
or inertial, dominates in subsonic and hypersonic accelerations.   
 
 
Equation (12.13)  
 

1
a

1
2
V

)a(
a

2
o

2

2
o

2
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−γ

+  

 
is plotted for a γ = 1.4 in the figure below.  The y axis may be regarded as the 
thermodynamic axis since it contains the speed of sound ratio a/ao.  The x axis may be 
regarded as the kinematic axis since it contains the speed ratio V/ao.  Lines for two Mach 
numbers are shown on the plot.  To the left of the M =1 line the flow is subsonic; to the 
right supersonic.  
 
Because the ellipse is relatively flat in the subsonic regime, this indicates that Mach 
number changes within this regime are largely due to changes in V.  On the other hand, 
because the ellipse becomes flat in the very high Mach number regime (hypersonic), this 
indicates that Mach number changes within this regime are largely due to changes in the 
thermodynamics, i.e., temperature.  
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Problem 7. – Develop expressions for the flow variables, To/T, po/p and ρo/ρ in terms of 
the radius, r, for the irrotational vortex. 
 
We may start from the following 
 
 

a/ao 

V/ao 

M = 1 

M = 10 



 257

1
1

2o

12o

2o

M
2

11

M
2

11
p

p

M
2

11
T
T

−γ

−γ
γ

⎟
⎠
⎞

⎜
⎝
⎛ −γ

+=
ρ

ρ

⎟
⎠
⎞

⎜
⎝
⎛ −γ

+=

−γ
+=

 

 
For the irrotational compressible vortex we have shown [Eq.(12.16)] that 
 

2min M
1

1
21

r
r

−γ
+=  

  
so at M = 1 

1
1

r
r

min

*
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Combining these and solving gives 
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Replacing this term in each of the ratios and defining R = r/r* produces the desired 
expressions 
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Problem 8. – Plot the incompressible flow equiangular spiral from θ = 0 to θ = 4 π.  
Assume that the constant c is unity, i.e., C = 0. Select the ratio of Q/Γ so that r = 4 at       
θ = 4π. 
 
The equation for an incompressible flow equiangular spiral is 
 

θ
Γ

θ
ΓΓ

−θ

===
QQCQ

eceer  
 

At θ = 4 π r = 4 therefore, 
π

Γ=
4Q

e4  
 
So  

4ln
4
1Q
π

=
Γ

 
 
Hence 

π
θ

= 44r  
 
The corresponding x and y coordinates are x = rcosθ and y = rsinθ.  A plot of these with 
θ as the parameter provides the following 
 

-4

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4 5
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Problem 9. – Use the hodograph transformation to obtain a solution for the case in which 
ψ = ψ(V).  Show that for this case φ = cα. 
 
Elimination of the velocity potential from the Chaplygin-Molenbroek equations, 
Eqs.(12.52) and (12.53) was shown to produce 
 

0
a

V1
V

V
V

V
2

2

2

2
oo =

α∂

ψ∂
⎟
⎟
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ρ
ρ
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⎞
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⎛
∂
ψ∂

ρ
ρ

∂
∂  

 
Since for this problem ψ = ψ(V), this expression reduces to  
 

0
dV
dV

dV
d o =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ψ
ρ

ρ
 

 
Integration brings 
 

C
dV
dVo =

ψ
ρ
ρ

 

But from Eq.(12.52) 
 

C
dV
dVo =
ψ

ρ
ρ

=
α∂
φ∂  

 
Hence, 

α=φ C  
 

 
Problem 10. – Another method to obtain the hodograph equations is to make use of the 
Legrendre transformation, Zwillinger, Ref. 24.  In this approach a function, Φ(u,v),  in 
the hodograph plane is related to the velocity potential, φ(x,y), by 
 

φ−+=Φ yvxu  
Use this relation to show that  
 

(a) x
u

=
∂
Φ∂  and  y

v
=

∂
Φ∂  
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(b)       
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where 
vvuv

uvuuJ
ΦΦ
ΦΦ

= .   

 
(c) Finally, show that Eq.(12.27) is transformed into the following linear equation 
 

0
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(a) Differentiate )y,x(yvxu φ−+=Φ  with respect to u and obtain 

 

u
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But from the definition of the velocity potential  u
x

=
∂
φ∂ and v

y
=

∂
φ∂ , so the above 

reduces to 
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Similarly differentiate )y,x(yvxu φ−+=Φ  with respect to v and obtain 
 

y
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v
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(b) Differentiate ∂Φ/∂u = x first with respect to u and also with respect to v to obtain 
 

vuv

uuu

x
x

=Φ
=Φ

 

Similarly using ∂Φ/∂v = y we obtain 
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vvv

uvu

y
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Now use the chain rule and write 
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Likewise 
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The above pair may be written in matrix-vector form as 
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Solving this for φxx and φxy yields 
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Following the same procedure 
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Likewise 
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The above pair may be written in matrix-vector form as 
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Solving this for φyx and φyy yields 
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Because of irrotationality  
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So φxy = φyx. Accordingly, from the above we see that 
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or Φuv =  Φvu.  Thus the denominators may be written as 
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Finally then we obtain the expressions requested i.e., 
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(c) Equation (12.27) 
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may be written as  
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The derivatives of the potential may be replaced by using the expressions from part (b) 
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Assuming that J ≠ 0 this becomes  
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Problem 11. – Prove Eq.(12.49). 
 
Start with Eq.(12.48) 
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Differentiate this with respect to V, i.e., 
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Finally then 
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Problem 12. – In the solution of problems using the hodograph equations, the resulting 
expressions often contain the following two parameters: τ = (V/Vmax)2 and β = 1/(γ – 1).  
Show that  
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Problem 13. – Using Eq. (12.79), show that Eq.(12.77) can be written as 
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Verify that this is identically satisfied by a uniform stream given by vr = Vcosθ. 
 
Equation (12.77), the Taylor-Maccoll equation is 
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Next combine Eq.(12.78) 
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Using this to replace the a2 in the above gives the desired expression 
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Now suppose vr = Vcosθ.  So dvr/dθ = −Vsinθ and d2vr/dθ2 = −Vcosθ .   Substitution into 
the above brings 
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Problem 14. – A steady, two-dimensional, supersonic flow, uniformly streams along a 
horizontal wall that is aligned with the x-axis.  The stream encounters a sharp corner 
located at x = 0.  Show that the maximum angle through which the flow may turn is given 
by π/2b – π/2, where b2 = (γ – 1)/(γ + 1).  Also show that the maximum angle can only 
occur if the original flow is sonic.  
 
From Eq.(12.66) 
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The maximum value of ν will occur at M → ∞. As Mach number goes to infinity the 
argument of the inverse tangent becomes infinite, i.e., tan-1(∞) = π/2.  Therefore, the 
above becomes 
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The angle through a flow is turned may be expressed as 
 

12 ν−ν=∆  
 

The maximum turning angle will occur when ν2 =νmax and ν1 = 0.  As shown above νmax 
occurs when M2 → ∞; The upstream Prandtl-Meyer function, ν1, i.e., 
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is seen to vanish when M1 = 1. 

 
 
Problem 15. – Uniform supersonic flow at Mach 3.0 and p = 20 kPa passes over a cone 
of semi-vertex angle of 20° aligned parallel to the flow direction. Determine the shock 
wave angle, the Mach number of the flow along the cone surface, and the surface 
pressure. Take γ = 1.3. 
 
Except for the ratio of specific heats this is identical to Example 12.8.  
 
Iteration of shock angles is used until a value of θs = 29.24443˚ produces the desired cone 
half angle of  θc = 20˚. At the free stream Mach number, M1 = 3, and this shock angle, 
using Eqs.(12.85), (12.86), (12.87), (12.81) and (12.82), we find M2, V2, δs, vr and vθ, 
respectively 
 

M2 tan(δs) δs (deg) V2 vr vθ 
2.4641 0.2228 12.5614 0.6904 0.6613 0.1982 

 
Spreadsheet calculation results for the first five increments of ∆θ = 0.1˚ for                     
θs = 29.24443˚, M1 = 3 and γ = 1.3 are as follows 
 

No. θ (deg) (vr)p F[(vr)i,(vθ)i] (vθ)p F[(vr)p,(vθ)p] (vr) i+1 (vθ) i+1 V M δ (rad) 
1 29.2444 0.6613   -0.1982   0.6613 -0.1982 0.6904 2.4641 -0.2912 
2 29.1444 0.6617 -1.2765 -0.1960 -1.2686 0.6617 -0.1960 0.6901 2.4620 -0.2879 
3 29.0444 0.6620 -1.2686 -0.1938 -1.2612 0.6620 -0.1938 0.6898 2.4600 -0.2847 
4 28.9444 0.6624 -1.2612 -0.1916 -1.2545 0.6624 -0.1916 0.6895 2.4580 -0.2815 
5 28.8444 0.6627 -1.2545 -0.1894 -1.2482 0.6627 -0.1894 0.6892 2.4561 -0.2784 
6 28.7444 0.6630 -1.2482 -0.1872 -1.2424 0.6630 -0.1872 0.6889 2.4542 -0.2752 
 
Spreadsheet calculation results near the cone surface for ∆θ = 0.1˚, θs = 29.24443˚,        
M1 = 3 and  γ = 1.3 are contained in the following table 
 

No. θ (deg) (vr)p F[(vr)i,(vθ)i] (vθ)p F[(vr)p,(vθ)p] (vr) i+1 (vθ) i+1 V M δ (rad) 
92 20.1444 0.6775 -1.3397 -0.0034 -1.3459 0.6775 -0.0034 0.6775 2.3786 -0.0050
93 20.0444 0.6775 -1.3459 -0.0011 -1.3522 0.6775 -0.0011 0.6775 2.3786 -0.0016
94 19.9444 0.6775 -1.3522 0.0013 -1.3587 0.6775 0.0013 0.6775 2.3786 0.0019 
95 19.8444 0.6775 -1.3587 0.0037 -1.3654 0.6775 0.0037 0.6775 2.3786 0.0054 
 
Since the velocity at the surface is equal to the radial velocity component, we may readily 
compute the Mach number from Eq.(12.84) and the static pressure on the surface.  
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θc (deg) Mc Vc vr vθ ps 
20.0000 2.3786 0.6775 0.6775 0.0000 53.0308 

 

 
 
Problem 16. –  Uniform supersonic flow at Mach 4.0 and p = 20 kPa passes over a cone 
of semi-vertex angle of 20° aligned parallel to the flow direction. Determine the shock 
wave angle, the Mach number of the flow along the cone surface, and the surface 
pressure. Take γ = 1.4. 
 
Except for the upstream Mach number this is identical to Example 12.8. 
 
Iteration of shock angles continued until a value of θs = 26.4850˚ produced the desired 
cone half angle of θc = 20˚. At the free stream Mach number, M1 = 4, and this shock 
angle, using Eqs.(12.85), (12.86), (12.87), (12.81) and (12.82), we find M2, V2, δs, vr and 
vθ, respectively 
 

M2 tan(δs) δs (deg) V2 vr vθ 
2.9698 0.2574 0.2519 0.7989 0.7813 0.1668 

 
Calculation results near the cone surface for ∆θ = 0.1˚, θs = 26.4850˚, M1 = 4 and γ = 1.4. 
 
 
 

No. θ (deg) (vr)p F[(vr)i,(vθ)i] (vθ)p F[(vr)p,(vθ)p] (vr) i+1 (vθ) i+1 V M δ (rad) 
64 20.1850 0.7908 -1.5610 -0.0051 -1.5680 0.7908 -0.0051 0.7908 2.8891 -0.0064
65 20.0850 0.7908 -1.5680 -0.0023 -1.5752 0.7908 -0.0023 0.7908 2.8890 -0.0030
66 19.9850 0.7908 -1.5752 0.0004 -1.5827 0.7908 0.0004 0.7908 2.8890 0.0005 
67 19.8850 0.7908 -1.5827 0.0032 -1.5905 0.7908 0.0032 0.7908 2.8890 0.0040 
 
Since the velocity at the surface is equal to the radial velocity component, we may readily 
compute the Mach number on the surface from Eq.(12.84).   
 

θc (deg) Mc Vc vr vθ ps 
20.0000 2.8890 0.7908 0.7908 0.0000 80.12361 

 

 
 
Problem 17. – Uniform supersonic flow at Mach 3.0 and p = 20 kPa passes over a cone 
of semi-vertex angle of 30° aligned parallel to the flow direction. Determine the shock 
wave angle, the Mach number of the flow along the cone surface, and the surface 
pressure. Take γ = 1.4. 
 
