
Chapter 3
Electrostatics of Tubes, Wire Grids
and Field Cages

The electric field in a drift chamber must provide two functions: drift and amplifi-
cation. Whereas in the immediate vicinity of the thin proportional or ‘sense’ wire
the cylindrical electric field provides directly the large field strengths required for
charge amplification, the drift field must be created by a suitable arrangement of
electrodes that are set at potentials supplied by external voltage sources. It is true
that drift fields have also been created by depositing electric charges on insulators –
such chambers are described in Sect. 11.4 – but we do not treat them here. Charge
amplification is not necessarily confined to proportional wires. It has also been mea-
sured between parallel plates and between a wire mesh and a metal plate as well as
in the tiny holes in a plate coated on both sides with the metal layers of a condenser.
In fact these MICROMEGA and GEM counters seem to have a promising future
[FAB 04].

There is a large variety of drift chambers, and they have all different electrode
arrangements. An overview of existing chambers is given in Chap. 11, where we
distinguish three basic types. In the volume-sensitive chambers (types 2 and 3) the
functions of drift and amplification are often more or less well separated, either by
special wire grids that separate the drift space from the sense wire or at least by
the introduction of ‘field’ or ‘potential’ wires between the sense wires. The drift
field, which fills a space large compared to the amplification space, then has to be
defined at its boundaries; these make up the ‘field cage’. For a uniform field, the
electrodes at the boundaries are at graded potentials in the field direction and at
constant potentials orthogonal to it.

Also the area-sensitive chambers (type 1) have often been built with ‘potential’
or ‘field-shaping’ wires to provide a better definition and a separate adjustment of
the drift field. In this chapter we want to discuss some elements that are typical for
the volume-sensitive chambers with separated drift and amplification spaces: one or
several grids with regularly spaced wires in conjunction with a field cage. Although
directly applicable to a time projection chamber (TPC), the following considerations
will also apply to many type 2 chambers.

Electrostatic problems of the most general electrode configuration are usually
solved by numerical methods, for example using relaxation techniques [WEN 58].
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Computer codes exist for wire chamber applications [VEN 08]. In this chapter we
develop analytical methods taking advantage of simple geometry, in order to es-
tablish the main concepts. A classic treatment is found in Morse and Feshbach
[MOR 53].

The simplest device for the measurement of drift time is the drift or proportional
tube. This name refers to the original, proportional mode of amplification, but the
device can also be used beyond the proportional mode, see Sect. 4.2. In its ideal form
it is a circular cylindrical tube with a wire in the centre. As we have in mind to also
describe deviations from the ideal form which arise in practice we will approach the
electrostatics of a tube in a slightly generalized way.

3.1 Perfect and Imperfect Drift Tubes

Deviations from the ideal geometry of two concentric circular cylinders are caused
by displaced wires or deformed walls. In this section we discuss the electric field
arising in a circular right cylinder with the wire off-centre. Since we are dealing
with relatively small deviations our method is a first-order perturbation calculation
of the linear deviation.

The solution of Laplace’s equation

∇2Φ = 0 (3.1)

for the potential Φ in the charge-free space between two conductors is found by
separation of variables. In cylindrical coordinates we write

Φ(r,ϕ,z) = R(r)φ(ϕ)Z(z)

1
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∂
∂ r

(
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∂R
∂ r

)
+

1
r2φ
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∂ϕ2 +

1
Z

∂ 2Z
∂ z2 = 0. (3.2)

Assuming Z(z) = const = 1, we equate the second term to the constant −ν2 so that

d2φ
dϕ2 = −ν2φ ,

whose solutions are

φ(ϕ) = C′
ϕ cosνϕ +C′′

ϕ sinνϕ if ν �= 0

φ(ϕ) = C′
ϕ ϕ +C′′

ϕ if ν = 0. (3.3)

The C’s are constants to be determined by the boundary conditions. The radial part
becomes the Euler-Cauchy equation

r
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)
−ν2R = 0. (3.4)
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If ν = 0, the solution is given by

R(r) = C′
r lnr +C′′

r . (3.5)

3.1.1 Perfect Drift Tube

The potential between two coaxial cylinders is a straight application of Eq. (3.5).
When the outer cylinder (radius b) is on ground, and the wire (radius a) on positive
potential U , one determines the coefficients to be given by C′

ϕ = 0, C′′
r = −C′

r lnb
and C′

rC
′′
ϕ ln(a/b) = U , so that

Φ =
U

ln(a/b)
ln(

r
b
). (3.6)

The electric field is directed radially outwards, and

Er = −∂Φ
∂ r

=
U

ln(b/a)
1
r
. (3.7)

Another way to calculate Er is using Gauss’ theorem according to which

Er =
λ

2πε0

1
r

(3.8)

where λ is the linear charge density on the wire; the value of ε0 is 8.854 · 10−12

As/Vm. Therefore the capacitance per unit length of tube is given by

C =
λ
U

=
2πε0

ln(b/a)
.

