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What is photonics?
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What is photonics?
PhotonicsPhotonics is the technology of generating / controlling / 
detecting light and other forms of radiant energy whose 
quantum unit is the photon. 

The uniqueness of photonic devices is that both wave and 
quantum characteristics of light have to be considered for the 
function and applications of these devices.

The photon nature (quantum mechanics) of light is important 
in the operation of photonic devices for generation, 
amplification, frequency conversion, or detection of light, 
while the wave nature (Maxwell’s equations) is important in 
the operation of all photonic devices but is particularly so for 
devices used in transmission, modulation, or switching of 
light.
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What is photonics?

The spectral range of concern in photonics is usually in a 
wavelength range between ~10 μm (mid-IR) and ~100 nm 
(deep-UV).
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λυ =  c  =  3 × 108 m/s

e.g.  λ = 0.5 μm = 500 nm = 0.5 × 10-6 m, gives υ = 6 × 1014 Hz = 600 × 1012

Hz = 600 THz

In free space (i.e. vacuum or air)

Optical carrier frequency ~ 100 THz, which is 5 orders of magnitude larger 
than microwave carrier frequency of GHz.  Potentially ~THz information 
can be modulated on a single optical carrier!

What is photonics?
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Photonic technologies at a glance
Communications --- fiber optic communications, optical interconnect
Computing --- chip-to-chip optical interconnect, on-chip optical 
interconnect communications 
Energy (“Green”) --- solid-state lighting, solar
Human-Machine interface --- CCD/CMOS camera, displays, pico-
projectors  
Medicine --- laser surgery, optical coherence tomography (OCT) 
Bio --- optical tweezers, laser-based diagnostics of cells/tissues
Nano --- integrated photonics, sub-diffraction-limited optical microscopy, 
optical nanolithography 
Defense --- laser weapons, bio-aerosols monitoring
Sensing --- fiber sensors, bio-sensing, LIDAR
Data Storage --- CD/DVD/Blu-ray, holography  
Manufacturing --- laser-based drilling and cutting 
Fundamental Science --- femto-/atto-second science
Space Science --- adaptive optics
Entertainment --- light shows
And many more!!
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Beyond the middle ages:
–Newton (1642-1726) and Huygens (1629-1695) fight over nature of 
light 
18th–19th centuries
–Fresnel, Young experimentally observe diffraction, defeat Newton’s 
particle theory
–Maxwell formulates electro-magnetic equations, Hertz verifies antenna 
emission principle (1899)
20th-21st century
–Quantum theory explains wave-particle duality
–Invention of holography (1948)
–Invention of laser principle (1954)
–1st demonstration of laser (1960)
–Proposal of fiber optic communications (1966)
–1st demonstration of low-loss optical fibers (1970)
–Optical applications proliferate into the 21st century:
nonlinear optics, fiber optics, laser-based spectroscopy, computing, 
communications, fundamental science, medicine, biology, 
manufacturing, entertainment, … (Let all flowers blossom!)

A Brief Historical Note
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The nature of light: Models

Ray opticsRay optics ⇒⇒ Limit of wave optics when wavelength is very Limit of wave optics when wavelength is very 
short compared with simple optical components short compared with simple optical components 
and systems.and systems.

Wave opticsWave optics ⇒⇒ Scalar approximation of EM optics.Scalar approximation of EM optics.
EM OpticsEM Optics ⇒⇒ Most complete treatment of light within Most complete treatment of light within 

the confines of classical opticsthe confines of classical optics
Quantum OpticsQuantum Optics   ⇒⇒ Explanation of virtually all optical phenomenaExplanation of virtually all optical phenomena

Quantum Optics Quantum Optics 

Electromagnetic Optics Electromagnetic Optics 

Wave optics Wave optics 

Ray optics Ray optics 
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The nature of light

Ray optics: propagation of light rayslight rays through simple optical 
components and systems.
Wave optics: propagations of light waveslight waves through optical 
components and systems.
Electromagnetic optics: description of light waves in terms of 
electric and magnetic fieldselectric and magnetic fields. 
Quantum optics: emission/absorption of photonsphotons, which are 
characteristically quantum mechanical in nature and cannot be 
explained by classical optics (e.g. lasers, light-emitting diodes, 
photodiode detectors, solar cells)

Quantum Quantum 
Optics Optics 

Electromagnetic Electromagnetic 
Optics Optics 

Wave Wave 
optics optics Ray Ray 

optics optics 
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Remark on Ray Optics or Geometrical Optics

In many applications of interest the wavelength λ of light is 
short compared with the relevant length scales of the optical 
components or system (e.g. mirrors, prisms, lenses).
This branch of optics is referred to as Ray optics or 
Geometrical Optics, where energy of light is propagated along 
rays.  
The rays are perpendicular to the wavefronts. 

λ
Wavelength λ << size of the optical component

λray

wavefront
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Light as electromagnetic waves
The electromagnetic wave equation derived from Maxwell’s 
equations show that light and all other electromagnetic waves 
travel with the same velocity in free space (c ≈ 3 × 108 m/s).
Two variables in an electromagnetic wave – the electric and 
magnetic fields E and B, both are vector quantities, both 
transverse to the direction of propagation, and mutually 
perpendicular, and mutually coupled
In free space their magnitudes are related by

E = cB

c is the velocity of light in free space 

B

E

k
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Optical fields and 
Maxwell’s equations
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Electromagnetic field
• The electromagnetic field is generally characterized by the following 
four field quantities:

Electric field E(r, t) V m-1

Magnetic induction B(r, t) T or Wb m-2

Electric displacement D(r, t) C m-2

Magnetic field H(r, t) A m-1

(The units are in SI units)
(coulomb C = A•s)
(weber Wb = V•s) 

• E and B are fundamental microscopic fields, while D and H are 
macroscopic fields that include the response of the medium.  
They are functions of both position and time.  e.g. E(r, t) = E(r) e-iωt, 
where r = xex + yey + zez
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Maxwell’s Equations in free space
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The permittivity and permeability of free space
The constant proportionality in Gauss’ law for electric fields is the 
permittivity of free space (or vacuum permittivity).