Except for the cone angle this is identical to Example 12.8. 
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Iteration of shock angles continued until a value of θs = 39.7841˚ produced the desired 
cone half angle of θc = 30˚. At the free stream Mach number, M1 = 3, and this shock 
angle, using Eqs.(12.85), (12.86), (12.87), (12.81) and (12.82), we find M2, V2, δs, vr and 
vθ, respectively 
 

M2 tan(δs) δs (deg) V2 vr vθ 
1.9038 0.3974 0.3783 0.6483 0.6161 0.2015 

 
Calculation results near the cone surface for ∆θ = 0.1˚ for θs = 39.7841˚, M1 = 3 and        
γ = 1.4 are as follows 
 

No. θ (deg) (vr)p F[(vr)i,(vθ)i] (vθ)p F[(vr)p,(vθ)p] (vr) i+1 (vθ) i+1 V M δ (rad) 
97 30.1841 0.6335 -1.2566 -0.0041 -1.2602 0.6335 -0.0041 0.6336 1.8310 -0.0064
98 30.0841 0.6335 -1.2602 -0.0019 -1.2639 0.6335 -0.0019 0.6335 1.8310 -0.0029
99 29.9841 0.6335 -1.2639 0.0003 -1.2677 0.6335 0.0004 0.6335 1.8310 0.0006 

100 29.8841 0.6335 -1.2677 0.0026 -1.2716 0.6335 0.0026 0.6335 1.8310 0.0041 
 
Since the velocity at the surface is equal to the radial velocity component, we may readily 
compute the Mach number on the surface from Eq.(12.84).   
 

θc (deg) Mc Vc vr vθ ps 
30.0000 1.8310 0.6335 0.6335 0.0000 92.4554 

 

 
 
Problem 18. – A supersonic diffuser contains a conical spike of semi-vertex angle 5°; the 
spike is aligned with the flow (Figure P12.18). Determine the Mach number of the flow 
along the cone surface and the static pressure at the surface of the cone. Altitude = 5 km 
and γ = 1.4.  
 
 
 
 
 
 
 

 
 

 
FFiigguurree  PP1122..1188  

 
At an altitude of 5 km the local static pressure is 54.05 kPa. 
 

5º M∞ = 3.0 
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Iteration of shock angles continued until a value of θs = 19.75086˚ produced the desired 
cone half angle of θc = 5˚. At the free stream Mach number, M1 = 3, and this shock angle, 
using Eqs.(12.85), (12.86), (12.87), (12.81) and (12.82), we find M2, V2, δs, vr and vθ, 
respectively 
 

M2 tan(δs) δs (deg) V2 vr vθ 
2.9788 0.0072 0.0072 0.7997 0.7546 0.2648 

 
Calculation results near the cone surface for ∆θ = 0.1˚ for θs = 19.75086˚, M1 = 3 and        
γ = 1.4 are as follows 
 

No. θ (deg) (vr)p F[(vr)i,(vθ)i] (vθ)p F[(vr)p,(vθ)p] (vr) i+1 (vθ) i+1 V M δ (rad) 
145 5.3509 0.7904 -1.5086 -0.0043 -1.5351 0.7904 -0.0043 0.7904 2.8851 -0.0054
146 5.2509 0.7904 -1.5353 -0.0016 -1.5634 0.7904 -0.0016 0.7904 2.8851 -0.0020
147 5.1509 0.7904 -1.5637 0.0012 -1.5936 0.7904 0.0012 0.7904 2.8851 0.0015 
148 5.0509 0.7904 -1.5939 0.0040 -1.6258 0.7904 0.0040 0.7904 2.8851 0.0051 
 
Since the velocity at the surface is equal to the radial velocity component, we may readily 
compute the Mach number on the surface from Eq.(12.84).   
 

θc (deg) Mc Vc vr vθ ps 
5.1938 2.8851 0.7904 0.7904 0.0000 64.2781 
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 Chapter Thirteen 
 
 

LLIINNEEAARRIIZZEEDD  FFLLOOWWSS 
 
 
Problem 1. – The lift coefficient versus angle of attack for an airfoil, as measured in a 
low-speed wind tunnel, is given in Figure P13.1. Sketch this curve for the same airfoil at 
a Mach number of 0.45. 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-4 -2 0 2 4 6 8

 
Figure P13.1 

 
From the Prandtl Glauert similarity rule, we can write 
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Using this result and the values of 0MLC =∞

 from Figure P13.1 we can sketch the lift 
coefficient versus angle of attack for the same airfoil at a Mach number of 0.45  
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Problem 2. – Using the potential equation 
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develop the Goethert similarity rules for three-dimensional potential subsonic flow. 
 
The equation  
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is for small-perturbation, linearized compressible three-dimensional flow. We transform 
this flow to an incompressible flow. Let 
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and substitute into the potential equation: 
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Multiplying this equation with 324 kkk  we obtain: 
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In order to transform the potential equation for compressible flow into Laplace’s 
equation, it follows that 
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The boundary conditions for the three-dimensional compressible flow are: 
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Transforming the boundary conditions to the incompressible flow, we have: 
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To satisfy the boundary conditions for the incompressible flow, it is necessary that 
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For the incompressible flow, the Bernoulli’s equation is: 
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Introducing this equation into 
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and dropping the smaller terms, we receive 
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For the compressible flow we have 
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Problem 3. – Tests run at 3.0M =∞ show that the lift coefficient versus angle of attack 
for an airfoil is given by ( )11.0CL +α=  with α  in degrees. Using the appropriate 
similarity laws, derive an expression for LC  versus α  for this airfoil at 5.0M =∞ . 
 
Using the Prandtl Glauert similarity rule 
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we obtain 
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and 
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and the expression for LC  versus α  at 5.0M =∞  is 
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Problem 4. – For the airfoil of Problem 3, plot CL versus M∞ from M∞ = 0 to M∞ = 0.60 at 
angles of attack of  0○, 2○ and 4○. 
 
From the Prandtl Glauert similarity rule we have 
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Problem 5. – During the testing of a two-dimensional, streamlined shape, it is found that 
sonic flow first occurs on the surface for 70.0M =∞ . Calculate the pressure coefficient at 
this point and also the minimum pressure coefficient for this shape in incompressible 
flow. 
 
The pressure coefficient in the point in which the sonic flow occurs is 
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The minimum pressure coefficient in incompressible flow is calculated from the Prandtl 
Glauert rule 
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Problem 6. – Two-dimensional subsonic linearized potential flow takes place between 
two wavy walls as shown Figure P13.6. Solve for pφ  and determine the pressure 
distribution along the centerline. 
 
 

 
 
 
 
 
 
 
 

 
Figure P13.6 

 
The potential equation for two-dimensional compressible flow is 
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y

M1
x 2

p
2

2
2
p

2
=

∂

φ∂
+−

∂

φ∂
∞  

 
For subsonic flow, the solution of this equation can be obtained using the method of 
separation of variables 
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The constants c1, c2, c3, c4 can be determined from the boundary conditions. For dy = , 
the boundary condition is 
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Introducing the relationships for by  and for pφ  into the boundary condition we receive a 
condition between the constants c1, c2, c3, c4 
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Similarly, for dy −=  we have 
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From the two relations between the constants c1, c2, c3, c4 we obtain 
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With these relations, the potential function pφ  is 
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Along the centerline we have 
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we obtain that along the centerline the pressure is constant 
 
 ∞= pp  
 
 
Problem 7. – Consider two-dimensional, supersonic, linearized flow under a wavy wall, 
as shown in Figure P13.7. Solve for the velocity potential of the flow and pressure 
coefficient along the wall. Derive an expression for the lift and drag per wave length. 
 
 
 
 
 
 
 
 
 
 
 

Figure P13.7 
 
The general solution of the linearized potential equation two-dimensional, supersonic 
flow under a wall is 
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For the wavy wall, this boundary condition becomes 
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Integrating, we obtain 
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The perturbation velocity pu  is 
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With pu  we can compute the pressure coefficient pC  along the wall 
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The differential lift dL is given by 
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where lift is defined to be positive upward. 
 
Integrating from 0 to λ, we obtain the lift force per wave length 
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The differential drag is 
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where drag is positive in the flow direction.  Integrating from 0 to λ, we have the drag per 
wave length 
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Problem 8. – A wing has the shape of a sine wave, as shown in Figure P13.8. Compute 
the lift and drag for supersonic flow. Assume linearized, two-dimensional flow above and 
below the foil. 
 
 
 
 
 
 
 

Figure P13.8 
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For  a wing with a shape of a sine wave we have 
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Introducing these relations in the expression of the lift for an airfoil, we have 
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For the drag, in the same manner we have 
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Problem 9. – Using thin airfoil theory, find CL and CD for a two-dimensional, flat plate 
airfoil with deflected flap in supersonic flow of Mach number M∞. Plot CL versus α for 
various δ for F=0.25 (Figure P13.9). 
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Figure P13.9 
 
For the airfoil from Figure P13.9 we can distinguish two different regions: 
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We substitute these relations in the general expression of the lift for an airfoil 
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Therefore, the lift coefficient CL is 
 

( )F
1M

4

cMp
2
1

LC
22

L δ+α
−

=
γ

=
∞∞∞
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For the drag we get 
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and the drag coefficient CD is 
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Consequently for F=0.25 CD is 
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Problem 10. – Consider uniform supersonic flow over a wall in which there exists a 
bump, as shown in Figure P13.10. Assuming linearized, two-dimensional potential flow, 
calculate the vertical and horizontal components of the force on the bump. Assume M∞ = 
2.0, with p∞ = 50 kPa. 
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Figure P13.10 
 
 
For the wall from Figure P13.10 we can distinct two different regions where dxdy  is 
not zero 
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Using these relations in the general expression for the lift we get 
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For the drag we can write 
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Problem 11. – A supersonic airfoil consists of a circular arc, as shown in Figure P13.11. 
Compute the lift and drag coefficients of the foil versus angle of attack. 
 
 
 
 
 
 
 
 
 

Figure P13.1l 
The lift coefficient is 
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α
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The airfoil with a shape of a circular arc has camber but no thickness, with 
 

2.0

2
L

L1.0
dx
dC

==  

 
Thus, the drag coefficient is 
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Problem 12. – For the airfoil shown in Figure P13.12, determine CL and CD versus angle 
of attack in supersonic flow. 
 
 
 
 
 
 
 

Figure P13.12 
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The lift coefficient is 
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For the upper surface of the airfoil, dxdy  can have two distinctive values 
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For the lower surface of the airfoil  
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For zero angle of attack, the drag is 
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Consequently, for zero angle of attack, the drag coefficient is 
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For an angle of attack α, we have an additional term 
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Chapter Fourteen 
 

CCHHAARRAACCTTEERRIISSTTIICCSS 
 

 
Problem 1. – Use the Method of Indeterminate Derivatives to obtain equations of the 
characteristics for the following equation in the hodograph plane,  

 

0
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where the function, Φ(u,v), in the hodograph plane is related to the velocity potential, 
φ(x,y), by 
 

φ−+=Φ yvxu  
so that  

x
u

=
∂
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v
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(see Problem 10 in Chapter 12). 
 
To begin write the total derivatives of ∂Φ/∂u and ∂Φ/∂v 
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Next rewrite  
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in the following form 
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Note two of the terms have changed places and the coefficients are 
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Since ∂2Φ/∂u∂v = ∂2Φ/∂v∂u, the above provide three equations in terms of the three 
unknown second derivatives.  Solving for any of the derivatives (here ∂2Φ/∂u2 was 
selected) using Cramer’s Rule yields 
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Setting the determinant D to zero gives the equation of the characteristic in the hodograph 
plane, i.e., 
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Solving this gives 
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Substitution brings Eq.(14.21) 
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The equation for the information that is carried on the characteristics is obtained by 
equating the determinant N to zero, i.e., 
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Substitution brings Eq.(14.15) 
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Problem 2. – Use the Method of Indeterminate Derivatives to obtain the equation for the 
slope of the characteristics in the hodograph plane in terms of the flow speed V and the 
flow angle α. Develop the equation starting with the potential equation in the hodograph 
plane, i.e., Eq.(12.55) 
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Write the total derivatives of ∂φ/∂V and ∂φ/∂α 
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Next rewrite the potential equation as 
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The coefficients are 
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The above provide three equations in terms of the three unknown second derivatives.  
Solving for any of the derivatives (here ∂2φ/∂V2 was selected) using Cramer’s Rule yields 
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Setting the determinant D to zero gives the desired equation of the characteristic in the 
hodograph plane, i.e., 
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which is Eq.(14.52). 

 
 
Problem 3. – Use the Method of Linear Combination to obtain equations of the 
characteristics for the following set of equations in the hodograph plane, 
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Rewrite the pair of first-order partial differential equations as 
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Note the end terms of the potential equation have been interchanged and the coefficients 
are 
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Now multiply the first equation by an unknown parameter σ1, the second by σ2 and add 
the results to get 
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Grouping like derivatives gives 
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Compare the group of terms within the square brackets to the following total derivatives 
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From this comparison we may write the slope, dv/du, denoted as λ, as 
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Expanding this pair of equations produces two equations for σ1 and σ2 
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A unique solution for σ1 and σ2 will be obtained if and only if the determinant of the 
coefficients vanishes, i.e., 
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Expanding and rearranging the result produces the quadratic equation,  
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which was previously obtained as Eq.(14.21).   
 