3.1.2 Displaced Wire

Solution of the Electrostatic Problem

Let the wire be displaced from the tube centre by the distance d in the negative y-
direction (Fig. 3.1). The wire defines the centre of the coordinate system so that the
first boundary condition is

Φ(a) = U, independent of ϕ. (3.9)

We must express the second boundary by the radius vector as a function of ϕ . The
exact expression is

ρ = d sinϕ +b
√

(1− (d2/b2)(1− sin2 ϕ),
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Fig. 3.1 Geometry of
displaced wire

but we are only interested in small wire displacements. To first order in d/b we have
the boundary at

ρ = b+d sinϕ, (3.10)

and the second boundary condition is

Φ(ρ) = 0. (3.11)

Now we must determine the various coefficients using (3.9) and (3.11). To the first
order in d/b we have solutions for ν = 0 and ν = 1, and the most general solution is

Φ = (C0′
r lnr +C0′′

r )C0′′
ϕ +(C1′

r r +C1′′
r /r)(C1′

ϕ cosϕ +C1′′
ϕ sinϕ). (3.12)

Inserting (3.9), we have to require

C1′
r a+C1′′

r /a = 0, (3.13)

which implies that C1′′
r can be neglected against C1′

r for the entire space except in
the immediate vicinity of the wire surface.

When inserting (3.11) and (3.10) into (3.12) we make use of the relation

ln(b+d sinϕ) = lnb+(d/b)sinϕ,

which holds to first order in d/b. This determines the constants C0′
r , C0′′

r and C0′′
ϕ as

in the case (3.6) of the perfect tube. Comparing factors that multiply the sinϕ-terms,
we find

C0′′
ϕ C0′

r (d/b)+C1′
r bC1′′

ϕ = 0

or

C1′
r C1′′

ϕ = − d
b2

U
ln(a/b)

(3.14)

whereas C1′
ϕ = 0. This produces the solution, in first order of (d/b), equal to

Φ(r,ϕ) =
U

ln(a/b)
ln

r
b
− U

ln(a/b)
d
b

r
b

sinϕ. (3.15)
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The perturbing potential Φ1 caused by the wire displacement is given by the
second term. Using y = r sinϕ , the field perturbation is calculated to be

(E1)y = −∂Φ1

∂y
= − U

ln(b/a)
d
b2 (3.16)

(E1)x = (E1)z = 0. (3.17)

It describes a constant field directed towards negative y, whose magnitude is d/b
times the value of the unperturbed field (3.7) at the wall.

For the purpose of calculating the electrostatic force on the wire (see further
down) we also record the value of (E1)y on the wire surface (r = a). Starting
from (3.13) without the previous simplification C1′′

r = 0, the correct perturbation
potential is

Φ1(r,ϕ) =
−U

ln(a/b)
d
b2 (r− a2

r
)sinϕ. (3.18)

The field in y-direction equals

(E1(a))y = −∂Φ1

∂y
evaluated at r = a

= − U
ln(b/a)

2d
b2 sin2 ϕ

Averaging over ϕ we have an extra field on the wire surface equal to

(E1(a))y = − U
ln(b/a)

d
b2 (3.19)

The average extra field on the wire surface is as large as the field perturbation (3.16),
(3.17) throughout the volume.

Gravitational Sag

The main reason for wire displacement is the weight of the wire. Even when strung
with a pulling force T close to the breaking limit, wires in several metre long tubes
will experience a gravitational sag that is large in comparison with the achievable
accuracy of drift tubes.

In order to derive a formula for the amount of bowing we introduce the coordi-
nates y (downwards) and x (horizontal). We note that on every length element dx the
weight of the wire is

ρgσ dx (3.20)

(ρ = density, σ = cross sectional area of the wire, g = 981cm/s2). It must be com-
pensated by the vertical component of the tension at this point, which is equal to the
difference of the slopes at the two ends of the interval dx, multiplied by the pulling
force T :

−T [y′(x+dx)− y′(x)] (3.21)
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where the primes denote the first derivative. In this approximation we have assumed
that the pulling force is the same for all x, the variation due to the weight of the wire
being negligible for practical tubes.

Combining (3.20) and (3.21), one has the differential equation

− y′′ = C = ρgσ/T (3.22)

with the solution
y = (C/2)x2 +C1x+C2. (3.23)

Specifying that y = 0 at x = ±L/2 determines the coefficients C1, C2, and the solu-
tion becomes

y =
C
2

(
L2

4
− x2

)
. (3.24)

The point of the maximum excursion is the sagitta, equal to

s = y(0) =
CL2

8
=

ρgσL2

8T
. (3.25)

It is proportional to the inverse of the mechanical tension. If the tension is in-
creased the sagitta is reduced, but the tension cannot be arbitrarily increased since
non-elastic deformations take place. The maximum pulling force Tc that can be
applied to a wire is proportional to its cross section, and the ratio Tc/σ is con-
stant (except for very thin wires). The minimum achievable sagitta of a wire of
given length is independent of the wire cross section. The values of the critical ten-
sion and typical sagittas for 100-cm-long wires of different materials are shown in
Table 3.1. Usually the wires are strung to a tension close to the critical one in or-
der to reduce the sagging. Inspecting Table 3.1 we notice that among the various
materials, tungsten is the one that allows the smallest sagittas but at the expense
of quite a large tension, for a given diameter of the wire. Since the tension of the
wires is held by the endplates of the chamber, a large tension requires stiff end-
plates. In the design of a chamber one usually compromises between these two
parameters.