ε0 ≈ 8.85 × 10-12 ≈ 1/36π × 10-9 C/Vm (F/m)

Gauss’ law as written in this form is general, and applies to electric fields 
within dielectrics and those in free space, provided that you account for 
all of the enclosed charge including charges that are bound to the atoms of 
the material.

The constant proportionality in the Ampere-Maxwell law is that of the 
permeability of free space (or vacuum permeability).

μ0 = 4π × 10-7 Vs/Am (H/m)

The presence of this quantity does not mean that the Ampere-Maxwell 
law applies only to sources and fields in a vacuum.  This form of the 
Ampere-Maxwell law is general, so long as you consider all currents 
(bound and free). 
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Conservation of charge
Consider the Ampere-Maxwell law again:

Apply the vector identity:  

∇• both sides of the Ampere-Maxwell law, interchange the 
time-space derivatives
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Conservation of charge
Law of conservation of electric charge is a direct 
consequence of Maxwell’s equations.
What is the physical meaning of the conservation law?

This implies that electric charge is conserved – it can neither 
be created nor be destroyed.  Therefore, it is also known as
the continuity equation.

t
J

∂
∂

−=•∇
ρ

Flow of electric current out 
of a differential volume

Rate of decrease of electric charge 
in the volume
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In a source-free region, Maxwell’s equations are

Electromagnetic fields in a source-free region

∇ × E = -∂B/∂t

∇ × B = μ0ε0∂E/∂t

∇ ● E = 0

∇ ● B = 0

These are equations normally used for optical fields as optical 
fields are usually not generated directly by free currents 
or free charges. 
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The wave equation
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The wave equation in free space
Now we are ready to get the wave equation from Maxwell’s 
equations.  First, take the curl of both sides of the differential 
form of Faraday’s law:

Next we need a vector operator identity which says that the 
curl of the curl of any vector field equals the gradient of the 
divergence of the field minus the Laplacian of the field:

where
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The wave equation

Thus,

You know the curl of the magnetic field from the differential 
form of the Ampere-Maxwell law:

So
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The wave equation
Using Gauss’ law for electric fields

Gives

Putting terms containing the electric field on the left side of 
the equation gives

In a charge- and current-free region, ρ = 0 and J = 0,
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Characteristics of the wave equation 
A similar analysis beginning with the curl of both sides of the 
Ampere-Maxwell law leads to

The wave equation is a linear, second-order, homogeneous
partial differential equation that describes a field that travels 
from one location to another --- a propagating wave. 

Linear: The time and space derivatives of the wave function (E or B) 
appear to the first power and without cross terms
Second-order:  the highest derivative present is the second derivative
Homogeneous: all terms involve the wave function or its derivatives, 
no forcing or source terms are present
Partial: the wave function is a function of multiple variables (space
and time in this case)
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Phase velocity
This form of the wave equation does not just tell you that 
you have a wave --- it provides the velocity of propagation 
as well !
The general form of the wave equation is (same for 
mechanical waves, sound waves, etc.)

For the electric and magnetic fields

2
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(known as phase velocity)
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Phase velocity in free space

Recall ε0 ≈ 8.854 × 10-12 C/Vm ≈ (1/36π) × 10-9 C/Vm

And μo = 4π × 10-7 Vs/Am 

(μ0 ε0)-1/2 = (4π × 10-7 × (1/36π) × 10-9)-1/2 (s2m-2)-1/2 = 3 × 108 ms-1

*It was the agreement of the calculated velocity of propagation with the 
measured speed of light that caused Maxwell to write, 

“light is an electromagnetic disturbance propagated through the field 
according to electromagnetic laws.”
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Plane harmonic waves, 
phase velocity
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Waves in one dimension

∂2ψ/∂z2 = (1/v2) ∂2ψ/∂t2 (1-D wave equation)

∂2ψ/∂t2 = -(2π/τ)2 A cos [2π (z/λ – t/τ)] 

∂2ψ/∂z2 = -(2π/λ)2 A cos [2π (z/λ – t/τ)] 

⇒ v2(2π/λ)2 = (2π/τ)2

⇒ v = λ/τ = λυ

assume ψ = A cos [2π (z/λ – t/τ)]
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z

A

λ t = t0 t = t0+τ/4

λ/4

Plane harmonic waves

ψ = A cos [2π (z/λ – t/τ)]

• At any point a harmonic wave varies sinusoidally with time t.
• At any time a harmonic wave varies sinusoidally with distance z.
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Key parameters of harmonic waves
The frequency of oscillation is υ = 1/τ.
It is often convenient to use an angular frequency ω = 2πυ.

A propagation constant or wave number

k = 2π/λ

In terms of k and ω: ψ = A cos (kz – ωt)

The vector quantity k = (2π/λ)n, where n is the unit vector in 
the direction of k, is also termed the wavevector.

Here ψ = A cos (kz – ωt) describes the plane wave is moving 
in the direction +z, so k is pointing in the +z direction.  
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Plane harmonic waves 
ψ = A cos (kz – ωt)

x

k  = ez k = ez 2π/λ

wavefronts (⊥ k)

λ(plane wave
in free space)

(wavevector)

z

Wavefronts: surfaces of constant phase 
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Phase velocity
• For a plane optical wave traveling in the z direction, the electric field 
has a phase varies with z and t

φ = kz - ωt

• For a point of constant phase on the space- and time-varying field, 
φ = constant and thus kdz - ωdt = 0.  If we track this point of constant
phase, we find that it is moving with a velocity of 

vp = dz/dt = ω/k phase velocity

• In free space, the phase velocity vp = c = ω/k = υλ

the propagation constant k = ω/c
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Complex exponentials
Another powerful way of writing harmonic plane wave 
solutions of the wave equation is in terms of complex 
exponentials

ψ = A exp i(kz – ωt)

The complex exponentials form can vastly simplify the math 
of combining waves of different amplitudes and phases
(phasor analysis).