To derive the compatibility equation, incorporate the total derivative equations into the 
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The relationship between σ1 and σ2 is obtained from use of either 
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Substitution brings Eq.(14.15) 
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Problem 4. – Resolve problem 3 using Eigenanalysis 
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can be written in vector matrix form as 
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The inverse matrix of A is 
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The characteristic directions are obtained by determining the eigenvalues of matrix C,  
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Expanding the determinant yields the same quadratic expression as obtained by the two 
previous methods  problems 3 and 4 
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To derive the compatibility equation, begin with  
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The characteristic variables are defined by   
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To derive the compatibility equation, the left eigenvectors must first be determined.  
Rather than obtaining results for each characteristic (I and II), the following applies to 
characteristics of either family  
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Expanding gives two equations  
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The group of coefficients on the right side of the above two equations are equal to each 
other as may be seen by examining the eigenvalue expansion.  Therefore, the equations 
are not independent of each other. So we may arbitrarily assign a value to either l1 or l2 
and then use the above to determine the remaining component.  Let l1 = 1, so that  
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ−=

1

3

1

2
2 C

C
C
C

2l . 
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The compatibility equation for characteristics is  
 

0=wlTd  
or  
 

[ ] 0dy
C
C

2dx
dy
dx

C
C

21
dy
dx

ll
1

2

1

2
21 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
λ−+=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ−=⎥

⎦

⎤
⎢
⎣

⎡
 

 
Consequently, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−λλ

+
λ

=
−λ

=

1

2

1

2

1

2

C
C

2

C
C2

1

C
C2

1
dx
dy  

 

And since ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ−

1

3

1

2

C
C

C
C

2  the above becomes 

 

3

2

1

3

1

2

C
C21

C
C

C
C2

1
dx
dy

−
λ

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ

−λ
+

λ
=  

 

( )

( )

3

31
2
22

3

231
2
22

3

2

31
2
2

2
2

31
2
221

3

2

31
2
22

31
2
22

31
2
22

1

3

2

31
2
22

1

3

2

C
CCCC

C
C2CCCC

C
C2

CCCC
CCCCC

C
C2

CCCC

CCCC

CCCC

C

C
C2

CCCC

C
C
C2

dv
du

dx
dy

−±−
=

−−±−−
=

−
−+−

−±−
=

−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−±−

−±−

−±
=

−
−±

=−=

 

 
Substitution brings  
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( )
22

4222

ua
avuauv

dx
dy

−
−+±−

=  

 
 
Problem 5. –The continuity and momentum equations for one-dimensional unsteady flow 
are 

x
p

x
uu

t
u

0
x

u
x
u

t

∂
∂

−=
∂
∂

ρ+
∂
∂

ρ

=
∂

ρ∂
+

∂
∂

ρ+
∂

ρ∂

 

 
(a) For an isentropic flow show that this pair can be written as 
 

x
a

x
uu

t
u

0
x

u
x
u

t

2

∂
ρ∂

ρ
−=

∂
∂

+
∂
∂

=
∂

ρ∂
+

∂
∂

ρ+
∂

ρ∂

 

 
(b) Define the Riemann variable, R, as 
 

ρ
ρ

=
dadR   

and show that the pair of equations in part (a)  become 
 

0
x
Ra

x
uu

t
u

0
x
ua

x
Ru

t
R

=
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

 

 
(c) Add and subtract the pair of equations in part (b) to obtain 
 

( ) ( ) ( )

( ) ( ) ( ) 0
x

Ruau
t

Ru

0
x

Ruau
t

Ru

=
∂

−∂
−+

∂
−∂

=
∂

+∂
++

∂
+∂
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(d) From the results of part (c) determine the slope of the characteristics, i.e., dx/dt, as 
well as the information that is propagated along the characteristics. 

 
(e) For isentropic flow of a perfect gas, show that if R(0) = a(0) = 0, then 
 

a
1

2R
−γ

=  

(a) Since the flow is isentropic we have 
 

ρ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
=

d
dppa

s

2  

or 
ρ= dadp 2  

So 
 

x
a

x
p 2

∂
ρ∂

=
∂
∂  

Hence, the original pair  
 

x
p

x
uu

t
u

0
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u
x
u

t

∂
∂
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∂
∂

ρ+
∂
∂

ρ

=
∂
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+
∂
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ρ+
∂
ρ∂

 

become 

x
a

x
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t
u

0
x

u
x
u

t

2

∂
ρ∂

ρ
−=

∂
∂

+
∂
∂

=
∂
ρ∂

+
∂
∂

ρ+
∂
ρ∂

 

 
(b) The Riemann variable R is defined by 

ρ
ρ

=
dadR  

So 

x
a

x
R

t
a

t
R

∂
ρ∂

ρ
=

∂
∂

∂
ρ∂

ρ
=

∂
∂

 

Use these to replace the density derivatives in the pair 
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x
a

x
uu

t
u

0
x

u
x
u

t

2

∂
ρ∂

ρ
−=

∂
∂

+
∂
∂

=
∂

ρ∂
+

∂
∂

ρ+
∂

ρ∂

 

 
To obtain 

0
x
R

a
a

x
uu

t
u

0
x
R

a
u

x
u

t
R

a

2

=
∂
∂ρ

ρ
+

∂
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+
∂
∂

=
∂
∂ρ

+
∂
∂
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∂
∂ρ

 

 
Performing the cancellation of terms gives 
 

0
x
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x
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x
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∂
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(c) Add the pair in (b) to get 
 

( ) ( ) ( ) 0
x

Ruau
t

Ru

x
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x
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x
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x
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t
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t
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∂
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=
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+
∂
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∂
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∂
∂

+
∂
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∂
∂

 

 
Subtraction produces  
 

( ) ( ) ( ) 0
x

Ruau
t

Ru

x
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x
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x
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x
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t
R

t
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=
∂

−∂
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∂
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∂

−
∂
∂
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+
∂
∂

−
∂
∂

 

 
 
(d) The pair of pde in (c) can be rewritten collectively as 
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( ) ( ) ( ) 0

x
Ruau

t
Ru

=
∂

±∂
±+

∂
±∂  

 
Contrast this to the total derivative of u ± R, i.e., 
 

( ) ( ) ( )Ruddx
x

Rudt
t

Ru
±=

∂
±∂

+
∂
±∂  

Rather to 
 

( ) ( ) ( )
dt

Rud
x

Ru
dt
dx

t
Ru ±

=
∂

±∂
+

∂
±∂  

 
And we observe that the quantity u ± R remains constant along a line whose slope is  
 

au
dt
dx

±=  

 
 
(e) Now 

ρ
ρ

=
dadR  

 
But for isentropic flow we have: ρ= dadp 2 , therefore 
 

a
dpdR
ρ

=  

For an isentropic process p = Cργ. Taking the logarithmic derivative of this expression 
gives 

ρ
ρ

γ=
d

p
dp  

So 

2
1111

1 apCppCpp
d
dp

=γ=γ=ργ=
ρ

γ=
ρ

γ
−γ

γγ
−

γ−  

 
Taking the logarithmic derivative of this expression brings 
 

p
dp1

a
da2

γ
−γ

=  

Thus, 
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adRada
1

2da
a
p

1
2dp ρ=ρ

−γ
=

−γ
γ

=  

 
So 

da
1

2dR
−γ

=  

 
Integration using the given initial conditions produces 
 

a
1

2R
−γ

=  

 
 
Problem 6. – Obtain the characteristic equations of the pair of pde in part (b) of problem 
5 by using the Method of Indeterminate Derivatives. 
 
In addition to the given set of equations 
 

0
x
Ra

x
uu

t
u

0
x
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x
Ru

t
R

=
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

 

 
we have the total derivatives of R and u 
 

dR
x
Rdx

t
Rdt =

∂
∂

+
∂
∂  

du
x
udx

t
udt =

∂
∂

+
∂
∂  

 
The above provide four equations in terms of the four unknown derivatives.  Solving for 
any of the derivatives (here ∂R/∂t was selected) using Cramer’s Rule yields 
 

D
N

t
R

=
∂
∂  

where 
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dxdt00
00dxdt
u1a0
a0u1

D 

 

dxdt0du
00dxdR
u1a0
a0u0

N

=

=

 

 
Setting the determinant D to zero gives the equation of the characteristic in the x − t 
plane, i.e., 
 

( ) ( ) ( )

( ) ( ) ( ) 0dtadtuudxdtudxdtdx

adt0adtudtdxudtudtdxdx

dt00
0dxdt
1a0

a
dxdt0
00dt
u10

u
dxdt0
00dx
u1a

dxdt00
00dxdt
u1a0
a0u1

D 

22222 =+−++−=

−−−+−−=

−−==

 

 
which produces the following quadratic 
 

0au
dt
dxu2

dt
dx 22

2

=−+⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛  

 
Solving this gives 
 

( ) auauuu
dt
dx 222 ±=−−±=  

 
The compatibility equation is obtained by equating the determinant N to zero, i.e., 
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( ) ( )[ ] ( )

( ) 0adudxdtadtuudxdR

a0dudxadt0audtdxudR

00dx
u1a
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dxdt0
u1a
a0u

dR

dxdt0du
00dxdR
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N 

22 =++−=
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which produces  
 

0du
dt
dxadRua

dt
dxu 22 =⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
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Replace dx/dt with u ± a yields  

( )[ ] ( )[ ] ( ) ( ) 0duauadRauaduauadRuaauu 2222 =±++±=±+−+±
 

 
which reduces to 
 

0dudR =+±  
 
along lines with slopes 
 

au
dt
dx

±=  

 
 
Problem 7. – Obtain the characteristic equations of the pair of pde in part (b) of problem 
5 by using the Method of Linear Combination. 
 
Multiply the given equations 
 

0
x
Ra

x
uu

t
u

0
x
ua

x
Ru

t
R

=
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

 

 
by σ1 and σ2, respectively, and add to get 
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u
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t
R
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⎠
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⎜⎜
⎝

⎛
∂
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∂
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⎛
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∂

+
∂
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∂
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Rearrangement brings 
 

0
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uau

t
u
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t
R
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1
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2
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⎦

⎤
⎢
⎣

⎡

∂
∂

⎟⎟
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∂
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⎛
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++
∂
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Compare the group of terms within the square brackets to the following total derivatives 
 

                                                          

dt
du

x
u

dt
dx

t
u

dt
dR

x
R

dt
dx

t
R

=
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

  

 
From this comparison we may write the slope, dx/dt, denoted as λ, as 
 

auau
du
dv

2

1

1

2

σ
σ

+=
σ
σ

+=λ=  

 

Expanding this pair of equations produces two equations for σ1 and σ2 
 

                                                   
( )

( ) 0ua

0au

21

21

=σλ−+σ

=σ+σλ−
  

 
A unique solution for σ1 and σ2 will be obtained if and only if the determinant of the 
coefficients vanishes, i.e., 

( )
( ) 0
ua

au
=

λ−
λ−

 

 
Expanding and rearranging the result produces the quadratic equation,  
 

( ) 0au 22 =−λ−  
 
Solution of this expression yields  
 

au
dt
dx

±==λ  
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To derive the compatibility equation, incorporate the total derivative equations into the 
combined equation and obtain 
 

0dudR 21 =σ+σ  
or 

  0dudR
2

1 =+
σ
σ  

 

The relationship between σ1 and σ2 is obtained from use of either 
 

( )

( ) 0ua

0au

21

21

=σλ−+σ

=σ+σλ−
 

 
Using either of these and the expression for λ produces 

 

1
a

uau
a

u

2

1 ±=
−±

=
−λ

=
σ
σ  

   
Hence, 
 

0dudR =+±  
 
along lines with slopes 
 

au
dt
dx

±=  

 
 
Problem 8. – Obtain the characteristic equations of the pair of pde in part (b) of problem 
5 by using Eigenanalysis. 
 