If the sagitta of long wires cannot be constructed to be small one may be obliged
to control its size within small tolerances. A practical way of doing this is by mea-
suring the oscillation frequency of the wire. The frequency f1 of the lowest mode of
the elastic string is

Table 3.1 Maximum stresses before deformation of typical wire materials and corresponding
sagittas for 1-m-long wires

Material Tc/σ (kg/mm2) Sagitta (μm) of a 100 cm long wire
strung at Tc

Al 4 . . .16 21 . . .84
Cu 21 . . .37 30 . . .53
Fe 18 . . .25 39 . . .54
W 180 . . .410 6 . . .13
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f1 =
1

2L

√
T

ρσ
. (3.26)

Inserting (3.25) into (3.26) produces the simple relation

f 2
1 =

g
32s

. (3.27)

Electrostatic Force on the Sagged Wire

The displacement of the wire creates an average field (3.19) which acts on the
electric charge of the wire and produces a force which tends to increase the dis-
placement. The differential equation (3.22) needs to be complemented by a term
which represents the electrostatic force per unit wire length. This is given by the
product

λ · (E1(a))y

where λ is given by (3.8) in terms of the unperturbed field, and (E1(a))y is given by
(3.19) and is proportional to the displacement y. The electrostatic force, like grav-
ity, points downwards and leads to a positive term on the right-hand side of (3.22),
whereas y′′ < 0. Therefore, the differential equation is

y′′ + k2y+C = 0 (3.28)

with C = ρgσ/T and k2 = 2πε0E2
0 (b)/T . The value of k is plotted against E0(b)

and T in Fig. 3.2.
The general solution of (3.28) is

y = C1 cos kx+C2 sin kx−C/k2. (3.29)

When specifying y(±L/2) = 0, the coefficients C1, C2 are determined, and the so-
lution becomes

y =
C
k2

(
1

cos(kL/2)
cos kx−1

)
. (3.30)

The electrostatic force has changed the form of the wire from the parabola (3.24) to
the cosine function (3.30).

The new sagitta is

sk = y(0) =
C
k2

(
1

cos(kL/2)
−1

)
kL	1−→ CL2

8
(3.31)

This means the electrostatic force has increased the sagitta (3.25) by the factor

sk

s
=

8
k2L2

(
1

cos(kL/2)
−1

)
=

2
q2

(
1

cos q
−1

)
. (3.32)
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Fig. 3.2 Value of the constant k in (3.28) relevant for the electrostatic amplification of the
gravitational sag, as a function of the electric field E0(b) at the tube wall, for various wire pulling
forces T

As the product kL approaches the value π , the excursion tends to infinity, and
the wire is no longer in a stable position. For example, the gravitational sag of a
wire strung with one N inside a 5 m long tube will be amplified by a factor of
sk/s of 1.56 if the field at the wall is E0(b) = 500V/cm. The point of instability
is reached at E0(b) = 840V/cm. In Fig. 3.3 we plot sk/s as a function of q2 or
k2L2/4.

Fig. 3.3 Amplification factor
of the gravitational sag
owing to electrostatic forces,
according to (3.32)
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3.2 Wire Grids

3.2.1 The Electric Field of an Ideal Grid of Wires Parallel
to a Conducting Plane

We assume a reference system with the x− y plane coincident with the conducting
plane (pad plane) and the y axis along the direction of the wires of the grid. The z
axis is perpendicular to the plane (see Fig. 3.4).

The potential is a function of the coordinates x and z only, because the problem
has a translational symmetry along the y direction. We assume the zero of the po-
tential on the conducting plane (z = 0). The complex potential of a single line of
charge λ per unit length placed at U ′ = x′ + iz′ is

φ(U) = − λ
2πε0

ln
(U −U ′)
(U −Ū ′)

, (3.33)

where U = x+ iz is the coordinate of a general point and Ū ′ = x′ − iz′ is the complex
conjugate of U ′. MKS units are used throughout.

The potential of the whole grid is obtained by adding up the contributions of
each wire:

φ(U) = − λ
2πε0

k=+∞

∑
k=−∞

ln
(U −U ′

k)
(U −Ū ′

k)
,

where U ′
k is the coordinate of the kth wire.

All the wires of the grid are equispaced with a pitch s: therefore

U ′
k = x0 + ks+ iz0(k = . . .−2,−1,0,1,2, . . .),

where x0 and z0 are the coordinates of the 0th wire of the grid. The potential of the
grid can be written as

φ(U) = − λ
2πε0

k=+∞

∑
k=−∞

ln
(U −U ′

0 − ks)
(U −Ū ′

0 − ks)
.

This summation can be computed [ABR 65]:

Fig. 3.4 An ideal grid of
wires parallel to a conducting
plane
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φ(U) = − λ
2πε0

ln
sin[(π/s)(U −U ′

0)]
sin[(π/s)(U −Ū ′

0)]

and the corresponding real potential is

V (x,z) = Re φ(U)

= − λ
4πε0

ln
sin2[(π/s)(x− x0)]+ sin h2[(π/s)(z− z0)]
sin2[(π/s)(x− x0)]+ sin h2[(π/s)(z+ z0)]

. (3.34)

Figure 3.5a shows V (x, z) as function of z at two different values of x. In the chosen
example the grid was placed at z0 = s. We notice that such a grid behaves almost
everywhere like a simple layer of charge with surface density λ/s. Only in the imme-
diate vicinity of the wires (distances much smaller than the pitch) can the structure
of the grid be seen (compare with Fig. 3.5b, which shows the potential of a simple
layer of charge). Therefore it is possible to superimpose different grids or plane elec-
trodes at distances larger than the pitch without changing the boundary conditions
of the electrostatic problem. We have an example of the general two-dimensional
problem where a potential φ that varies periodically in one direction x has every
Fourier component ≈ cos(2πnx/s) damped along the transverse direction z accord-
ing to the factor e−2πnz/s. This holds because every Fourier component must satisfy
Laplace’s equation

∂ 2φ
∂x2 +

∂ 2φ
∂ z2 = 0

Fig. 3.5 (a) The potential V (x,z) of a grid of wires situated a distance z0 from a conducting plane
at x0, x0 + s, . . . with pitch s = z0 and a linear charge density λ per wire. (b) The potential V (z) of
a plane of charge situated a distance z0 from a conducting plane, with a surface charge density σ



3.2 Wire Grids 107

outside the wires. The solution is

φ = ∑
n

Cne−2πnz/s cos(2πnx/s),

the Cn being constants.
At a distance from the grid comparable or larger than the pitch the potential

assumes the value

V (x,z) =
zλ
ε0s

for z < z0,z0 − z � s
2π

,

V (x,z) =
z0λ
ε0s

for z0 < z,z− z0 �
s

2π
.