The Euler identity:

exp i(kz – ωt) = cos (kz – ωt) + i sin (kz – ωt)
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Consider a plane wave propagating in free space in the z direction,     

E = Eo exp i(kz - ωt)

∂2E/∂z2 = μ0ε0 ∂2E/∂t21-D wave equation

k2 E = μ0ε0 ω2 E

k2/ω2 = μ0ε0

k2/ω2 = (2π/λ)2 / (2πυ)2 = 1/(λυ)2 = 1/c2 = μ0ε0

Plane wave as the basic solution
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Consider the complex exponential expression for a plane 
harmonic wave in three dimensions

Taking the time derivative

Taking the partial derivative with respect to one of the space 
variables, say x
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Hence on application of the del operator

It follows that

Thus we have the following operator relations

which are valid for plane harmonic waves
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Maxwell’s equations for plane harmonic waves

Using the relations 

Maxwell’s equations in free space become  

Based on Maxwell’s equations, we can show that E and B
are both perpendicular to the direction of propagation k.  
Such a wave is called a transverse wave.  Furthermore, E
and B are mutually perpendicular – E, B, and k form a 
mutually orthogonal triad. 
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We can also write

where

Bk ω=Ε×

Ε−=× 00εωμBk

Ε×= k
c

B ˆ1
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kkk /ˆ =

Maxwell’s equations for plane harmonic waves
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Polarization of light
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Polarization
At a fixed point in space, the E vector of a time-harmonic 
electromagnetic wave varies sinusoidally with time.
The polarization of the wave is described by the locus of the 
tip of the E vector as time progresses.
If the locus is a straight line the wave is said to be linearly 
polarized.
It is circularly polarized if the locus is a circle and elliptically 
polarized if the locus is an ellipse.
An electromagnetic wave, e.g. sunlight or lamplight, may also 
be randomly polarized.  In such cases, the wave is 
unpolarized.  An unpolarized wave can be regarded as a 
wave containing many linearly polarized waves with their 
polarization randomly oriented in space.
A wave can also be partially polarized, such as skylight or 
light reflected from the surface of an object – i.e. glare.  A 
partially polarized wave can be thought of as a mixture of 
polarized waves and unpolarized waves.    
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Polarization
The plane harmonic wave discussed so far is linearly 
polarized.

E(z, t) = x E0 cos(kz - ωt) 

Tracing the tip of the vector E at any point z shows that the 
tip always stays on the x axis with maximum displacement 
E0.  =>  the plane wave is linearly polarized. 
Now consider a plane wave with the following electric-field 
vector:

E = x a cos(ωt - kz + φa) + y b cos(ωt - kz + φb) 

The E vector has x and y components.  a and b are real 
constants. 
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Linear polarization
Condition for linear polarization

φ = φb – φa = 0 or π

When this relation holds between the phases Ex and Ey, 

Ey = ±(b/a)Ex

This result is a straight line with slope ±(b/a).  The +ve sign 
applies to the case φ = 0, and the –ve sign to φ = π.
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Circular polarization
Conditions for circular polarization

φ = φb – φa = ±π/2 and A = b/a = 1

Consider the case φ = π/2 and A = 1.  

Ex = a cos (ωt –kz + φa)
Ey = -a sin (ωt – kz + φa)

Elimination of t yields: Ex
2 + Ey

2 = a2

This result is a circle in the Ex-Ey plane, and the circle radius 
is equal to a.  The tip of E moves clockwise along the circle 
as time progresses.  If we use left-hand fingers to follow the 
tip’s motion, the thumb will point in the direction of wave 
propagation.  We call this wave left-hand circularly 
polarized.  The wave is right-hand circularly polarized when 
φ = -π/2 and A = 1.



43

E

H

E

H

kk

RHCLHC

Left or right circularly polarized

Consider an observer located at some arbitrary point toward 
which the wave is approaching.  

For convenience, we choose this point at z = π/k at t = 0.

Ex (z, t) = -ex E0, Ey (z, t) = 0 E lies along the –x axis.  
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At a later time, say t = π/2ω, the electric field vector has 
rotated through 90o and now lies along the +y axis.  

Thus, as the wave moves toward the observer with increasing 
time, E rotates clockwise at an angular frequency ω.  It makes 
one complete rotation as the wave advances through one 
wavelength.  Such a light wave is left circularly polarized.

If we choose the negative sign for φ, then the electric field 
vector is given by

E = E0 [ex cos(ωt – kz) + ey sin(ωt – kz)]

Now E rotates counterclockwise and the wave is right 
circularly polarized.  

Left or right circularly polarized
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Elliptical polarization
The wave is elliptically polarized if it is neither linearly nor 
circularly polarized.

E.g. φ = -π/2 and A = b/a = 2.

Ex = a cos (ωt –kz + φa)
Ey = 2a sin (ωt – kz + φa)

Eliminating t yields

(Ex/a)2 + (Ey/2a)2 = 1 This result is an ellipse.

For other φ and A values, the wave is generally elliptically 
polarized.
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Elliptical polarization

For general values of φ the wave is elliptically polarized.  

The resultant field vector E will both rotate and change its 
magnitude as a function of the angular frequency ω.  We 
can show that for a general value of φ

(Ex/E0x)2 + (Ey/E0y)2 – 2(Ex/E0x) (Ey/E0y) cosφ = sin2φ

which is the general equation of an ellipse.