The pair of equations  
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can be written in vector matrix form as 
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0
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⎡
+
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⎥
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⎤
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⎡ ww  

 

where the dependent column vector is w = ⎥
⎦

⎤
⎢
⎣

⎡
R
u

.   Defining the coefficient matrices as  

 

⎥
⎦

⎤
⎢
⎣

⎡
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⎦

⎤
⎢
⎣

⎡
=

ua
au
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BA  

 
the above equation may be written as 
 

0
xt

=
∂
∂

+
∂
∂ wBwA  

 
Note A is the identity matrix I. Therefore, A-1 = I.  So 
 
 

0
xtxt

=
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂ 1 wBwwBAw -  

                                                                          
The characteristic directions are obtained by determining the eigenvalues of the 
coefficient matrix of ∂w/∂x, which in this case is matrix B, hence 
 

                                                        0=λ− IB   
that is 

                                                        0
ua

au
=

λ−
λ−

  

 
This is the same determinant as obtained in the previous problem.  Expanding gives 
 

( ) 0au 22 =−λ−  
 
Solution of this expression yields  
 

au
dt
dx

±==λ  

 
To derive the compatibility equation, the left eigenvectors must first be determined.  
Rather than obtaining results for each characteristic. The following applies to 
characteristics of either family  
 

( ) 0=λ− IBlT  
 
or 
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[ ] 0
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ll 21 =⎥

⎦

⎤
⎢
⎣

⎡
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Expanding gives two equations produces 
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( ) 0lula

0allu
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Hence, 
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Using the fact that  

au ±=λ  
 
produces that  
 

12 ll ±=  
 
Take l1 to be unity.  The compatibility equation for characteristics is  
 

0=wlTd  
or  
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⎡
 

 
 
Problem 9. – (a) Combine Eq.(14.29) with both expressions in Eq.(14.27) to obtain 
Eq.(14.30); (b) Substitute Eq.(14.30) into Eq.(14.29) to obtain 
 

3
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2
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C
CCCC
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=
m

 

 
(a) We begin with the simpler of the two expressions 
 

( ) 0CC 2121 =σ+σ−λ  
                                                 
 Hence, 
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But 
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Substitution brings 
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Next the second expression is used, i.e.,  
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( )

( )

31
2
22

31
2
22

31
2
22

31
2
22

31
2
22

31
2
22

2

31
2
2

31
2
22

31
2
22231

2

31
2
22

31

2
323

1

2

CCCC

CCCC

CCCC
CCCC

CCCC

CCCCCCC

CCCC

CCCCCCC
C

CCCC

CC

C
CCC

−=

−±

−±
−=

−±

−−−
=

−±

−±−
=−

−±
=

−
λ

=
λ

λ−
=

σ
σ

m

m
m

 

(b) From Eq.(14.29) we have  
 

0dvCduC
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⎞
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Substituting the results from part (a) gives 
 

( ) 0dvCCCCduC 31
2
221 =−+ m  
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Rearranging this brings 
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Problem 10. – In example 14.2 only one of four compatibility equations was determined.  
Complete this example by determine the remaining three. 
 
The complete left eigenvector is  
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The compatibility equations are established by application of  
 
                                                            0=λ wlT

id   
 
for each left eigenvector corresponding to a particular eigenvalue.  
 
Along the characteristic given by dy/dy = λ2 
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ρ
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So we obtain the speed sound expression 
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d
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=
ρ

 

 
Along the characteristics given by dy/dy = λ3 and λ4 we have 
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where β = ( ) 1avu1M 2222 −+=− .  Expanding and canceling terms yields 
 

0dpudvvdu =
ρ
β

+±m  

Now according to Bernoulli’s equation 
 

( )vdvududp
+−=

ρ
 

 
Uniting the expressions and rearranging produces 
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uv
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β
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=
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Multiply both numerator and denominator by u ± βv.  The numerator simplifies as 
follows 
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Whereas the denominator simplifies as follows 
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Hence, 
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Problem 11. – Use the Method of Indeterminate Derivatives to determine the equations 
of the characteristics for linearized, two-dimensional, supersonic flow described by 
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( ) 0
yx

M1 2

2

2

2
2 =

∂
φ∂

+
∂

φ∂
− ∞  

 
There is no need to go through the entire analysis since this is a simple extension of 
theory presented in the Chapter.  Instead simply let 
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Note for supersonic flow C1 is negative and the potential equation is actually the wave 
equation, which is hyperbolic.   
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Problem 12. – (a) Show that each dependent variable in the following pair of equations 
must satisfy the wave equation and therefore the set is hyperbolic 
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(b) Use the Method of Linear Combination to determine the equations of the 

characteristics for this set of equations. 
 
(a) The wave equation is written in the x-y plane as 
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where c is the wave speed. 
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Now differentiate the first equation wrt to x and the second wrt y to obtain 
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Subtraction produces the wave equation with a wave speed of  ±1 
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Now differentiate the first equation wrt to y and the second wrt x to obtain 
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Subtraction produces the wave equation with a wave speed of ±1 
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(b) Multiply the given equations 
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by σ1 and σ2, respectively, and add to get 
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Rearrangement brings 
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Compare the group of terms within the square brackets to the following total derivatives 
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From this comparison we may write the slope, dx/dt, denoted as λ, as 
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Expanding this pair of equations produces two equations for σ1 and σ2 
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A unique solution for σ1 and σ2 will be obtained if and only if the determinant of the 
coefficients vanishes, i.e., 

0
1

1
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λ−
−λ

 

 
Expanding and rearranging the result produces the quadratic equation,  
 

012 =+λ−  
 
Solution of this expression yields  

1
dt
dx

±==λ  

 
The eigenvalues yield the wave speed of the wave equation. 
 
To derive the compatibility equation, incorporate the total derivative equations into the 
combined equation and obtain 
 

0dvdu 21 =σ−σ  
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or 

  0dvdu
2

1 =−
σ
σ  

 

The relationship between σ1 and σ2 is obtained from use of either 
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Using either of these and the expression for λ produces 
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  Hence, 
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along lines with slopes 
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Problem 13. – Use Eigenanalysis to determine the equations of the characteristics in 
problem 12. 
 
The pair of equations  
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can be written in vector matrix form as 
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where the dependent column vector is w = ⎥
⎦

⎤
⎢
⎣

⎡
v
u

.   Defining the coefficient matrices as  
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the above equation may be written as 
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The characteristic directions are obtained by determining the eigenvalues of C 
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1

1
=

λ−−
−λ−

  

 
Expanding gives 

0122 =−λ  
 
Solution yields  

1
dx
dy

±==λ  

 
To derive the compatibility equation, the left eigenvectors must first be determined.  
Rather than obtaining results for each characteristic. The following applies to 
characteristics of either family  
 

( ) 0=λ− IClT  
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or 
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Expanding gives two equations produces 
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where the slope of the characteristics ( 1±=λ ) has been used.  So 
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Take l1 to be unity.  The compatibility equation for characteristics is  
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Problem 14. – Complete the solution of Example 14.3 by determining the solution at 
points 19 to 32.  Check the accuracy of the results. 
 
The numbering of the points is contained in the following figure 
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A set of tables that contains data for all of the labeled points follows: 
 

point 

α =  
(CI+CII)/2 

 deg  

ν =  
(CI 

− CII)/2 
deg 

CI  =   
α + ν  
deg       

CII  = 
α − ν 
deg M  

µ 
 

deg 

α + µ 
 

deg 

α − µ 
 

deg 
1 6.00 26.3798 32.3798 20.3798 2.0000 30.0000 36.0000 -24.0000 
2 4.00 26.3798 30.3798 22.3798 2.0000 30.0000 34.0000 -26.0000 
3 2.00 26.3798 28.3798 24.3798 2.0000 30.0000 32.0000 -28.0000 
4 0.00 26.3798 26.3798 26.3798 2.0000 30.0000 30.0000 -30.0000 
5 5.00 27.3798 32.3798 22.3798 2.0365 29.4095 34.4095 -24.4095 
6 3.00 27.3798 30.3798 24.3798 2.0365 29.4095 32.4095 -26.4095 
7 1.00 27.3798 28.3798 26.3798 2.0365 29.4095 30.4095 -28.4095 
8 6.00 28.3798 34.3798 22.3798 2.0733 28.8370 34.8370 -22.8370 
9 4.00 28.3798 32.3798 24.3798 2.0733 28.8370 32.8370 -24.8370 
10 2.00 28.3798 30.3798 26.3798 2.0733 28.8370 30.8370 -26.8370 
11 0.00 28.3798 28.3798 28.3798 2.0733 28.8370 28.8370 -28.8370 
12 5.00 29.3798 34.3798 24.3798 2.1106 28.2815 33.2815 -23.2815 
13 3.00 29.3798 32.3798 26.3798 2.1106 28.2815 31.2815 -25.2815 
14 1.00 29.3798 30.3798 28.3798 2.1106 28.2815 29.2815 -27.2815 
15 6.00 30.3798 36.3798 24.3798 2.1483 27.7419 33.7419 -21.7419 
16 4.00 30.3798 34.3798 26.3798 2.1483 27.7419 31.7419 -23.7419 
17 2.00 30.3798 32.3798 28.3798 2.1483 27.7419 29.7419 -25.7419 
18 0.00 30.3798 30.3798 30.3798 2.1483 27.7419 27.7419 -27.7419 
19 5.00 31.3798 36.3798 26.3798 2.1864 27.2173 32.2173 -22.2173 
20 3.00 31.3798 34.3798 28.3798 2.1864 27.2173 30.2173 -24.2173 
21 1.00 31.3798 32.3798 30.3798 2.1864 27.2173 28.2173 -26.2173 
22 6.00 32.3798 38.3798 26.3798 2.2251 26.7068 32.7068 -20.7068 
23 4.00 32.3798 36.3798 28.3798 2.2251 26.7068 30.7068 -22.7068 
24 2.00 32.3798 34.3798 30.3798 2.2251 26.7068 28.7068 -24.7068 
25 0.00 32.3798 32.3798 32.3798 2.2251 26.7068 26.7068 -26.7068 
26 5.00 33.3798 38.3798 28.3798 2.2642 26.2096 31.2096 -21.2096 
27 3.00 33.3798 36.3798 30.3798 2.2642 26.2096 29.2096 -23.2096 
28 1.00 33.3798 34.3798 32.3798 2.2642 26.2096 27.2096 -25.2096 
29 6.00 34.3798 40.3798 28.3798 2.3039 25.7250 31.7250 -19.7250 
30 4.00 34.3798 38.3798 30.3798 2.3039 25.7250 29.7250 -21.7250 
31 2.00 34.3798 36.3798 32.3798 2.3039 25.7250 27.7250 -23.7250 
32 0.00 34.3798 34.3798 34.3798 2.3039 25.7250 25.7250 -25.7250 

 
The coordinates and slopes of the characteristics in the physical plane are contained in the 
following table 
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point 
α 

deg  µ α + µ α − µ mI mII x y 
1 6 30 36 -24     9.5144 1.0000 
2 4 30 34 -26     9.5435 0.6673 
3 2 30 32 -28     9.5609 0.3339 
4 0 30 30 -30     9.5668 0.0000 
5 5 29.4095 34.4095 -24.4095 -0.4495 0.6797 9.8265 0.8597 
6 3 29.4095 32.4095 -26.4095 -0.4922 0.6298 9.8505 0.5162 
7 1 29.4095 30.4095 -28.4095 -0.5363 0.5821 9.8625 0.1722 
8 6 28.8370 34.8370 -22.8370 0.1051 0.6905 10.1222 1.0639 
9 4 28.8370 32.8370 -24.8370 -0.4750 0.6106 10.1563 0.7030 

10 2 28.8370 30.8370 -26.8370 -0.5186 0.6401 10.1541 0.3588 
11 0 28.8370 28.8370 -28.8370 -0.5457 0.0000 10.1779 0.0000 
12 5 28.2815 33.2815 -23.2815 -0.4257 0.6509 10.4780 0.9124 
13 3 28.2815 31.2815 -25.2815 -0.4676 0.6023 10.4768 0.5532 
14 1 28.2815 29.2815 -27.2815 -0.5108 0.5557 10.5030 0.1806 
15 6 27.7419 33.7419 -21.7419 0.1051 0.6622 10.8171 1.1369 
16 4 27.7419 31.7419 -23.7419 -0.4351 0.6131 10.8201 0.7636 
17 2 27.7419 29.7419 -25.7419 -0.4772 0.5660 10.8481 0.3760 
18 0 27.7419 27.7419 -27.7419 -0.5208 0.0000 10.8497 0.0000 
19 5.00 27.2173 32.2173 -22.2173 -0.4036 0.6244 11.1821 0.9896 
20 3.00 27.2173 30.2173 -24.2173 -0.4448 0.5769 11.2153 0.5878 
21 1.00 27.2173 28.2173 -26.2173 -0.4873 0.5313 11.2181 0.1957 
22 6.00 26.7068 32.7068 -20.7068 0.1051 0.6361 11.5317 1.2120 
23 4.00 26.7068 30.7068 -22.7068 -0.4134 0.5882 11.6028 0.8157 
24 2.00 26.7068 28.7068 -24.7068 -0.4549 0.5421 11.6101 0.4082 
25 0.00 26.7068 26.7068 -26.7068 -0.4978 0.0000 11.6112 0.0000 
26 5.00 26.2096 31.2096 -21.2096 -0.3830 0.5999 11.9783 1.0410 
27 3.00 26.2096 29.2096 -23.2096 -0.4236 0.5534 12.0240 0.6373 
28 1.00 26.2096 27.2096 -25.2096 -0.4654 0.5086 12.0298 0.2129 
29 6.00 25.7250 31.7250 -19.7250 0.1051 0.6120 12.4084 1.3042 
30 4.00 25.7250 29.7250 -21.7250 -0.3933 0.5650 12.4265 0.8647 
31 2.00 25.7250 27.7250 -23.7250 -0.4341 0.5198 12.4720 0.4428 
32 0.00 25.7250 25.7250 -25.7250 -0.4763 0.0000 12.4767 0.0000 