(3.35)

On the surface of the wires the potential assumes the value evaluated at (x− x0)2

+(z− z0)2 = r2. We replace in first order of r/s the hyperbolic functions by their
arguments and take for sinh(2πz0/s) the positive exponential. The potential of the
wire is then

V (wire) =
λz0

ε0s

(
1− s

2πz0
ln

2πr
s

)
. (3.36)

This means that the wire grid, although it behaves like a simple sheet with area
charge density λ/s has some ‘transparency’. We could have given the grid a zero
potential and the conducting plane a potential V . Then, beyond the grid the potential
would have been

λ
2πε0

ln
2πr

s

and not zero as on the grid – some of the potential of the plane behind can be ‘seen
through the grid’. In other words, the potential beyond the grid is different from the
potential on the grid by the difference between the electric field on the two sides of
the grid, multiplied by the length (s/2π) ln(2πr/s).

The electric field that can be computed from (3.34) is given here for convenience:

Ex(x,z) =
λ

2sε0
sin

[
2π
s

(x− x0)
][

1
A1

− 1
A2

]
,

Ez(x,z) =
λ

2sε0

{
sinh[(2π/s)(z− z0)]

A1
− sinh[(2π/s)(z+ z0)]

A2

}
,

where

A1 = cosh

[
2π
s

(z− z0)
]
− cos

[
2π
s

(x− x0)
]
,

A2 = cosh

[
2π
s

(z+ z0)
]
− cos

[
2π
s

(x− x0)
]
.
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3.2.2 Superposition of the Electric Fields of Several Grids
and of a High-Voltage Plane

Knowing the potential created by one plane grid (3.34) and its very simple form
(3.35) valid at a distance d(d � s/2π) out of this plane, we want to be able to
superimpose several such grids, in order to accommodate not only the sense wires
but also all the other electrodes: the near-by field and shielding wires and the distant
high-voltage electrode.

In order to be as explicit as possible we will present the specific case of a TPC.
These chambers have more grids than most other volume-sensitive drift chambers,
and the simpler cases may be derived by removing individual grids from the follow-
ing computations.

We want to calculate the electric field in a TPC with the geometry sketched in
Fig. 3.6. The pad plane is grounded, and we have four independent potentials: the
high-voltage plane (Vp), the zero-grid wire (Vz), the field wires (Vf) and the sense
wires (Vs). We have to find the relations between those potentials and the charge
induced on the different electrodes.

Since the distance d between the grid planes satisfies the condition d � s/2π ,
the total electric field is generally obtained by superimposing the solution of each
grid. This assumes that all the wires inside a single grid are at the same potential,
but it is not the case for the sense-wire and field-wire grids where the sense wires
and the field wires are at different potentials and the two grids are at the same z. In
this case the superposition is still possible owing to the symmetry of the geometry:
the potential induced by the sense-wire grid on the field wires is the same for all the
field wires and vice-versa.

The potential induced by the sense-wire grid on the field wires can easily be
computed because the field-wire grid and the sense-wire grid have the same pitch.
Evaluating formula (3.34) at the position of any field wire we find that

V
(

x0 +
s1

2
+ ks1,z1

)
=

λs

2πε0
ln

[
cosh

2πz1

s1

]
≈ λsz1

ε0s1
− λs

2πε0
ln2. (3.37)

Fig. 3.6 Basic grid
geometry of a TPC: The
sense-wire/field-wire plane
is sandwiched between
two grounded planes – the
zero-grid-wire plane and the
pad plane. The high-voltage
plane is a large distance away
from them
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We can now use (3.35), (3.36) and (3.37) to calculate the potential of each elec-
trode as the sum of the contributions of the charges induced on each grid and on the
high-voltage plane:

Vs =
λsz1

ε0s1

(
1− s1

2πz1
ln

2πrs

s1

)
+

λfz1

ε0s1

(
1− s1

2πz1
ln2

)
+

λzz1

s2ε0
+

σpz1

ε0
,

Vf =
λsz1

ε0s1

(
1− s1

2πz1
ln2

)
+

λfz1

ε0s1

(
1− s1

2πz1
ln

2πrf

s1

)
+

λzz1

s2ε0
+

σpz1

ε0
,

(3.38)

Vz =
λsz1

s1ε1
+

λfz1

s1ε0
+

λzz2

ε0s2

(
1− s2

2πz2
ln

2πrz

s2

)
+

σpz2

ε0
,

Vp =
λsz1

s1ε0
+

λfz1

s1ε0
+

λzz2

s2ε0
+

σpzp

ε0
,

where σp is the surface charge density on the high-voltage plane, λs,λf,λz are the
charges per unit length on the wires, and rs,rf,rz are the radii of the wires.