This ellipse represents the trajectory of the E vector = 
state of polarization (SOP) 
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Polarization of light wave
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Maxwell’s equations in 
matters
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Maxwell’s Equations in matters

Maxwell’s equations apply to electric and magnetic fields in 
matters and in free space.  
When you are dealing with fields inside matters, remember 
the following:

ALL charge – bound and free should be considered
ALL currents – bound and polarization and free should be 
considered

The bound charge is accounted for in terms of electric
polarization P in the displacement field D.  
The bound current is accounted for in terms of magnetic 
polarization M in the magnetic field strength H.     
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Response of a medium
The response of a medium to an electromagnetic field 
generates the polarization and the magnetization:

Polarization (electric polarization) P(r, t) Cm-2

Magnetization (magnetic polarization) M(r, t) Am-1

They are connected to the field quantities through the 
following constitutive relations:

D(r, t) = ε0E(r, t) + P(r, t)

B(r, t) = μ0H(r, t) + μ0M(r, t)

where ε0 ≈ 1/36π × 10-9 Fm-1 or AsV-1m-1 is the electric 
permittivity of free space and μ0 = 4π × 10-7 Hm-1 or VsA-1m-1

is the magnetic permeability of free space.



51

Response of medium
Polarization and magnetization in a medium are generated by 
the response of the medium to the electric and magnetic 
fields.

Therefore, P(r, t) depends on E(r, t),

M(r, t) depends on B(r, t)

At optical frequencies (1014 Hz), the magnetization vanishes, 
M = 0.
Consequently, for optical fields, the following relation is 
always true:

B(r, t) = μ0H(r, t)
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Response of medium
This is not true at low frequencies.

It is possible to change the properties of a medium through a 
magnetization induced by a DC or low-frequency magnetic 
field, leading to the functioning of magneto-optic devices.

Even for magneto-optic devices, magnetization is induced by 
a DC or low-frequency magnetic field that is separate from 
the optical fields.  

No magnetization is induced by the magnetic components of 
the optical fields.
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Response of medium
Except for magneto-optic devices, most photonic devices are made of 
dielectric materials that have zero magnetization at all frequencies.
The optical properties of such materials are completely determined by the 
relation between P(r, t) and E(r, t).
This relation is generally characterized by an electric susceptibility 
tensor, χ, 

where ε is the electric permittivity tensor of the medium. 
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Response of medium

χ and ε represent the response of a medium to the optical field and thus 
completely characterize the macroscopic electromagnetic properties of 
the medium.

1. Both χ and ε are generally tensors because the vectors P and D are, in 
general, not parallel to vector E due to material anisotropy.  In the case of 
an isotropic medium, both χ and ε can be reduced to scalars.

2. The convolution in time accounts for the fact that the response of a 
medium to excitation of an electric field is generally not instantaneous or 
local in time and will not vanish for some time after the excitation is over.  

Because time is unidirectional, causality exists in physical processes.  An 
earlier excitation can have an effect on the property of a medium at a later 
time, but not a later excitation on the property of the medium at an earlier 
time.  Therefore, the upper limit in the time integral is t, not infinity.   
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Response of medium

The convolution in space accounts for the spatial nonlocality
of the material response.  Excitation of a medium at a location 
r’ can result in a change in the property of the medium at 
another location r.  
E.g.  The property of a semiconductor at one location can be 
changed by electric or optical excitation at another location 
through carrier diffusion.  

Because space is not unidirectional, there is no spatial 
causality, in general, and spatial convolution is integrated 
over the entire space.

The temporal nonlocality of the optical response of a medium 
results in frequency dispersion of its optical property, while 
the spatial nonlocality results in momentum dispersion.
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Dipole moment
Within a dielectric material, positive and negative charges 
may become slightly displaced when an electric field is 
applied.
When a positive charge Q is separated by distance s from an 
equal negative charge –Q, the electric “dipole moment” is 
given by

p = Qs

where s is a vector directed from the negative to the positive 
charge with magnitude equal to the distance between the 
charges. 
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Electric field and dipole moment induced in a dielectric
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Electric polarization
For a dielectric material with N molecules per unit volume, 
the dipole moment per unit volume is 

P = Np

A quantity which is also called the “electric polarization” of 
the material.
If the polarization is uniform, bound charge appears only on 
the surface of the material.
If the polarization varies from point to point within the 
dielectric, there are accumulations of charge within the 
material, with volume charge density given by

where ρb represents the volume density of bound charge 
(charge that is displaced by the electric field but does not 
move freely through the material). 

Pb •−∇=ρ
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Bound charge
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• The polarization is uniform, 
bound charge appears only 
on the surface of the material.

• The polarization is non-
uniform, bound charge appears 
within the material.
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Gauss’ law for electric fields
In the differential form of Gauss’ law, the divergence of the 
electric field is

where ρ is the total charge density.

Within matter, the total charge density consists of both free
and bound charge densities:

ρ = ρf + ρb

0ε
ρ

=•∇ E

free charge 
density

bound charge 
density
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Gauss’ law for electric fields
Thus, Gauss’ law may be written as

Substituting the negative divergence of the polarization for 
the bound charge and multiplying through by the permittivity 
of free space gives  

00 ε
ρρ

ε
ρ bfE

+
==•∇

PE fbf •∇−=+=•∇ ρρρε 0

fPE ρε =•∇+•∇ 0or
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The displacement field
Collecting terms within the divergence operator gives

In this form of Gauss’ law, the term in parentheses is often 
written as a vector called the “displacement,” which is 
defined as

This is a version of the differential form of Gauss’ law that 
depends only on the density of free charge.

fPE ρε =+•∇ )( 0

PED += 0ε

fD ρ=•∇=>
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Electric susceptibility and relative permittivity
The relation between E and P is through the electric 
susceptibility function χ.  

P(r, t) = ε0χ E(r, t)

D = ε0 (1+ χ) E(r, t) = ε0 εr E(r, t) = ε E(r, t)

where the relative permittivity (dielectric constant) εr is 
defined as 1+χ, and the permittivity of the medium ε = εr ε0.