 
The accuracy of the calculations is assessed in the following table 
 

M          

Point Area A/A* 
(exact 

solution) 
M          

(MOC) % Error 
4            A4 1.6875 2 2   

11 1.06395A4 1.7953 2.0733 2.0733 0 
18 1.1341A4 1.9138 2.1472 2.1483 0.0514 
25 1.2137A4 2.0471 2.2239 2.2251 0.0506 
32 1.3042A4 2.2008 2.3038 2.3039 0.0011 
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Problem 15. – Using the same number of points repeat Example 14.3 for:  
(a) Minitial = 2.0, total wedge angle of 12˚ and γ = 1.3;  
(b) Minitial = 4.0, total wedge angle of 12˚ and γ = 1.4;  
(c) Minitial = 2.0, total wedge angle of 24˚ and γ = 1.4 

 
(a) Minitial = 2.0, total wedge angle of 12˚ and γ = 1.3 
 

point α deg  ν C(+)I C(-)II M  µ α + µ α − µ 
1 6.00 28.6809 34.6809 22.6809 2.0000 30.0000 36.0000 -24.0000 
2 4.00 28.6809 32.6809 24.6809 2.0000 30.0000 34.0000 -26.0000 
3 2.00 28.6809 30.6809 26.6809 2.0000 30.0000 32.0000 -28.0000 
4 0.00 28.6809 28.6809 28.6809 2.0000 30.0000 30.0000 -30.0000 
5 5.00 29.6809 34.6809 24.6809 2.0324 29.4747 34.4747 -24.4747 
6 3.00 29.6809 32.6809 26.6809 2.0324 29.4747 32.4747 -26.4747 
7 1.00 29.6809 30.6809 28.6809 2.0324 29.4747 30.4747 -28.4747 
8 6.00 30.6809 36.6809 24.6809 2.0649 28.9650 34.9650 -22.9650 
9 4.00 30.6809 34.6809 26.6809 2.0649 28.9650 32.9650 -24.9650 

10 2.00 30.6809 32.6809 28.6809 2.0649 28.9650 30.9650 -26.9650 
11 0.00 30.6809 30.6809 30.6809 2.0649 28.9650 28.9650 -28.9650 
12 5.00 31.6809 36.6809 26.6809 2.0978 28.4698 33.4698 -23.4698 
13 3.00 31.6809 34.6809 28.6809 2.0978 28.4698 31.4698 -25.4698 
14 1.00 31.6809 32.6809 30.6809 2.0978 28.4698 29.4698 -27.4698 
15 6.00 32.6809 38.6809 26.6809 2.1309 27.9884 33.9884 -21.9884 
16 4.00 32.6809 36.6809 28.6809 2.1309 27.9884 31.9884 -23.9884 
17 2.00 32.6809 34.6809 30.6809 2.1309 27.9884 29.9884 -25.9884 
18 0.00 32.6809 32.6809 32.6809 2.1309 27.9884 27.9884 -27.9884 

 
 

point 
α 

deg  µ α + µ α − µ mI mII x y 
1 6 30 36 -24     9.5144 1.0000 
2 4 30 34 -26     9.5435 0.6673 
3 2 30 32 -28     9.5609 0.3339 
4 0 30 30 -30     9.5668 0.0000 
5 5 29.4747 34.4747 -24.4747 -0.4502 0.6806 9.8261 0.8597 
6 3 29.4747 32.4747 -26.4747 -0.4929 0.6306 9.8501 0.5162 
7 1 29.4747 30.4747 -28.4747 -0.5370 0.5829 9.8621 0.1721 
8 6 28.9650 34.9650 -22.9650 0.1051 0.6929 10.1205 1.0637 
9 4 28.9650 32.9650 -24.9650 -0.4764 0.6122 10.1551 0.7029 

10 2 28.9650 30.9650 -26.9650 -0.5200 0.6425 10.1527 0.3589 
11 0 28.9650 28.9650 -28.9650 -0.5479 0.0000 10.1763 0.0000 
12 5 28.4698 33.4698 -23.4698 -0.4290 0.6548 10.4743 0.9120 
13 3 28.4698 31.4698 -25.4698 -0.4709 0.6060 10.4732 0.5531 
14 1 28.4698 29.4698 -27.4698 -0.5143 0.5593 10.4992 0.1806 
15 6 27.9884 33.9884 -21.9884 0.1051 0.6677 10.8101 1.1362 
16 4 27.9884 31.9884 -23.9884 -0.4396 0.6183 10.8129 0.7631 
17 2 27.9884 29.9884 -25.9884 -0.4819 0.5711 10.8411 0.3758 
18 0 27.9884 27.9884 -27.9884 -0.5257 0.0000 10.8429 0.0000 

 
. 
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Point Area A/A* 
M               

(Exact Solution) 
M       

(MOC) % Error 
4            A4 1.7732 2 2   

11 1.0637A4 1.8862 2.0649 2.0649 0 
18 1.1334A4 2.0097 2.1299 2.1309 0.0438 

 
 
(b) Minitial = 4.0, total wedge angle of 12˚ and γ = 1.4 
 

point α deg  ν C(+)I C(-)II M  µ α + µ α − µ 
1 6.00 65.7848 71.7848 59.7848 4.0000 14.4775 20.4775 -8.4775 
2 4.00 65.7848 69.7848 61.7848 4.0000 14.4775 18.4775 -10.4775 
3 2.00 65.7848 67.7848 63.7848 4.0000 14.4775 16.4775 -12.4775 
4 0.00 65.7848 65.7848 65.7848 4.0000 14.4775 14.4775 -14.4775 
5 5.00 66.7848 71.7848 61.7848 4.0768 14.1991 19.1991 -9.1991 
6 3.00 66.7848 69.7848 63.7848 4.0768 14.1991 17.1991 -11.1991 
7 1.00 66.7848 67.7848 65.7848 4.0768 14.1991 15.1991 -13.1991 
8 6.00 67.7848 73.7848 61.7848 4.1557 13.9238 19.9238 -7.9238 
9 4.00 67.7848 71.7848 63.7848 4.1557 13.9238 17.9238 -9.9238 

10 2.00 67.7848 69.7848 65.7848 4.1557 13.9238 15.9238 -11.9238 
11 0.00 67.7848 67.7848 67.7848 4.1557 13.9238 13.9238 -13.9238 
12 5.00 68.7848 73.7848 63.7848 4.2370 13.6516 18.6516 -8.6516 
13 3.00 68.7848 71.7848 65.7848 4.2370 13.6516 16.6516 -10.6516 
14 1.00 68.7848 69.7848 67.7848 4.2370 13.6516 14.6516 -12.6516 
15 6.00 69.7848 75.7848 63.7848 4.3207 13.3822 19.3822 -7.3822 
16 4.00 69.7848 73.7848 65.7848 4.3207 13.3822 17.3822 -9.3822 
17 2.00 69.7848 71.7848 67.7848 4.3207 13.3822 15.3822 -11.3822 
18 0.00 69.7848 69.7848 69.7848 4.3207 13.3822 13.3822 -13.3822 

 
 

point 
α 

deg  µ α + µ α − µ mI mII x y 
1 6 14 20 -8     9.5144 1.0000 
2 4 14 18 -10     9.5435 0.6673 
3 2 14 16 -12     9.5609 0.3339 
4 0 14 14 -14     9.5668 0.0000 
5 5 14.1991 19.1991 -9.1991 -0.1555 0.3412 10.2041 0.8927 
6 3 14.1991 17.1991 -11.1991 -0.1915 0.3026 10.2291 0.5361 
7 1 14.1991 15.1991 -13.1991 -0.2279 0.2649 10.2416 0.1788 
8 6 13.9238 19.9238 -7.9238 0.1051 0.3553 10.9225 1.1480 
9 4 13.9238 17.9238 -9.9238 -0.1799 0.2905 10.9777 0.7536 

10 2 13.9238 15.9238 -11.9238 -0.2162 0.3165 10.9073 0.3895 
11 0 13.9238 13.9238 -13.9238 -0.2412 0.0000 10.9827 0.0000 
12 5 13.6516 18.6516 -8.6516 -0.1457 0.3305 11.7892 1.0218 
13 3 13.6516 16.6516 -10.6516 -0.1815 0.2922 11.7029 0.6219 
14 1 13.6516 14.6516 -12.6516 -0.2178 0.2547 11.7722 0.2011 
15 6 13.3822 19.3822 -7.3822 0.1051 0.3447 12.6965 1.3345 
16 4 13.3822 17.3822 -9.3822 -0.1587 0.3061 12.5927 0.8942 
17 2 13.3822 15.3822 -11.3822 -0.1947 0.2683 12.6522 0.4371 
18 0 13.3822 13.3822 -13.3822 -0.2312 0.0000 12.6420 0.0000 
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Point Area A/A* 
M               

(Exact Solution) 
M       

(MOC) % Error 
4            A4 10.7188 4.00 4.0000   

11 1.0637A4 12.3051 4.1558 4.1557 -0.0014 
18 1.1334A4 14.1642 4.3172 4.3207 0.0799 

 
(c) Minitial = 2.0, total wedge angle of 24˚ and γ = 1.4 
 

point α deg  ν C(+)I C(-)II M  µ α + µ α − µ 
1 12.00 26.3798 38.3798 14.3798 2.0000 30.0000 42.0000 -18.0000 
2 8.00 26.3798 34.3798 18.3798 2.0000 30.0000 38.0000 -22.0000 
3 4.00 26.3798 30.3798 22.3798 2.0000 30.0000 34.0000 -26.0000 
4 0.00 26.3798 26.3798 26.3798 2.0000 30.0000 30.0000 -30.0000 
5 10.00 28.3798 38.3798 18.3798 2.0733 28.8370 38.8370 -18.8370 
6 6.00 28.3798 34.3798 22.3798 2.0733 28.8370 34.8370 -22.8370 
7 2.00 28.3798 30.3798 26.3798 2.0733 28.8370 30.8370 -26.8370 
8 12.00 30.3798 42.3798 18.3798 2.1483 27.7419 39.7419 -15.7419 
9 8.00 30.3798 38.3798 22.3798 2.1483 27.7419 35.7419 -19.7419 

10 4.00 30.3798 34.3798 26.3798 2.1483 27.7419 31.7419 -23.7419 
11 0.00 30.3798 30.3798 30.3798 2.1483 27.7419 27.7419 -27.7419 
12 10.00 32.3798 42.3798 22.3798 2.2251 26.7068 36.7068 -16.7068 
13 6.00 32.3798 38.3798 26.3798 2.2251 26.7068 32.7068 -20.7068 
14 2.00 32.3798 34.3798 30.3798 2.2251 26.7068 28.7068 -24.7068 
15 12.00 34.3798 46.3798 22.3798 2.3039 25.7250 37.7250 -13.7250 
16 8.00 34.3798 42.3798 26.3798 2.3039 25.7250 33.7250 -17.7250 
17 4.00 34.3798 38.3798 30.3798 2.3039 25.7250 29.7250 -21.7250 
18 0.00 34.3798 34.3798 34.3798 2.3039 25.7250 25.7250 -25.7250 

 
 

point 
α 

deg  µ α + µ α − µ mI mII x y 
1 12 30 42 -18     4.7046 1.0000 
2 8 30 38 -22     4.7629 0.6694 
3 4 30 34 -26     4.7980 0.3355 
4 0 30 30 -30     4.8097 0.0000 
5 10 28.8370 38.8370 -18.8370 -0.3330 0.7931 5.0393 0.8886 
6 6 28.8370 34.8370 -22.8370 -0.4125 0.6852 5.0890 0.5349 
7 2 28.8370 30.8370 -26.8370 -0.4968 0.5871 5.1139 0.1786 
8 12 27.7419 39.7419 -15.7419 0.2126 0.8182 5.3407 1.1352 
9 8 27.7419 35.7419 -19.7419 -0.3806 0.6454 5.4153 0.7455 

10 4 27.7419 31.7419 -23.7419 -0.4628 0.7078 5.4084 0.3870 
11 0 27.7419 27.7419 -27.7419 -0.5159 0.0000 5.4600 0.0000 
12 10 26.7068 36.7068 -16.7068 -0.2910 0.7325 5.7749 1.0089 
13 6 26.7068 32.7068 -20.7068 -0.3684 0.6303 5.7698 0.6148 
14 2 26.7068 28.7068 -24.7068 -0.4499 0.5367 5.8288 0.1979 
15 12 25.7250 37.7250 -13.7250 0.2126 0.7595 6.1746 1.3124 
16 8 25.7250 33.7250 -17.7250 -0.3099 0.6548 6.1799 0.8834 
17 4 25.7250 29.7250 -21.7250 -0.3882 0.5592 6.2447 0.4305 
18 0 25.7250 25.7250 -25.7250 -0.4709 0.0000 6.2490 0.0000 
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Point Area A/A* 
M               

(Exact Solution) 
M       

(MOC) % Error 
4            A4 1.6875 2.00 2.0000   

11 1.0637A4 1.9157 2.1483 2.1483 -0.0004 
18 1.1334A4 2.1925 2.2997 2.3039 0.1827 

 
 

 
Problem 16. – A supersonic flow at Mach 1.8 and γ = 1.4 enters the channel shown in 
Figure P14.16(a). Using the point-to-point method of characteristics, determine the Mach 
number distribution throughout the flow for the pattern shown in Figure P14.16(b).  
 