We can define a surface charge density σ , for each grid, as the charge per unit
length, divided by the pitch (λi/si), and (3.38) can be written as

⎛
⎜⎜⎝

Vs

Vf

Vz

Vp

⎞
⎟⎟⎠= A

⎛
⎜⎜⎝

σs

σf

σz

σp

⎞
⎟⎟⎠ , (3.39)

where A is the matrix of the potential coefficients. The matrix A can be inverted to
give the capacitance matrix (this is the solution of the electrostatic problem):

⎛
⎜⎜⎝

σs

σf

σz

σp

⎞
⎟⎟⎠= A−1

⎛
⎜⎜⎝

Vs

Vf

Vz

Vp

⎞
⎟⎟⎠ . (3.40)

Once the capacitance matrix A−1 is known we can calculate the charges in-
duced on each electrode for any configuration of the potentials. The electric field is
given by the superposition of the drift field with the fields of all the grids, given by
(3.38).

In normal operating conditions the electric field in the amplification region is
much higher than the drift field. In this case λs/s1 � |σp| and the charge induced on
the high-voltage plane can be approximated by

σp = ε0
Vp −Vz

zp − z2
.

Then the matrix A of (3.39) can be reduced to a 3×3 matrix, neglecting the last row
and the last column,
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Table 3.2 Matrix of the potential coefficients (m2/farad) referring to the grids s, f and z in the
standard case

A = 1.13×108

⎛
⎜⎜⎝

6.64 3.56 4.00

3.56 5.62 4.00

4.00 4.00 8.28

⎞
⎟⎟⎠

A =
1
ε0

⎛
⎜⎜⎜⎜⎜⎝

z1 −
s1

2π
ln

2πrs

s1
z1 −

s1

2π
ln2 z1

z1 −
s1

2π
ln2 z1 −

s1

2π
ln

2πrf

s1
z1

z1 z1 z2 −
s2

2π
ln

2πrz

s2

⎞
⎟⎟⎟⎟⎟⎠

. (3.41)

Tables 3.2 and 3.3 give the coefficients of the matrix A of (3.41) and of its inverse
in a standard case:

z1 = 4mm, z2 = 8mm, s1 = 4mm, s2 = 1mm,

rs = 0.01mm, rf = rz = 0.05mm.

Using (3.38) we can now compute the potential of the high-voltage plane when
it is uncharged (σp = 0):

Vp = V (∞) = σs
z1

ε0
+σf

z1

ε0
+σz

z2

ε0
. (3.42)

The electric field in the drift region is zero.
In order to produce a drift field E we have to set the high-voltage plane at a

potential
Vp = −E(zp − z2)+V (∞). (3.43)

(E is defined positive and is the modulus of the drift field.)

3.2.3 Matching the Potential of the Zero Grid and of the Electrodes
of the Field Cage

When we set the potential of the high-voltage plane Vp to the value defined by (3.43),
the potential in the drift region (z− z2 � s2/2π) is given by

Table 3.3 Capacitance Matrix (farad/m2) referring to the grids s, f and z in the standard case

A−1 = 8.85×10−9

⎛
⎜⎜⎝

0.25 −0.11 −0.07

−0.11 0.32 −0.10

0.07 −0.10 0.21

⎞
⎟⎟⎠
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V (z) = −E(z− z2)+V (∞). (3.44)

Using equations (3.41) and (3.42) one can show that

Vz = V (∞)− s2

2πε0
σz ln

πrz

s2
,

and (3.44) can be written as

V (z) = −E(z− z2)+Vz +
s2

2πε0
σz ln

2πrz

s2
. (3.45)

Figure 3.7 shows V (z)−Vz as function of z− z2 in the geometry discussed in
the previous section with Vs = 1300V,Vg = Vz = 0 and with a superimposed drift
field of 100 V/cm. We notice that in this configuration the equipotential surface of
potential Vz is shifted into the drift region by about 2 mm. This effect has to be taken
into account when the potential of the electrodes of the field cage has to be matched
with the potential of the zero grid and when one has to set the potential of the gating
grid (see Sect. 3.3.2).

After the adjustment of all the potentials on the grids and the high-voltage plane
the field configuration is established. We show in Fig. 3.8 the field lines for the typ-
ical case of a TPC corresponding to Fig. 3.6 with z1 = 4mm, z2 = 8mm, s1 =
4mm, s2 = 1mm, rs = 0.01mm, rf = rz = 0.05mm, Vs = 1300V, Vf = Vz =
0, Ep = 100V/cm. One observes that the drift region is filled with a very uniform

Fig. 3.7 Potential in the
region of the zero grid as a
function of z in presence of
the drift field; example as
discussed in the text
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Fig. 3.8 Field lines for the typical case of a TPC with electrodes as in Fig. 3.6
(z1 = 4mm, z2 = 8mm, s1 = 4mm, s2 = 1mm, rs = 0.01mm, rf = rz = 0.05mm, Vs =
1300V, Vf = Vz = 0, Ep = 100V/cm)

field, but also in the amplification region we find homogeneous domains as expected
from (3.35). The electric field lines reach the sense wires from the drift region along
narrow paths.

3.3 An Ion Gate in the Drift Space

It is possible to control the passage of the electrons from the drift region into the
amplification region with a gate, which is an additional grid (‘gating grid’), located
inside the drift volume in front of the zero grid and close to it. This is important
when the drift chamber has to run under conditions of heavy background.
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In this section we deal with the principal (electrostatic) function of the ion gate
and how it is integrated into the system of all the other electrodes. Chapter 9 is
devoted to a discussion of the behaviour of ion gates and their transparency under
various operating conditions, including alternating wire potentials, and magnetic
fields.

The potential of the wires of the gating grid can be regulated to make the grid
opaque or transparent to the drifting electrons. In this section we neglect the effect
of the magnetic field and assume that the electrons follow the electric field lines.