For isotropic medium, χ and εr are scalars so that E // P and 
D // E.  (∇·E = (1/ε) ∇·D = 0 in source-free media)

In general, χ and εr are second-rank tensors (expressed in 3×3 
matrices), in which case the medium they describe is 
anisotropic.  (E not // P, D not // E, in general ∇·E ≠ 0)
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Effect of magnetic materials on magnetic fields

One interesting difference between the effect of dielectrics on 
electric fields and the effect of magnetic materials on 
magnetic fields is that the magnetic field is actually stronger
than the applied field within many magnetic materials.
These materials become magnetized when exposed to an 
external magnetic field, and the induced magnetic field is in 
the same direction as the applied field.

Applied magnetic field
produced by solenoid 
current I 

I I

Magnetic dipole moments
align with applied field 
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Bound current

Just as applied electric fields induce polarization (electric 
dipole moment per unit volume) within dielectrics, applied 
magnetic fields induce “magnetization” (magnetic dipole 
moment per unit volume) within magnetic materials.
Just as bound electric charges act as the source of additional 
electric fields within the material, bound currents may act as 
the source of additional magnetic fields.
The bound current density is given by the curl of the 
magnetization:

where Jb is the bound current density and M represents the 
magnetization of the material.  

MJb ×∇=
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Polarization current
Another contribution to the current density within matters 
comes from the time rate of change of the polarization, as 
any movement of charge constitutes an electric current.
The polarization current density is given by

Thus, the total current density includes not only the free
current density, but the bound and polarization current 
densities: 

t
PJ P ∂

∂
=

Pbf JJJJ ++=

free bound polarization
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The Ampere-Maxwell law
Thus, the Ampere-Maxwell law in differential form

Inserting the expressions for the bound and polarization
current and dividing by the permeability of free space

Gathering curl terms and time-derivative terms gives

)( 00 t
EJJJB Pbf ∂

∂
+++=×∇ εμ

t
E

t
PMJB f ∂

∂
+

∂
∂

+×∇+=×∇ 0
0

1 ε
μ

t
E

t
PJMB

f ∂
∂

+
∂
∂

+=×∇−×∇
)( 0

0

ε
μ



68

The Ampere-Maxwell law
Moving the terms inside the curl and derivative operators 
gives

In this form of the Ampere-Maxwell law, the term

is often called the “magnetic field intensity” or “magnetic 
field strength”
Thus, the differential form of the Ampere-Maxwell law in 
terms of H, D and the free current density is

t
PEJMB

f ∂
+∂

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×∇

)( 0

0

ε
μ

MBH −=
0μ

t
DJH f ∂

∂
+=×∇
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Maxwell’s Equations in a medium

t
DJH free ∂

∂
+=×∇

freeD ρ=•∇

0=•∇ B

t
BE

∂
∂

−=×∇

Gauss’ law for electric fields

Gauss’ law for magnetic fields

Faraday’s law

Ampere-Maxwell law

ρfree (Cm-3): free charge density, Jfree (Am-2): free current density 
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Maxwell’s Equations in a medium free of sources

t
DH

∂
∂

=×∇

0=•∇ D

0=•∇ B

t
BE

∂
∂

−=×∇

Gauss’ law for electric fields

Gauss’ law for magnetic fields

Faraday’s law

Ampere-Maxwell law

• These are the equations normally used for optical fields because optical fields 
are usually not generated directly by free currents or free charges. 
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Wave equation
Now we are ready to get the wave equation.  First, take the 
curl of Faraday’s law and using B = μ0H and ∇×H = ∂D/∂t :

Using D = ε0E + P, 

0)( 2

2

0 =
∂
∂

+×∇×∇
t
DE μ

2

2

02

2

00)(
t
P

t
EE

∂
∂

−=
∂
∂

+×∇×∇ μεμ

(μ0 ε0)-1/2 = (4π × 10-7 × (1/36π) × 10-9)-1/2 (s2m-2)-1/2 = 3 × 108 ms-1

2

2

02

2

2
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t
P

t
E

c
E

∂
∂

−=
∂
∂

+×∇×∇ μ

Speed of light in free space

Polarization in a medium 
drives the evolution of 
an optical field
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Propagation in an isotropic medium free of sources
For an isotropic medium, ε(ω) is reduced to a scalar and

By using the vector identity 

The wave equation

Note that for an anisotropic medium, the above wave 
equation is generally not valid because ε(ω) is a tensor and 
∇•E ≠0

0
)(

1
=•∇=Ε•∇ D

ϖε

2−∇•∇∇=∇××∇

0)( 2

2

0
2 =

∂
Ε∂

−Ε∇
t

ϖεμ
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vp = 1/√(μ0ε) = 1 /√(μ0ε0εr) 

• The velocity of light in a dielectric medium is therefore

vp = c /√εr

n = √εr

where we used the relation μ0ε0 = 1/c2 and c is the speed of light. 

Phase velocity in dielectric media

vp = c / n 

*The refractive index n is rooted in the material relative permittivity.
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Remark on dispersion
The index of refraction is in general frequency or wavelength 
dependent.  This is true for all transparent optical media.

The variation of the index of refraction with frequency is 
called dispersion.  The dispersion of glass is responsible for 
the familiar splitting of light into its component colors by a 
prism.