 
 
 
 
 
 
 

(a) 
 

 
 
 
 
 
 
 
 
 

(b) 
 

Figure P14.16 
 
A spreadsheet program was constructed to solve this problem.  Results of the program are 
contained within the following: 
 
Input and computed initial data- 
 
  

γ γ-1/γ+1 α1 M1 wall ang turns ∆(angle) xo yo p1 
1.4 0.1667 0 1.8 8 4 2 0 0.1 10 

 
 
 
Results of calculations- 
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Method: Point-to-
Point        

Note:  
a shaded cell contains a value that is 
set      

Point α ν CI = 
ν+α 

CII = 
ν−α 

M µ α + µ α − µ p/po   
          

1 0.0 20.7251 20.7251 20.7251 1.8000 33.7490 33.7490 -33.7490 0.1740 
2 2.0 22.7251 24.7251 20.7251 1.8697 32.3339 34.3339 -30.3339 0.1564 
3 4.0 24.7251 28.7251 20.7251 1.9405 31.0204 35.0204 -27.0204 0.1402 
4 6.0 26.7251 32.7251 20.7251 2.0125 29.7940 35.7940 -23.7940 0.1253 
5 8.0 28.7251 36.7251 20.7251 2.0861 28.6433 36.6433 -20.6433 0.1117 
6 0.0 24.7251 24.7251 24.7251 1.9405 31.0204 31.0204 -31.0204 0.1402 
7 2.0 26.7251 28.7251 24.7251 2.0125 29.7940 31.7940 -27.7940 0.1253 
8 4.0 28.7251 32.7251 24.7251 2.0861 28.6433 32.6433 -24.6433 0.1117 
9 6.0 30.7251 36.7251 24.7251 2.1614 27.5591 33.5591 -21.5591 0.0993 

10 8.0 32.7251 40.7251 24.7251 2.2385 26.5337 34.5337 -18.5337 0.0880 
11 0.0 28.7251 28.7251 28.7251 2.0861 28.6433 28.6433 -28.6433 0.1117 
12 2.0 30.7251 32.7251 28.7251 2.1614 27.5591 29.5591 -25.5591 0.0993 
13 4.0 32.7251 36.7251 28.7251 2.2385 26.5337 30.5337 -22.5337 0.0880 
14 6.0 34.7251 40.7251 28.7251 2.3177 25.5605 31.5605 -19.5605 0.0778 
15 8.0 36.7251 44.7251 28.7251 2.3991 24.6340 32.6340 -16.6340 0.0685 
16 0.0 32.7251 32.7251 32.7251 2.2385 26.5337 26.5337 -26.5337 0.0880 
17 2.0 34.7251 36.7251 32.7251 2.3177 25.5605 27.5605 -23.5605 0.0778 
18 4.0 36.7251 40.7251 32.7251 2.3991 24.6340 28.6340 -20.6340 0.0685 
19 6.0 38.7251 44.7251 32.7251 2.4830 23.7497 29.7497 -17.7497 0.0601 
20 8.0 40.7251 48.7251 32.7251 2.5695 22.9035 30.9035 -14.9035 0.0525 
21 0.0 36.7251 36.7251 36.7251 2.3991 24.6340 24.6340 -24.6340 0.0685 
22 2.0 38.7251 40.7251 36.7251 2.4830 23.7497 25.7497 -21.7497 0.0601 
23 4.0 40.7251 44.7251 36.7251 2.5695 22.9035 26.9035 -18.9035 0.0525 
24 6.0 42.7251 48.7251 36.7251 2.6589 22.0918 28.0918 -16.0918 0.0458 
25 0.0 40.7251 40.7251 40.7251 2.5695 22.9035 22.9035 -22.9035 0.0525 
26 2.0 42.7251 44.7251 40.7251 2.6589 22.0918 24.0918 -20.0918 0.0458 
27 4.0 44.7251 48.7251 40.7251 2.7515 21.3117 25.3117 -17.3117 0.0397 
28 0.0 44.7251 44.7251 44.7251 2.7515 21.3117 21.3117 -21.3117 0.0397 
29 2.0 46.7251 48.7251 44.7251 2.8474 20.5605 22.5605 -18.5605 0.0343 
30 0.0 48.7251 48.7251 48.7251 2.9470 19.8357 19.8357 -19.8357 0.0295 

 
 

 
Problem 17. –The values of the flow angle, α, the Mach angle, µ, and the angles of the 
characteristics, α ± µ, for all points of the previous problem are shown in Table P14.17.  
Compute the slopes mI and mII and the x,y coordinates for each of the points. 
 
The table below contains the computed data.  The Mach angles were computed in the 
previous problem from the determined Mach number. 
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Point µ α + µ α − µ mI mII x y 
1 33.7490 33.7490 -33.7490 -0.6682 0.6682 0.1497 0.0000 
2 32.3339 34.3339 -30.3339 -0.5851 0.6756 0.1595 0.0067 
3 31.0204 35.0204 -27.0204 -0.5100 0.6918 0.1695 0.0136 
4 29.7940 35.7940 -23.7940 -0.4409 0.7109 0.1797 0.0208 
5 28.6433 36.6433 -20.6433 0.1405 0.7324 0.3562 0.1501 
6 31.0204 31.0204 -31.0204 -0.5932 0.6013 0.1707 0.0000 
7 29.7940 31.7940 -27.7940 -0.5185 0.6106 0.1822 0.0070 
8 28.6433 32.6433 -24.6433 -0.4498 0.6302 0.1939 0.0144 
9 27.5591 33.5591 -21.5591 -0.3859 0.6519 0.3850 0.1389 

10 26.5337 34.5337 -18.5337 0.1405 0.6757 0.4133 0.1581 
11 28.6433 28.6433 -28.6433 -0.5366 0.5462 0.1952 0.0000 
12 27.5591 29.5591 -25.5591 -0.4685 0.5566 0.2086 0.0075 
13 26.5337 30.5337 -22.5337 -0.4050 0.5784 0.4149 0.1268 
14 25.5605 31.5605 -19.5605 -0.3452 0.6020 0.4474 0.1463 
15 24.6340 32.6340 -16.6340 0.1405 0.6272 0.4814 0.1676 
16 26.5337 26.5337 -26.5337 -0.4887 0.4993 0.2239 0.0000 
17 25.5605 27.5605 -23.5605 -0.4254 0.5106 0.4462 0.1135 
18 24.6340 28.6340 -20.6340 -0.3659 0.5339 0.4832 0.1332 
19 23.7497 29.7497 -17.7497 -0.3094 0.5587 0.5222 0.1550 
20 22.9035 30.9035 -14.9035 0.1405 0.5850 0.5635 0.1792 
21 24.6340 24.6340 -24.6340 -0.4473 0.4586 0.7000 0.0000 
22 23.7497 25.7497 -21.7497 -0.3877 0.4704 0.7573 0.0270 
23 22.9035 26.9035 -18.9035 -0.3312 0.4948 0.8180 0.0570 
24 22.0918 28.0918 -16.0918 -0.2773 0.5205 0.8827 0.0907 
25 22.9035 22.9035 -22.9035 -0.4107 0.4225 0.8229 0.0000 
26 22.0918 24.0918 -20.0918 -0.3541 0.4348 0.8930 0.0305 
27 21.3117 25.3117 -17.3117 -0.3000 0.4600 0.9682 0.0650 
28 21.3117 21.3117 -21.3117 -0.3779 0.3901 0.9736 0.0000 
29 20.5605 22.5605 -18.5605 -0.3237 0.4027 1.0608 0.0351 
30 19.8357 19.8357 -19.8357 -0.3482 0.3607 1.1615 0.0000 

 
Table P14.17 

 
 
Problem 18. –Repeat Problem 14.16 using the region-to-region method for the regions 
shown in Figure P14.18. 
 

 
 

 
 
 
 
 

 
Figure P14.18 
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Region-to-Region Methodology: 
 
crossing a type I characteristic:    ν + α = I                      ∆ν = ∆α 
 
 
crossing a type II characteristic:    ν - α = II                      ∆ν = -∆α 
 
 
Given: α1, ν1, and α2   Find: ν2         
 
 ∆ν = ∆α  
or         
 ν2 – ν1 = α2 – α1  
 
so         ν2  = α2 + (ν1– α1) = α2 + II1 
 
 
Given: α3, ν3, and α4    Find: ν4                                       
 

 
 ∆ν = −∆α  
or   
 ν4 – ν3 = α3 – α4  
 
so        ν4  = −α4 + (ν3 + α3) = −α4 + I3 
 
 
 
 
Given: α5, ν5, and α5, ν5                             Find: ν7 and α7                                      
 
 
 
crossing I between regions 5 and 7: ν7 – ν5 = α7 – α5             or      ν7 – α7 = ν5 – α5   
 
crossing II between regions 6 and 7: ν7 – ν6 = −(α7 – α6)       or      ν7 + α7 = ν6 + α6   
 
solving these two equations simultaneously gives 
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Method: Region-to-
Region       
Region α ν I = ν+α II = ν−α M µ α + µ α − µ 

1 0.0 20.7251 20.7251 20.7251 1.8000 33.7490 33.7490 -33.7490 
2 2.0 22.7251 24.7251 20.7251 1.8697 32.3339 34.3339 -30.3339 
3 4.0 24.7251 28.7251 20.7251 1.9405 31.0204 35.0204 -27.0204 
4 6.0 26.7251 32.7251 20.7251 2.0125 29.7940 35.7940 -23.7940 
5 8.0 28.7251 36.7251 20.7251 2.0861 28.6433 36.6433 -20.6433 
6 0.0 24.7251 24.7251 24.7251 1.9405 31.0204 31.0204 -31.0204 
7 2.0 26.7251 28.7251 24.7251 2.0125 29.7940 31.7940 -27.7940 
8 4.0 28.7251 32.7251 24.7251 2.0861 28.6433 32.6433 -24.6433 
9 6.0 30.7251 36.7251 24.7251 2.1614 27.5591 33.5591 -21.5591 

10 8.0 32.7251 40.7251 24.7251 2.2385 26.5337 34.5337 -18.5337 
11 0.0 28.7251 28.7251 28.7251 2.0861 28.6433 28.6433 -28.6433 
12 2.0 30.7251 32.7251 28.7251 2.1614 27.5591 29.5591 -25.5591 
13 4.0 32.7251 36.7251 28.7251 2.2385 26.5337 30.5337 -22.5337 
14 6.0 34.7251 40.7251 28.7251 2.3177 25.5605 31.5605 -19.5605 
15 8.0 36.7251 44.7251 28.7251 2.3991 24.6340 32.6340 -16.6340 
16 0.0 32.7251 32.7251 32.7251 2.2385 26.5337 26.5337 -26.5337 
17 2.0 34.7251 36.7251 32.7251 2.3177 25.5605 27.5605 -23.5605 
18 4.0 36.7251 40.7251 32.7251 2.3991 24.6340 28.6340 -20.6340 
19 6.0 38.7251 44.7251 32.7251 2.4830 23.7497 29.7497 -17.7497 
20 8.0 40.7251 48.7251 32.7251 2.5695 22.9035 30.9035 -14.9035 
21 0.0 36.7251 36.7251 36.7251 2.3991 24.6340 24.6340 -24.6340 
22 2.0 38.7251 40.7251 36.7251 2.4830 23.7497 25.7497 -21.7497 
23 4.0 40.7251 44.7251 36.7251 2.5695 22.9035 26.9035 -18.9035 
24 6.0 42.7251 48.7251 36.7251 2.6589 22.0918 28.0918 -16.0918 
25 8.0 44.7251 52.7251 36.7251 2.7515 21.3117 29.3117 -13.3117 
26 0.0 40.7251 40.7251 40.7251 2.5695 22.9035 22.9035 -22.9035 
27 2.0 42.7251 44.7251 40.7251 2.6589 22.0918 24.0918 -20.0918 
28 4.0 44.7251 48.7251 40.7251 2.7515 21.3117 25.3117 -17.3117 
29 6.0 46.7251 52.7251 40.7251 2.8474 20.5605 26.5605 -14.5605 
30 0.0 44.7251 44.7251 44.7251 2.7515 21.3117 21.3117 -21.3117 

 
 
Problem 19. – Compute the supersonic flow past the curved contour of a two-
dimensional plug nozzle shown in Figure P14.19a.  The contour is shaped so as to 
produce cancellation of the waves incident on the plug. The nozzle is to provide a flow of 
air (γ = 1.4) at Mach 1.9502856. The Mach number at the throat of the nozzle is sonic.  
Use the region-to-region method for a 5 wave expansion as indicated in Figure 14.19b. 
Determine the Mach number distribution and the inclinations of the characteristics. 
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Figure P14.19a 
 
 
 
 
 
 
 
 
 
 
 
 

Figure P14.19b 
 
In going from region 1 to region 6 we would have to cross 5 characteristics of Type I for 
which ∆ν = ∆α or ν6 – ν1 = α6 – α1. Since M1 = 1 and M6 = 1.9502856, ν1 = 0 and ν6 = 
25.0000, respectively.    And since α6  = 0, we see that α1  = −25.0000˚. Because we are 
considering the expansion to take place across 5 waves, the flow angle increases by 5˚ in 
passing from region-to-region. The following table is readily established: 
 

Region α ν I = ν+α II = ν−α M µ α + µ α − µ 
1 -25.0000 0.0000 -25.0000 25.0000 1.0000 90.0000 65.0000 -115.0000 
2 -20.0000 5.0000 -15.0000 25.0000 1.2565 52.7383 32.7383 -72.7383 
3 -15.0000 10.0000 -5.0000 25.0000 1.4350 44.1769 29.1769 -59.1769 
4 -10.0000 15.0000 5.0000 25.0000 1.6047 38.5474 28.5474 -48.5474 
5 -5.0000 20.0000 15.0000 25.0000 1.7750 34.2904 29.2904 -39.2904 
6 0.0000 25.0000 25.0000 25.0000 1.9503 30.8469 30.8469 -30.8469 

 
To compute the contour of the surface, we average the slopes of adjoining regions and 
obtain the following 
 

 
1 2 3 4 

5 
6 

α1 

Reference line 

α Note: α is CW therefore is 
negative M1 = 1 

M = 1 
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Region Region Inclinat'n 
1 2 -93.8692 
2 3 -65.9576 
3 4 -53.8621 
4 5 -43.9189 
5 6 -35.0686 

 

 
 
Problem 20. – A thin airfoil has the form of a circular arc, as shown in Figure P14.20. 
Use segregated supersonic flow along a curved surface to determine the lift and drag 
coefficients for the foil at a Mach number of 1.851177.  Take γ = 1.4 and divide the 
circular arc into 5 linear pieces of equal length. A characteristic will emerge from each of 
the corners of these lengths on both the upper and lower sides on the foil.   
 