In the approximation that the electric field in the amplification region is much
higher than the drift field, the variation of the potentials of the gating grid will not
change appreciably the charge distribution on the electrodes in the amplification re-
gion, and we can schematize the gating grid as a grid of wires placed in between two
infinite plane conductors: the high-voltage plane and the zero grid. The geometry is
sketched in Fig. 3.9.

3.3.1 Calculation of Transparency

If the electrons follow the electric field lines we can compute the transparency T ,
i.e. the fraction of field lines that cross the gating grid, from the surface charge on
the high-voltage plane and on the gating grid:

T = 1−
σ+

g

|σp|
, (3.46)

where σp is the surface charge density on the high-voltage plane (negative) and σ+
g

is the surface charge density of positive charges on the gating grid.
If we approximate the wires of the grid by lines of charge λ per unit length, the

surface charge density on the grid is simply λ/s, and the condition of full trans-
parency is

λ ≤ 0.

This approximation is no longer correct when the absolute value of λ is so small
that we have to consider the variation of charge density over the surface of the
wire. A wire ‘floating’ in an external electric field E is polarized by the field, which

Fig. 3.9 Scheme for the
inclusion of the gating grid
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Fig. 3.10 Electric field lines near an uncharged wire floating in a homogenous field

produces a surface charge density σD on the wire. It depends on the azimuth (see
Fig. 3.10):

σD = 2Eε0 cosθ , (3.47)

where θ is the angle between E and the radius vector from the centre to the surface
of the wire [PUR 63].

In the general case the wire has, in addition to this polarization charge, a linear
charge λ. The total surface charge density on the wire is

σw =
λ

2πr
+2Eε0 cosθ , (3.48)

r being the radius of the wire. An illustration is Fig. 3.11. When

|λ|
4πε0

� Er

Fig. 3.11 Dependence on
azimuth of the surface charge
density σw located on the
gating grid wire
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the polarization effect can be neglected. This is the case of the zero-grid, sense and
field wires, as discussed in the previous section.

There may be both positive and negative charges on the wires of the gating grid.
In order to calculate T we must now count the positive charges only. This can be
done using (3.48):

λ+ = 0 when
λ

2πr
< −2Eε0,

λ+ = λ when
λ

2πr
> 2Eε0,

λ+ =
λθ0

π
+4Eε0r sinθ0 (3.49)

when −2Eε0 <
λ

2πr
< 2Eε0,

θ0 = arccos
−λ

4πε0Er

and the surface charge density of positive charge on the gating grid is

σ+
g =

λ+

s3
. (3.50)

Using (3.46) and (3.50) we obtain the condition for full transparency in the gen-
eral case:

λg

2πrg
≤−2Eε0 or

σg

2πrg
s3 ≤−2Eε0. (3.51)

In the limiting condition of full transparency, the electric field between the gating
grid and the zero-grid increases by a factor

1+4π
rg

s3

with respect to the drift field.
Using (3.50) and (3.50) we can calculate the transparency in the special case of

σg = 0:

T = 1− 4rg

s3
.

The opacity of the gating grid in this configuration is twice the geometrical opac-
ity. To illustrate the situation of limiting transparency the field lines above and below
the fully open gate are displayed in Fig. 3.12a,b.

The drift field lines for our standard case are shown in Fig. 3.13a,b. We observe
that the drifting electrons arrive on a sense wire on one of four roads through the
zero grid – a consequence of the ratio of s1/s3 = 4.

In order to compute the transparency as a function of the gating-grid potential we
have to calculate the capacity matrix. Following the scheme of Sect. 3.2 we obtain
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Fig. 3.12a,b Field lines in the limiting case of full transparency. (a) Neighbourhood above and
below the gate (the electrons drift from above), (b) Enlargement around the region around
one wire

Fig. 3.13a,b Drift field lines in a standard case
(z1 = 4mm, z2 = 8mm, z3 = 12mm, s1 = 4mm, s2 = 1mm, s3 = 2mm). The field lines
between the sense wires and the other electrodes have been omitted for clariy. Squares: gating
grid; black circles: zero-grid; open circles: sense wires; crosses: field wires, (a) gating grid open
(maximal transparency), (b) gating grid closed
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(
Vp −Vz

Vg −Vz

)
=

1
ε0

⎛
⎝zp − z2 z3 − z2

z3 − z2 (z3 − z2)−
s3

2π
ln

2πrg

s3

⎞
⎠
(

σp

σg

)
(3.52)

and

(
σp

σg

)
= K

⎛
⎝z3 − z2 −

s3

2π
ln

2πrg

s3
−(z3 − z2)

−(z3 − z2) zp − z2

⎞
⎠
(

Vp −Vz

Vg −Vz

)
, (3.53)

where
K =

ε0

(zp − z2)
(

z3 − z2 −
s3

2π
ln

2πrg

s3

)
− (z3 − z2)2

and Vg is the potential of the gating grid. In the following we neglect the second
term in the denominator of the factor K, since zp− z2 � z3− z2 in the standard case.

Using (3.51) and (3.53) we can calculate the minimum value of Vg needed for the
full transparency of the gating grid:

Vg −Vz ≤
4πrg

s3

Vp −Vz

zp − z2

(
z3 − z2 −

s3

2π
ln

2πrg

s3

)
+

z3 − z2

zp − z2
(Vp −Vz). (3.54)

The second term of (3.54) is the potential difference that makes σg = 0. The first
term is the additional difference needed to eliminate the positive charges from the
gating grid. In a standard configuration the two terms are comparable.