In order to explain the dispersion it is necessary to take into 
account the actual motion of the electrons in the optical 
medium through which the light is traveling.  We will discuss 
the theory of dispersion in detail in Lecture 2.  
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Optical power and energy
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Optical power and energy
By multiplying E by Ampere-Maxwell law and multiplying 
H by Faraday’s law

Using the vector identity
We can combine the above relations
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Optical power and energy
Recall that power in an electric circuit is given by voltage times current 
and has the unit of W = V A (watts = volts × amperes).
In an electromagnetic field, we find similarly that E•J is the power 
density that has the unit of V A m-3 or W m-3.
Therefore, the total power dissipated by an electromagnetic field in a 
volume V is

∫∫∫∫ ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

•+
∂
∂

•−⎟
⎠
⎞

⎜
⎝
⎛ +

∂
∂

−•×−=•
VVAV

dV
t

MH
t
PEdVHE

t
dAnHEJdVE 0

2020

22
ˆ μμε

dVJE
V
∫ •

Surface integral over the closed surface A 
of volume V, n is the outward-pointing unit 
normal vector of the surface 

(Each term has the unit of power.)
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Optical power and energy
The vector quantity

S = E × H
is called the Poynting vector of the electromagnetic field.  It 
represents the instantaneous magnitude and direction of the 
power flow of the field.

The scalar quantity

has the unit of energy per unit volume and is the energy 
density stored in the propagating field.  It consists of two 
components, thus accounting for energies stored in both 
electric and magnetic fields at any instant of time. 

2020
0 22

HEu με
+=
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Optical power and energy
The quantity

is the power density expended by the electromagnetic field on 
the polarization.  It is the rate of energy transfer from the 
electromagnetic field to the medium by inducing electric 
polarization in the medium.

The quantity    

is the power density expended by the electromagnetic field on 
the magnetization.

t
PEWp ∂

∂
•=

t
MHWm ∂

∂
•= 0μ
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Optical power and energy
Hence the relation

simply states the law of conservation of energy in any arbitrary volume 
element V in the medium: the total energy in the medium equals that in 
the propagating field plus that in the electric and magnetic polarizations.

For an optical field, J = 0 and M = 0,

which states that the total power flowing into volume V through its 
boundary surface A is equal to the rate of increase with time of the energy 
stored in the propagating fields in V plus the power transferred to the 
polarization of the medium in this volume.   
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Energy flow and the Poynting vector
• The time rate of flow of electromagnetic energy per unit area is given 
by the vector S, called the Poynting vector, 

S = E × H

This vector specifies both the direction and the magnitude of the energy
flux.  (watts per square meter)  

• Consider the case of plane harmonic waves in which the fields are 
given by the real expressions (note that E and H are in phase)

)cos(ˆ),( 0 tkzExtzE ω−=

)cos(ˆ),( 0 tkzHytzH ω−=
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• For the instantaneous value (~100 THz) of the Poynting vector: 

• As the average value of the cosine squared is ½, then for the 
average value of the Poynting vector (detector does not detect so fast!)

• As the wavevector k is perpendicular to both E and H, k has the 
same direction as the Poynting vector S.  

)(cosˆ 2
00 tkzHEzHES ω−=×=

002
1ˆ HEzS

time
=

Average Poynting vector
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• An alternative expression for the average Poynting flux is

<S> = I k/k

unit vector in the 
direction of propagation

magnitude of the 
average Poynting flux

• I is called the irradiance (often termed intensity), given by

I = ½ EoHo = (n/2Zo) |Eo|2 ∝ |Eo|2

• Thus, the rate of flow of energy is proportional to the square of the
amplitude of the electric field.  Z0 is the intrinsic impedance of free 
space in units of Ω. 

[W/cm2] = [V2/(Ω·cm2)] = [1/Ω] [V/cm]2

Irradiance
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Impedance
We can write in a medium of index n

where

Z0 = (μ0/ε0)1/2 ≈ 120π Ω ≈ 377 Ω is the free-space impedance.

The concept of this impedance is analogous to the concept of 
the impedance of a transmission line. 

Hk 0ωμ=Ε×

Ε−=× ωεHk

Ε×= k
Z
nH ˆ

0

kH
n
ZE ˆ0 ×=

kkk /ˆ =
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Propagation in a lossless isotropic medium 
In this case, ε(ω) is reduced to a positive real scalar.  
All of the results obtained for free space remain valid, except 
that ε0 is replaced by ε(ω).
This change of the electric permittivity from a vacuum to a 
material is measured by the relative electric permittivity, ε/ε0, 
which is a dimensionless quantity also known as the 
dielectric constant of the material.
Therefore, the propagation constant in the medium

where n = (ε/ε0)1/2 is the index of refraction or refractive 
index of the medium.

λ
πνπωεμω n

c
n

c
nk 22

0 ====



86

Lossless medium
In a medium that has an index of refraction n, the optical 
frequency is still υ, but the optical wavelength is λ/n, and 
the speed of light is υ = c/n.
Because n(ω) in a medium is generally frequency 
dependent, the speed of light in a medium is also frequency 
dependent.
This results in various dispersive phenomena such as the 
separation of different colors by a prism and the broadening 
or shortening of an optical pulse traveling through the 
medium.
We also note that the impedance Z = Z0/n in a medium.  
The light intensity or irradiance

2
2

||2||2 Η=
Ε

= Z
Z

I
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Reflection and transmission at 
a dielectric interface
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The laws of reflection and refraction
• We now review the phenomena of reflection and refraction of light 
from the standpoint of electromagnetic theory.

• Consider a plane harmonic wave incident upon a plane boundary
separating two different optical media. 

incident
ki kr

reflected

transmitted
kt

*The space-time dependence of these
three waves, aside from constant 
amplitude factors, is given by

exp i(ki•r - ωt) incident
exp i(kr•r - ωt) reflected
exp i(kt•r - ωt) transmitted

θi θr

θt
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The law of reflection

Assume that the interface is at z = 0.
As r varies along the interface, the exponentials change.  
In order that any constant relation can exist for all points of 
the boundary and for all values of t, it is necessary that the 
three exponential functions be equal at the boundary.

The equality of exponentials can only hold so long as

(For z = 0, r is confined to x-y plane)

rikrikrik rit eee ••• ==

rikrikrik rit •=•=•
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The law of reflection and Snell’s law

The dot product gives the projection of k onto the x-y plane.