 
 
 
 

 

Figure P14.20 

The numbering of the regions is contained in the following sketch 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Before performing the characteristic calculations, various geometric calculations must be 
made. Development of the relations is straightforward.  The symbols are labeled in the 
sketch below.  
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Input data and the initial calculations for the problem are contained in the following: 
 

γ α1 n M∞ = M1 R t 
1.4 0 5 1.851177 100 3.407417 

 
 

ν1 p1/po AOT ∆α = α4 /n l c ∆L AOA 
22.1970 0.16090 -15 -3.0000 25.8819 26.1052 5.2360 7.5000 

 
 

FREESTREAM    
Region α 

deg 
ν 

deg 
M p/po   

          
1 0.0 22.1970 1.8512 0.1609 

 
Following the region-to-region procedure (see the solution to Problem 18) 
 

UPPER 
SURFACE      

LOWER 
SURFACE      

Region α 
deg 

ν 
deg 

M p/po   
          

Region α 
deg 

ν 
deg 

M p/po   
          

2 -3.0 25.1970 1.9573 0.1366 7 -3.0 19.1970 1.7474 0.1886
3 -6.0 28.1970 2.0665 0.1152 8 -6.0 16.1970 1.6452 0.2200
4 -9.0 31.1970 2.1794 0.0966 9 -9.0 13.1970 1.5438 0.2556
5 -12.0 34.1970 2.2966 0.0804 10 -12.0 10.1970 1.4417 0.2962
6 -15.0 37.1970 2.4187 0.0664 11 -15.0 7.1970 1.3371 0.3431

 
Next the pressure difference across the airfoil, i.e., the pressure on the upper surface is 
subtracted from the pressure on the lower surface, is determined 
 
 

c
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l
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R - t
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(plower - pupper)  

Segment ∆p/po 
1 (R7 - R2) 0.05201 
2 (R8 - R3) 0.10474 
3 (R9 - R4) 0.15900 
4 (R10 - R5) 0.21579 
5 (R11 - R6) 0.27662 

 
The lift and drag forces are computed from 
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The lift and drag coefficients are computed from 
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The results of the calculations are 
 

Lift/p∞ Drag/p∞ CL CD 
0.25754 0.05044 0.41126 0.08055 

 

 
 
Problem 21. –A converging-diverging nozzle discharges a uniform supersonic flow at 
Mach 2.2 and static pressure of 101 kPa two dimensionally into a back pressure region of 
69.28701 kPa. Use the Region-to-Region method to determine the flow just downstream 
of the nozzle exit for the same configuration as employed in Example 14.4. Assume         
γ = 1.4.  
 
Because this problem follows that of Example 14.4 for the same configuration, the figure 
of that example is repeated below 
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The calculation procedure for the region-to-region method is given as 
 
 

α4 calc  
x'g Type 

I  
x'g Type 

II  Combined  

  
 
      

       ∆ν = −∆α  
ν4 − ν1 = α4 − α1        
α4 = α1 + ν4 − ν1        
∆α = α4 /n       ∆ν = ∆α 
n = no of divisions ∆ν = ∆α  ∆ν = −∆α     

  ν2 − ν1 = α2 − α1  ν5 − ν2 = −(α5 − α2)  ν6 = [(ν5 − α5) + (ν3 + α3)]/2  
  ν2 = ν1 + ∆α ν5 = ν2 + α2 α6 = ν6 − (ν5 − α5) 
        

 
The initial and computed data for this problem follows 
 

γ α1 pe = p1 pb = p4 Me = M1 pe/po p4/po M4 
∆α =  
α4 /n 

1.4 0 101 69.28701 2.2 0.09352 0.06416 2.4410 2.0000 
n    ν1   ν4  
3     31.7325   37.7325  

 
Because Region 4 is a uniform flow region bordering the free surface: p4 = 69.28701 kPa.  
For isentropic flow at M1 = 2.2 and γ = 1.4,  
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So using the isentropic flow solver for this pressure ratio we find 4410.2M 4 =  as shown 
above. 
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At this Mach number, from the Prandtl-Meyer Spreadsheet Solver (PMSS):                     
ν4 = 37.7325° and µ4 = sin−1(1/ M4) = 24.1836°.  Also at M1 = 2.2, the PMSS gives ν1 = 
31.7325° and µ1 = sin−1(1/ M1) = 27.0357°. Hence, 
 

o0000.67325.317325.370.01414 =−+=ν−ν+α=α  
 
As seen in Figure 14.16, the expansion fan has been divided into 3 equal pieces so that  
 

oo 0.4       ,0.2
3
0.6

32 =α==α  
 
The results of the calculations are listed below 
 

Region α 
deg 

ν 
deg 

M µ 
deg 

α + µ  
deg 

α − µ  
deg 

1 0.0 31.7325 2.2 27.0357 27.0357 -27.0357 
2 2.0000 33.7325 2.2781 26.0373 28.0373 -24.0373 
3 4.0000 35.7325 2.3584 25.0883 29.0883 -21.0883 
4 6.0000 37.7325 2.4410 24.1836 30.1836 -18.1836 
5 0.0 35.7325 2.3584 25.0883 25.0883 -25.0883 
6 2.0000 37.7325 2.4410 24.1836 26.1836 -22.1836 
7 4.0000 39.7325 2.5262 23.3189 27.3189 -19.3189 
8 2.0000 37.7325 2.4410 24.1836 26.1836 -22.1836 
9 0.0 39.7325 2.5262 23.3189 23.3189 -23.3189 

10 2.0000 41.7325 2.6142 22.4905 24.4905 -20.4905 
11 0.0000 39.7325 2.5262 23.3189 23.3189 -23.3189 
12 -2.0000 37.7325 2.4410 24.1836 22.1836 -26.1836 
13 0.0 43.7325 2.7051 21.6951 21.6951 -21.6951 
14 -2.0000 41.7325 2.6142 22.4905 20.4905 -24.4905 
15 -4.0000 39.7325 2.5262 23.3189 19.3189 -27.3189 
16 -6.0000 37.7325 2.4410 24.1836 18.1836 -30.1836 
17 0.0 39.7325 2.5262 23.3189 23.3189 -23.3189 
18 -2.0000 37.7325 2.4410 24.1836 22.1836 -26.1836 
19 -4.0000 35.7325 2.3584 25.0883 21.0883 -29.0883 
20 0.0 39.7325 2.5262 23.3189 23.3189 -23.3189 
21 -2.0000 37.7325 2.4410 24.1836 22.1836 -26.1836 

 
The averaged angles of inclination and the slopes of the characteristics are  
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Type I:  α − µ    Type II:  α + µ  
Regions Angle    

deg 
slopeI Regions Angle    

deg 
slopeII 

1 - 2 -25.5365 -0.4778 2 - 5 26.5628 0.5000 
2 - 3 -22.5628 -0.4155 3 - 6 27.6359 0.5236 
3 - 4 -19.6359 -0.3568 4 - 7 28.7513 0.5486 
5 - 6 -23.6359 -0.4376 6 - 9 24.7513 0.4610 
6 - 7 -20.7513 -0.3789 7 - 10 25.9047 0.4857 
7 - 8 -20.7513 -0.3789 8 - 11 24.7513 0.4610 

9 - 10 -21.9047 -0.4021 10 - 13 23.0928 0.4264 
10 - 11 -21.9047 -0.4021 11 - 14 21.9047 0.4021 
11 - 12 -24.7513 -0.4610 12 - 15 20.7513 0.3789 
13 - 14 -23.9394 -0.4440 14 - 17 21.9047 0.4021 
14 - 15 -23.0928 -0.4264 15 - 18 20.7513 0.3789 
15 - 16 -25.9047 -0.4857 16 - 19 19.6359 0.3568 
 17 - 18 -28.7513 -0.5486 18 - 20 22.7513 0.4194 
18 - 19 -26.7513 -0.5041 19 - 21 21.6359 0.3967 
 20 - 21 -24.7513 -0.4610    

 

 
 
Problem 22. –Repeat Example 14.5 using the region-to-region method. Compare the 
results.  
 
The numbering and layout of the regions is contained in the following sketch 
 
 
 
 
 
 
 
 
 
 
 
 
 
Input and the maximum turning angle are contained in the following table 
 

γ α1 M1 M15 divisions αw,max,MLN 
1.2 0 1 1.8 4 12.151243 

 
Using this information and the region-to-region methodology explained in Problem 18 
we can determine the values in the table which follows 

 

1 2 3 4 

5 

6 7 8 

9 

10 11 

12 14

13

15

M15 

M1 
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Region α ν I = ν+α II = ν−α M µ α + µ α − µ 

1 0.0000 0.0000 0.0000 0.0000 1.0000 90.0000 90.0000 -90.0000 
2 3.0378 3.0378 6.0756 0.0000 1.1659 59.0617 62.0995 -56.0239 
3 6.0756 6.0756 12.1512 0.0000 1.2727 51.7871 57.8627 -45.7115 
4 9.1134 9.1134 18.2269 0.0000 1.3682 46.9605 56.0740 -37.8471 
5 12.1512 12.1512 24.3025 0.0000 1.4583 43.2931 55.4444 -31.1419 
6 0.0000 6.0756 6.0756 6.0756 1.2727 51.7871 51.7871 -51.7871 
7 3.0378 9.1134 12.1512 6.0756 1.3682 46.9605 49.9984 -43.9227 
8 6.0756 12.1512 18.2269 6.0756 1.4583 43.2931 49.3687 -37.2175 
9 9.1134 15.1891 24.3025 6.0756 1.5454 40.3208 49.4342 -31.2074 

10 0.0000 12.1512 12.1512 12.1512 1.4583 43.2931 43.2931 -43.2931 
11 3.0378 15.1891 18.2269 12.1512 1.5454 40.3208 43.3586 -37.2830 
12 6.0756 18.2269 24.3025 12.1512 1.6309 37.8175 43.8931 -31.7418 
13 0.0000 18.2269 18.2269 18.2269 1.6309 37.8175 37.8175 -37.8175 
14 3.0378 21.2647 24.3025 18.2269 1.7156 35.6540 38.6918 -32.6162 
15 0.0000 24.3025 24.3025 24.3025 1.8000 33.7490 33.7490 -33.7490 

 
The angles of inclinations of the characteristics can be used to determine the x,y locations 
of characteristics.  These are determined by averaging the characteristic angles, α ± µ , of 
adjoining regions. 
 

Type I   Type II  
Region Region Inclinat'n  Region Region Inclinat'n 

1 2 -73.0120  2 6 56.9433 
2 3 -50.8677  3 7 53.9305 
3 4 -41.7793  4 8 52.7214 
4 5 -34.4945  5 9 52.4393 
6 7 -47.8549  7 10 46.6457 
7 8 -40.5701  8 11 46.3637 
8 9 -34.2124  9 12 46.6637 

10 11 -40.2881  11 13 40.5880 
11 12 -34.5124  12 14 41.2924 
13 14 -35.2168  14 15 36.2204 
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Problem 1. – A Pitot tube is placed in a uniform air flow of Mach 2.5. If the Pitot tube indicates 
a pressure of 500 kPa, find the static pressure of the flow. Take γ = 1.40. 
 