In Fig. 3.14 we compare the transparency calculated according to (3.46–3.53)
for our standard case with measurements performed on a model of the ALEPH TPC
[AME 85-1]. There is good agreement between theory and experiment.

Fig. 3.14 Electron
transparency of a grid with
pitch 2 mm, as a function of
the common potential Vg
applied to the wires. The
electrode configuration
corresponds to Fig. 3.6. The
points represent
measurements by
[AME 85-1]. The line is a
function calculated using
(3.46–3.54)
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3.3.2 Setting of the Gating Grid Potential with Respect
to the Zero-Grid Potential

In Sect. 3.4 it was shown that because of the high field in the amplification region
the average potential at the position of the zero-grid does not coincide with Vz. The
potential in the drift region, where the gating grid has to be placed, is given by (3.45).

This formula can be extrapolated at z = z2:

V (z2) = Vz +
s2

2πε0
σz ln

2πrz

s2
, (3.55)

giving the effective potential of the zero-grid seen from the region where the gating
grid has to be placed.

In Sect. 3.3.1 we calculated the condition of full transparency, approximating the
zero-grid as a solid plane at a potential Vz and referring to it the potential of the
gating grid. In the real case Vg has to be referred to the effective potential V (z2)
given by (3.55).

From what has been shown so far one can deduce that by making Vg sufficiently
positive all drift field lines terminate on the gating grid and the transparency T is 0.
Figure 3.13a,bb shows how the drift field lines terminate on the gating grid.

3.4 Field Cages

The electric field in the drift region has to be as uniform as possible and ideally
similar to that of an infinitely large parallel-plate capacitor. The ideal boundary con-
dition on the field cage is then a linear potential varying from the potential of the
high-voltage membrane to the effective potential of the zero-grid.

This boundary condition can be constructed, in principle, by covering the field
cage with a high-resistivity uniform material. A very good approximation can be
obtained covering the inner surface of the field cage with a regular set of conducting
strips perpendicular to the electric field, with a constant potential difference ΔV
between two adjacent strips:

ΔV = EΔ ,

where Δ is the pitch of the electrode system.
The exact form of the electric field produced by this system of electrodes can

be calculated with conformal mapping taking advantage of the symmetry of the
boundary conditions [DUR 64]. Figure 3.15 shows the electric field lines and the
equipotentials near the strips in a particular case when the distance between two
strips is 1/10 of the strip width. The electric field very near to the strips is not uni-
form and there are also field lines that go from one strip to the adjacent one. The
transverse component essentially decays as exp(−2πt/Δ) where t is the distance
from the field cage (see Sect. 3.2), and when t = Δ the ratio between the transverse
and the main component of the electric field is about 10−3. At larger distances it
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Fig. 3.15 Electric field configuration near the strips of a field cage. Equipotential lines (broken)
and electric field lines (full) are shown. D: drift space; Δ : electrode pitch; t: coordinate in the drift
space

becomes completely negligible, showing that this geometry of the electrodes is in-
deed a good approximation of the ideal case. However, the insulators present some
problems.

3.4.1 The Difficulty of Free Dielectric Surfaces

The Dirichlet boundary conditions of the electrostatic problem to be solved in some
volume require the specification of a potential at every point of a closed boundary
surface. When conducting strips are involved that are at increasing potentials, insu-
lators between them are unavoidable, and the potential on these cannot be specified.
If the amount of free charge deposited on these surfaces were known everywhere,
one would have mixed boundary conditions, partly Dirichlet, partly Neumann, and a
solution could be found. In high-voltage field cages there is always some gas ioniza-
tion, and the amount of free charges ready to deposit on some insulator is infinitely
large. How can this uncertainty in the definition of the drift field be limited? There
are several solutions to this difficulty:

Controlled (small, surface or volume) conductivity of the insulator: For every
rate of deposit of ions there is some value of conductivity allowing the transport
of these ions sufficiently fast to the next electrode, so that their disturbing effect is
limited.

Retracted insulator surfaces: If the electrodes have the form indicated in
Fig. 3.16a,ba or b, any field E that may develop at the bottom of the ditch be-
tween conductors owing to charge deposit will be damped by a factor of the order of
exp(−πd/s) at the edge of the drift space. (For details of this electrostatic problem,
see e.g. [JAC 75, p. 72.]) A maximum field E is given by the breakdown strength of
the particular gas.
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Fig. 3.16a,b Field-cage
electrode configuration with
retracted insulator surfaces.
I: insulator, C: conductor, D:
drift space, (a) small gap, (b)
large gap

Thin insulator with shielding electrodes covering the gap from behind: Apart
from the system of main electrodes, there is another set separated by a thin layer of
insulator, and staggered by a half-step according to Fig. 3.17. The purpose of these
shielding electrodes at intermediate potentials is to regularize the field in the drift
region, but also to produce virtual mirror charges of any free charges that may have
deposited in the gap, thus reducing their effect in the drift space.

If we assume that by one of the measures described above the adverse effects
of any charge deposit are sufficiently reduced, we may imagine a smooth (linear)
transition of potential between neighbouring electrodes, and the exact form of the
electric field produced by the system of electrodes at increasing potentials can be
calculated as discussed at the beginning of this section.

Electrostatic distortions were studied by Iwasaki et al. [IWA 83].