Note that ki = k0n1 = kr

Note that kt = k0n2

rriittrit rkrkrkrkrkrk θθθ sinsinsin ==→•=•=•

rriitt kkk θθθ sinsinsin ===>

rirrii kk θθθθ =→= sinsin (Law of Reflection)

itiitt nnkk θθθθ sinsinsinsin 12 =→= (Snell’s Law)
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Boundary conditions for the electric and magnetic fields

We need boundary conditions when we solve Maxwell’s 
equations for waveguides and reflection coefficients.
Boundary conditions describe how the electric and magnetic 
fields behave as they move across interfaces between 
different materials.
Here we consider dielectric media with no free charges or 
free currents:

Medium 1

Medium 2

H1t

H2t

n
B1n

B2n

D1n

D2n

E1t

E2t
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Boundary conditions for dielectric media
Without free surface charge or surface currents in the absence
of magnetic media

01122 =− nn EE εε

012 =− tt EE

012 =− nn HH

012 =− tt HH

Subscript n represents normal component to the boundary
Subscript t represents tangential component to the boundary
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Boundary conditions for dielectric media

The tangential components of E and H must be continuous 
across an interface, while the normal components of D and B
are continuous.

Because B = μ0H for optical fields, the tangential component 
of B and the normal component of H are also continuous.

Consequently, all of the magnetic field components in an 
optical field are continuous across a boundary.

Possible discontinuities in an optical field exist only in the 
normal component of E or the tangential component of D.
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Boundary conditions for dielectric media 
For the electric field

The normal component of the electric field is discontinuous
across a dielectric interface (even when there is no free 
surface charge).
The tangential component of the electric field must always be 
continuous across a dielectric interface

For the magnetic field
The normal component of the magnetic field is continuous 
across a dielectric interface (for nonmagnetic materials).
The tangential component of the magnetic field must be 
continuous across a dielectric interface (without surface 
currents).
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Dipole fields produce a discontinuity

Dipole fields produce a discontinuity in the electric fields on 
either side of the interface.  (√ε1 = n1, √ε2 = n2)

E2 = (ε1/ε2)E1 = (n1/n2)2 E1
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Boundary conditions in terms of electric fields
Restate the last two boundary conditions in terms of the 
electric field for convenience.
Recall the relation between the magnitude of the magnetic 
and electric fields in a dielectric

k × E = ωμ0 H
The four boundary conditions can be stated as

01122 =− nn EE εε

012 =− tt EE

0)()( 1122 =×−× nn EkEk

0)()( 1122 =×−× tt EkEk
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Fresnel reflectivity and transmissivity
Here we derive the Fresnel reflectivity and transmissivity
from the boundary conditions.

The Fresnel reflectivity and transmissivity apply to electric 
fields rather than power.

We must keep in mind that the fields in the boundary 
conditions represent the total field on either side of the 
boundary.

We have three variables but only need to solve for two in 
terms of the third (the incident field).  We therefore require 
two equations in the three variables.

We describe the reflected field in terms of the incident field; and the 
transmitted field in terms of the incident field.
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Using the boundary conditions
Assume region 2 refers to the transmission side of the 
interface while region 1 refers to the incidence side  
The total fields:

E1 = Ei + Er
E2 = Et

H1 = Hi + Hr
H2 = Ht

Using the boundary conditions for the tangential components:

012 =− tt EE

0)()( 1122 =×−× tt EkEk
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TE polarization (s-wave)
• The electric field is linearly polarized in a direction perpendicular
to the plane of incidence, while the magnetic field is polarized to the
plane of incidence.  This is called transverse electric (TE) polarization.  
This wave is also called s-polarized. 

n2

n1

n

θiHi

Et

Ht

Er

Hr

θt

θr

ki

x

kt

x

kr
Ei

x
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Substitute the total fields to the boundary conditions
Note that the E-fields are transverse to the plane of incidence 

Fresnel reflectivity and transmissivity for TE fields  

0)( =+− rit EEE

0)()()( =×−×−× trrtiittt EkEkEk

(drop the tangential t subscript)

0coscoscos 101020 =+− iriitt nkEnkEnkE θθθ

The reflected k-vector makes an angle of π-θ
with respect to the vertically pointing unit vector. 

=>
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rTE ≡ Er/Ei = 
n1 cos θi - (n2

2 – n1
2 sin2θi)1/2

n1 cos θi + (n2
2 – n1

2 sin2θi)1/2

• The reflection coefficient, rTE, and the transmission coefficient, tTE, 
of the TE electric field are given by the following Fresnel equations: 

n1 cos θi – n2 cos θt

n1 cos θi + n2 cos θt
=

tTE ≡ Et/Ei = 
2n1 cos θi

n1 cos θi + (n2
2 – n1

2 sin2θi)1/2

2n1 cos θi

n1 cos θi + n2 cos θt
=

• The intensity reflectance and transmittance, R and T, which are also 
known as reflectivity and transmissivity, are given by

RTE ≡ Ir/Ii =
n1 cos θi – n2 cos θt

n1 cos θi + n2 cos θt

2

TTE ≡ It/Ii = 1 - RTE
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TM polarization (p-wave)
• The electric field is linearly polarized in a direction parallel to the
plane of incidence while the magnetic field is polarized perpendicular
to the plane of incidence.  This is called transverse magnetic (TM)
polarization.  This wave is also called p-polarized.

n2

n1

n

θi
Ei

Ht

Et

HrEr

θt

θr

ki

kt

kr
Hi

• x

•

Note the reverse direction of Hr
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Again, using tangential components of E and H are 
continuous

Note that the H fields are all perpendicular to the unit vector 
n s.t. (note the field vector directions)

Fresnel reflectivity and transmissivity for TM fields  

0))(( =+− trit EEE

0)()()( =×−×−× trrtiittt EkEkEk

0coscoscos =−− iriitt EEE θθθ

0101020 =+− rit EnkEnkEnk
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rTM ≡ Er/Ei = 
-n2