 
From the Rayleigh-Pitot formula, Eq. (15.7), we have 
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For an M1 = 2.5 and γ = 1.4, the pressure ratio is computed to be 
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Because po2 = 500 kPa, p1 = 500/8.52616 = 58.643213 kPa 
 
 
Problem 2. – A Pitot tube is placed in a uniform helium flow. If the Pitot tube indicates a 
pressure of 280 kPa and the static pressure of the flow is measured to be 20 kPa, find the Mach 
number. Take γ = 1.40. 
 
 
This is the same type of problem as in Example 15.1.  Thus, many of the same steps are repeated 
herein.  The first step is to compute the critical pressure ratio, i.e., Eq.(15.1) at M = 1 and γ = 1.4,  
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If the actual pressure ratio po2/p1 is below the critical value, a subsonic Mach number is 
computed from Eq.(15.2); whereas, if the pressure ratio is above the critical value, we must 
extract the supersonic Mach number from the Rayleigh-Pitot formula, Eq.(15.7).  To accomplish 
this we will use the Newton-Raphson procedure that is easily incorporated into a spreadsheet 
program. Equation (15.7) may be written in the following form 
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( ) 0CBMAMMf 22 =+−= γ  

 
where the coefficients in this expression are 
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The derivative of this function is  
 

( ) BM2AM2M
dM
df 12 −γ= −γ  

 
The Netwon-Raphson algorithm is  
 

( )
( )

( )
( )old

12
old

2
old

2
old

old

old
oldnew BMAM2

CBMAM12

M
dM
df

Mf
MM

−γ
−−−γ

=−= −γ

γ

 

 
For this case po2 = 280 kPa and p1 = 20 kPa, so the pressure ratio is 14.000, which is well above 
the critical pressure ratio for the given ratio of specific heats. It should be noted that the 
computed coefficients for this case are 
 

3722561.2C
093083.16B

195766.6A

=
=
=

 

 
The results of the iterative computations are presented in following table 
 

n M(old) f(M) df/dM M(new) 
1 4.00000 45.32248 81.61429 3.44467 
2 3.44467 9.08901 49.86759 3.26241 
3 3.26241 0.84077 40.75026 3.24178 
4 3.24178 0.01024 39.75931 3.24152 
5 3.24152 0.00000 39.74700 3.24152 

 
Rayleigh-Pitot formula computations  

 
Hence, the computed Mach number for this case is M∞= M1 = 3.241522. 
 
 
Problem 3. – A uniform flow of air at Mach 2.0 passes over an insulated wall. The static 
temperature and pressure in the free stream outside the boundary layer are, respectively, 250 K 
and 20 kPa. Determine the free-stream stagnation temperature, adiabatic wall temperature, and 
static pressure at the wall surface. Take γ = 1.40. 
 
From Eq.(15.13) we have 
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Since T∞ = 250K and M∞  = 2.0 
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Assuming a turbulent boundary layer of air (Pr = 0.72) 
 
                                                           896281.072.0Prr 33 ===  
 
                                  ( ) K25619.429)250450(896281.0250TTrTT oaw =−+=−+= ∞∞∞  
 
The static pressure at the wall is the same as the free stream static pressure: 20kPa 
 
 
Problem 4. – A total temperature probe is inserted into the flow of Problem 3. If the probe has K 
[see Eq.(15.16)] equal to 0.97, what temperature will be indicated by the probe? 
 
From Eq.(15.16) 
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So  
 
 ( ) ( ) K0.44425045097.0250TTKTT oindicated,o =−+=−+= ∞∞∞    
 

 
Problem 5. – Sketch a plot of p/po versus M for isentropic flow. On the same coordinates, plot 
p∞/pPitot versus M∞. Take γ = 1.40.  
 
Values are computed for a range of Mach numbers from Eq.(15.7) for the Raleigh Pitot formula  
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and from Eq.(15.1) for the isentropic relation 
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The computed values appear in the following table and the accompanying chart 
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 Rayleigh isentropic 
M1 p1/po2 p/po 
1.0 0.528282 0.528282 
1.2 0.415368 0.412377 
1.4 0.327951 0.314241 
1.6 0.262814 0.235271 
1.8 0.214155 0.174040 
2.0 0.177291 0.127805 
2.2 0.148888 0.093522 
2.4 0.126632 0.068399 
2.6 0.108917 0.050115 
2.8 0.094613 0.036848 
3.0 0.082912 0.027224 
3.2 0.073228 0.020228 
3.4 0.065129 0.015125 
3.6 0.058290 0.011385 
3.8 0.052465 0.008629 
4.0 0.047465 0.006586 
4.2 0.043143 0.005062 
4.4 0.039381 0.003918 
4.6 0.036088 0.003053 
4.8 0.033189 0.002394 
5.0 0.030625 0.001890 
5.2 0.028345 0.001501 
5.4 0.026310 0.001200 
5.6 0.024485 0.000964 
5.8 0.022843 0.000779 
6.0 0.021361 0.000633 
6.2 0.020017 0.000517 
6.4 0.018797 0.000425 
6.6 0.017684 0.000350 
6.8 0.016667 0.000290 
7.0 0.015735 0.000242 
7.2 0.014879 0.000202 
7.4 0.014091 0.000169 
7.6 0.013363 0.000143 
7.8 0.012691 0.000121 
8.0 0.012068 0.000102 
8.2 0.011489 0.000087 
8.4 0.010952 0.000075 
8.6 0.010450 0.000064 
8.8 0.009983 0.000055 
9.0 0.009546 0.000047 
9.2 0.009137 0.000041 
9.4 0.008754 0.000036 
9.6 0.008395 0.000031 
9.8 0.008057 0.000027 

10.0 0.007739 0.000024 
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Problem 6. – Derive the Gladstone-Dale relation, Eq.(15.26), from the Lorenz-Lorentz relation, 
Eq.(15.25). 
 
From Eq.(15.25) we have 
 

                                                                   ρ=
+
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 (15.25) 
 

For values of n near unity we may write that n = 1 + ε, where ε is very small. Therefore, 
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So 
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Hence, 
 

ρ+=ρ+= K1C
2
31n  

 
the Gladstone-Dale equation is obtained. 
 

 
Problem 7. – Compute the index of refraction at atmospheric pressure for the gases contained in 
Table 15.1 for the given Gladstone-Dale constants and temperatures. 
 
To use the Gladstone-Dale equation, we must first compute the density of each gas assuming 
each behaves as a perfect gas 
 

Gas T (K) R (kJ/kg·K) p (kPa) ρ (m3/kg) K (cm3/g) n 

He 295 2.077 101.3 0.16533 0.196 1.0000324 
H2 273 4.124 101.3 0.08998 1.55 1.0001395 

O2 273 0.2598 101.3 1.42826 0.19 1.0002714 

N2 273 0.2968 101.3 1.25021 0.238 1.0002975 

CO2 295 0.1889 101.3 1.81784 0.229 1.0004163 
 

 
Problem 8. – The wire of a hot wire anemometer is placed to an air flow at atmospheric pressure 
with a temperature of 30°C and a velocity of 80 m/s. The wire is heated to a constant temperature 
of 210°C. The diameter of the wire is 4 µm and its length is 2 mm. Determine the electric current 
in the wire. The air properties at the mean film temperature are: ρ = 0.898 kg/m3, µ = 2.27⋅10-5 
kg/m⋅s, k=0.0328 W/m⋅K, and cp=1.013 kJ/kg⋅K. The resistivity of the wire is 0.22 µΩ⋅m. 
 
The Reynolds number is: 
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The Prandtl number is: 
 

( )( ) 70.0
Km/W0328.0

Kkg/J10013.1sm/kg1027.2
k
c

Pr
35

p =
⋅

⋅⋅⋅⋅
=

µ
=

−

 

 

344



 

With Prandtl and Reynolds numbers we can determine the Nusselt number from Kramers 
correlation, Eq.(15.23): 
 

19.266.1270.057.070.042.0RePr57.0Pr42.0Nu 5.033.02.05.033.02.0 =⋅⋅+⋅=+=  
 
The heat transfer coefficient can then be calculated as: 
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The heat loss from the wire is given by: 
 

( ) ( ) ( )

( ) ( ) ( )[ ] ( ) W08124.0K30210m102m104Km/W17958

TTLdhTTAhq

362

ww

=−⋅⋅⋅⋅⋅π⋅⋅=

−⋅⋅⋅π⋅=−⋅⋅=

−−

∞∞

 

 
The resistance of the wire is: 
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Consequently, the electric current in the wire is: 
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Problem 9. – A symmetrical wedge of 10° total included angle is placed in a uniform Mach 2.0 
flow of static pressure of 60 kPa. If the axis of the wedge is misaligned with the flow direction 
by 3°, determine the static pressure difference between the top and bottom surfaces of the wedge. 
Take γ = 1.40 
 
The symmetrical wedge is shown as follows 
 
 
 
 
 
 
The misaligned wedge is shown below along with the various angles of deflection.  With these 
angles, the upstream Mach number and the ratio of specific heats, it is a simple matter using the 
oblique shock solver developed in Chapter 6 to determine the flow characteristics shown in the 
following tables: 

10° M1 = 2.0 
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Upper Surface 
 

Given: M1 and δ    
Weak Shock Solution   

γ M1 δ(deg) θ(deg) p2/p1 
1.4000 2.0000 2.0000 31.6463 1.1180 

  0.0349 1.6225 67.07914 
  radians cotθ  

 
Lower Surface 
 

Given: M1 and δ    
Weak Shock Solution   

γ M1 δ(deg) θ(deg) p2/p1 
1.4000 2.0000 8.0000 37.2101 1.5400 

  0.1396 1.3170 92.39894 
  radians cotθ  

 
The pressure difference between the lower surface and the upper surface is then 
 

kPa3198.2507914.6739894.92ppp upperlower =−=−=∆  
 

 
Problem 10. – The temperature of the wire of an anemometer placed perpendicular to an air flow 
of 20°C is 100°C. The wire dissipates 20 mW of heat to the flow. The diameter of the wire is 3 
µm and the length 1 mm. What is the velocity of the flow? The properties of the air at the mean 
temperature between fluid and the wire are: ρ = 1.0595 kg/m3, cp = 1.009 kJ/kg, k = 0.0285 
W/m⋅K, and  µ = 2⋅10-5 kg/m⋅s. 
 
The heat transfer coefficient is: 
 

5° - 3° = 2° 

5° + 3° = 8° 

3° 
M1 = 2.0 
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The Nusselt number is computed from: 
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The Prandtl number is: 
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Therefore, the Reynolds number is determined from Kramers correlation, Eq.(15.26): 
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The velocity of the flow is therefore: 
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Problem 11. –  The sensing element of a hot wire anemometer is a platinum wire 4 µm diameter 
and 2 mm length. The wire is placed perpendicular to an air flow at atmospheric pressure with a 
temperature of 20°C and a velocity of 60 m/s. If the temperature of the wire is 100°C, determine 
the power dissipated by the wire. The properties of the air at the mean film temperature are:         
ρ = 1.0595 kg/m3, cp = 1.009 kJ/kg⋅K, k = 0.0285 W/m⋅K, µ = 2⋅10-5 kg/m⋅s. 
 
The Reynolds number is: 
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The Prandtl number is: 
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The Nusselt number can be computed using the Kramers correlation, Eq.(15.23): 
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The heat transfer coefficient is: 
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The heat loss from the wire is: 
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Problem 12. – A dual beam LDV-system with a wavelength of 3000Å and a 20o angle between 
the intersecting beams records a difference of 30MHz between the two Doppler shifts. What is 
the velocity of the flow-field? 
 
The amplitude of the wave vector is 
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The velocity of the seeding particle (assumed equal to the velocity of the flow) is 
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Problem 13. – What is the minimum frequency that a dual beam LDV system has to have in 
order to measure a 1000 m/s velocity with a 5000 Å laser with a 5o angle between the beams? 
Explain using both theoretical explanations of the LVD instrument. 
 
Using the Doppler shift explanation: the frequency difference between the two Doppler shifts is 
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where the amplitude of the wave vector is 
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so the frequency to detect is 
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κ
=ν

sinv2
D  

 
Alternately, using the fringe model:  the fringe spacing distance is 
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so the frequency to detect can be determined, as above, from, 
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Problem 14. – Determine the vorticity of the flowfield based on the double-exposed PIV 
photograph shown Figure P15.14. The interval between the two exposures is ∆t = 0.001s. The 
grid-size equals 1mm in both directions. 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 

Figure P15.14 
 
The vorticity of the flow is defined as 
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For two-dimensional flow, 
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The vorticity can be numerically approximated using central differences as 
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From Figure P15.14  
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Hence, the vorticity is 
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Problem 15. – A double–exposed PIV photograph contains the flowfield illustrated in Figure 
P15.15. Show that if the grid-size is equal in the x and y directions, i.e., ∆x = ∆y, the vorticity at 
(i,j) is only dependent upon the time interval ∆t between the two exposures. 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure P15.15 

 
 
The vorticity can be numerically calculated from 
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Now, 
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Hence, for yx ∆=∆  we have 
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