Fig. 3.17 Field-cage electrode configuration with secondary electrode strips (SE) covering the
gaps between the main electrode strips (ME) behind a thin insulator foil (It). D: drift space; I:
insulator
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3.4.2 Irregularities in the Field Cage

In this subsection we present some studies that have arisen in practice when estimat-
ing the tolerances that had to be respected in the ALEPH TPC for the conductivity
of the insulator, for the match of the gating grid and for the resistors in the potential
divider. We quote the three relevant electrostatic solutions as examples of similar
problems in chambers with different geometry.

If all the electrodes of the field cage are set at the correct potential, the drift field
is uniform and parallel to the axis of the TPC in the whole drift volume. A wrong
setting of the potentials produces a transverse component of the electric field and
causes a distortion of the trajectories of the drifting electrons. In order to study this
effect in detail the drift volume of the TPC is schematized as a cylinder of length L
and radius A (see Fig. 3.18). The potentials defined on the surface of the cylinder
define the boundary conditions of the electrostatic problem and the drift field inside
the volume. If the potentials on the boundary do not vary with φ , the electric field
can only have a transverse component in the radial direction.

In the absence of magnetic field the electrons drift along the electric field line; an
electron placed at the position (r0, z0) reaches the end of the drift volume at a radial
position

r = r0 +
0∫

z0

Er(r,z)
Ez

dz.

The radial component of the field can be calculated solving the Poisson equation in
cylindrical coordinates [JAC 75, p. 108]. Since the ideal setting of the potential does
not produce radial electric field components it is convenient to use as a boundary
condition the difference between the actual and the ideal potentials. This is possible
because the Poisson equation is linear in the potential. Although we discuss the ex-
amples in a cylindrical geometry, they apply to other geometries in a similar way.

Non-Linearity in the Resistor Chain. The potential of the strips of the field cage are
defined connecting them to a linear resistor chain. The strips are insulated from the
external ground by an insulator that has a finite resistivity and that is in parallel with
the resistors of the chain. It can be shown that the resistance to ground of a strip
placed at a position z is

Fig. 3.18 Scheme of a
cylindrical TPC drift region
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R(z) = Rtot

[
z
L
− 1

6

( z
L

)3 Rtot

Rman

]
,

where Rtot is the resistance of the whole resistor chain and Rman is the resistance
of the insulator mantel across the wall of the insulator. This non-linear resistance
produces a potential distribution that differs from the linear one by

ΔV (z) =

[
Z
L
−
(

Z
L

)3
]

Vp
Rtot

Rman

Rtot

Rman
	 1,

where Vp is the potential of the central electrode. This error potential can be approx-
imated by

ΔV (z) ≈ 0.38
6

Vp
Rtot

Rman
sin
(

π
z
L

)
.

Following Jackson’s formalism [JAC 75] it can be shown that the radial displace-
ment of an electron drifting from the point (r, z) is

Δr ≈ 0.38
6

Rtot

Rman
L

iJ1

(
iπr
L

)

J0

(
iπA
L

) cos
(πz

L
−1
)

,

where J0 are the Bessel functions of order 0 and 1. Figure 3.19 shows a plot of Δr
as function of z for different values of r assuming L = A = 2m and Rtot/Rman = 10−3.

Mismatch of the Gating Grid. The potentials of the field cage have to match that of
the last wire plane as discussed in Sect. 3.2. An error ΔV in the potential of the last
electrode of the field cage produces a radial displacement

Δr = 2L
ΔV
Vp

∑
n

J1(xnr/A)
J1(xn)xn

(
cosh[π(L− z)(xn/A)− cosh(Lxn/A)

sinh(Lxn/A)

)
,

Fig. 3.19 Radial displacement r of the arrival point of an electron, caused by a resistance Rman of
the insulator mantle a thousand times the value of the resistor chain, Δr is shown as a function of
the starting point z, R in the example A = L = 2m
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Fig. 3.20 Radial displacement Δr of the arrival point of an electron, caused by a voltage mismatch
ΔV between the last electrode of the field cage and the last wire plane, amounting to ΔV/Vp = 10−4

of the drift voltage. Δr is shown as a function of the starting point (z, R) in the example A = L = 2m

where xn = knA and J0(kn) = 0.
Figure 3.20 shows a plot of Δr as a function of z for different values of r assuming

L = A = 2m and ΔV/Vp = 10−4.
Resistor Chain Containing One Wrong Resistor. If in the voltage-divider chain one
of the resistors (placed at z = z̄) has a wrong value, it induces an error in the potential
of the field cage:

ΔV (z) =
−ΔV

L
z, z < z̄,

ΔV
(

1− z
L

)
, z > z̄,

ΔV = Vp
ΔR
Rtot

,

where ΔR is the error in the resistance of that particular resistor and Rtot is the total
resistance of the chain. The induced radial displacement is

Fig. 3.21 Radial displacement Δr of the arrival point of an electron, caused by one wrong resistor
value R∗ = R+ΔR, where ΔR/Rtot = 1/400 of the value of the total resistor chain. Δr is shown as
a function of the starting point (z, R) in the example A = L = 2m
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Δr = L
ΔR
rtot

[
1
π ∑ iJ1(inπr)/L

J0(inπA)/L
1
n

cos

(
nπ z̄
L

)(
cos

nπz
L

−1
)]

.

Figure 3.21 shows a plot of Δr as a function of z for different values of r for a
particular case L = A = 2m, z = 1.4m, ΔR/Rtot = 1/400.

We have computed in this subsection three specific cases of field-cage prob-
lems in the spirit of showing the order of magnitude of the relevant electron
displacements. The design of the drift chamber must be such that the displace-
ment Δr induced by such irregularities remains small in comparison to the required
accuracy.
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