2 cos θi + n1(n2
2 – n1

2 sin2θi)1/2

n2
2 cos θi + n1(n2

2 – n1
2 sin2θi)1/2

• The reflection coefficient, rTM, and the transmission coefficient, tTM, 
of the TM electric field are given by the following Fresnel equations: 

-n2 cos θi + n1 cos θt

n2 cos θi + n1 cos θt
=

tTM ≡ Et/Ei = 

• The intensity reflectance and transmittance for TM polarization are 
given by

RTM ≡ Ir/Ii =
-n2 cos θi + n1 cos θt

n2 cos θi + n1 cos θt

2

TTM ≡ It/Ii = 1 - RTM

2n1 cos θi

n2 cos θi + n1 cos θt

=
2n1n2cos θi

n2
2 cos θi + n1(n2

2 – n1
2 sin2θi)1/2
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Brewster angle
For parallel polarization, we see that r = 0 gives

n2 cos θb = n1 cos θt

And the phase matching condition,  
n1 sin θb = n2 sin θt

Solving both equations, we find θt + θb = π/2 and

θb = tan-1 (n2/n1) Brewster angle

If a wave is arbitrarily polarized and is incident on the boundary of the 
two dielectric media at the Brewster angle, the reflected wave contains 
only the perpendicular polarization because the parallel-polarized 
component of the wave is totally transmitted.  For this reason, the 
Brewster angle is also called the polarization angle. 



110

Total Internal Reflection
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Phase changes in total internal reflection

• In the case of total internal reflection the complex values for the
coefficients of reflection, given by the Fresnel coefficients rTE and rTM,
imply that there is a change of phase which is a function of the angle
of incidence.

• As the absolute values of rTE and rTM are both unity, we can write

rTE = ae-iα / aeiα = exp –iϕTE

rTM = -be-iβ / beiβ = -exp -iϕTM

where ϕTE and ϕTM are the phase changes for the TE and TM cases, and
the complex numbers ae-iα and –be-iβ represent the numerators in
rTE and rTM.  Their complex conjugates appear in the denominators.  
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aeiα =  n1 cos θi + i (n1
2 sin2θi - n2

2)1/2

n2
2 cos θi + i n1(n1

2 sin2θi – n2
2)1/2be+iβ =  

• We see that ϕTE = 2α and ϕTM = 2β.  Accordingly, tan α = tan (ϕTE/2) 
and tan β = tan (ϕTM/2).

• We therefore find the following expressions for the phase changes that
occur in internal reflection:

tan (ϕTE/2) = (n1
2 sin2θi - n2

2)1/2 / (n1 cos θi) 

tan (ϕTM/2) = n1(n1
2 sin2θi – n2

2)1/2 / (n2
2 cos θi)
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Total internal reflection phase shifts
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Evanescent wave

• In spite of the fact that the incident energy is totally reflected when
the angle of incidence exceeds the critical angle, there is still an 
electromagnetic wave field in the region beyond the boundary.  This 
field is known as the evanescent wave.

• Its existence can be understood by consideration of the wave 
function of the electric field of the transmitted wave:

Et = Et exp i (kt • r - ωt)

Choose the coordinate axis such that the plane of incidence is on the xz
plane and the boundary is at z = 0. 
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kt • r = kt x sin θt + kt z cos θt

= kt x (n1/n2) sin θi + kt z (1 – (n1/n2)2 sin2 θi)1/2

= ki x sin θi + i kt z ((n1
2sin2θi/n2

2) – 1)1/2
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x

z

total 
internal 
reflection

θi > θc

Ei

exp (-κz)
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exp i((ki sin θi) x - ωt)
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The wave function for the electric field of the evanescent wave is 

Eevan = Et exp (-κz) exp i ((ki sin θi) x - ωt)

where κ = kt ((n1
2sin2θi/n2

2) – 1)1/2

• The factor exp (-κz) shows that the evanescent wave amplitude drops
off very rapidly in the lower-index medium as a function of distance 
from the boundary.
• The oscillatory term exp i ((ki sin θi) x - ωt) indicates that the 
evanescent wave can be described in terms of surfaces of constant phase
moving parallel to the boundary with phase velocity ω/(ki sin θi).

• The evanescent field stores energy and transports it in the direction of 
surface propagation, but does not transport energy in the transverse
direction. Therefore, evanescent wave is also known as surface wave.
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Photon nature of light
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Photon nature of light
When considering the function of a device that involves the 
emission or absorption of light, a purely electromagnetic 
wave description of light is not adequate.

In this situation, the photon nature of light cannot be ignored.

The material involved in this process also undergoes quantum 
mechanical transitions between its energy levels.

The energy of a photon is determined by its frequency υ, or 
its angular frequency ω.  

Associated with the particle nature of a photon, there is a 
momentum determined by its wavelength λ, or its wavevector 
k.    
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Quantum Mechanics: de Broglie’s wavelength

Wave and particle duality
All particles have associated with them a wavelength 
(confirmed experimentally in 1927 by Thomson and by 
Davisson and Germer),

p
h

=λ

For any particle with rest mass mo, treated relativistically,

42222 cmcpE o+=

(de Broglie wavelength)
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Photon de Broglie wavelength
For photons, mo = 0
E = pc
also E = hυ

ννλ c

c
h

h

c
E
h

p
h

====

But the relation c = λυ is just what we expect for a harmonic 
wave (consistent with wave theory)
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Photon in free space
Speed

Energy

Momentum

The energy of a photon that has a wavelength λ in free space 
can be calculated as follows,

e.g. at an optical wavelength of 1 μm, the photon energy is 
1.2398 eV.
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λλ

ν 8.12392398.1
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Photon energy
Recall that h = 6.626 × 10-34 J•s
For photon energy hυ=hc/λ, we often use the energy unit of 
Electron-volt (eV) = 1.602 × 10-19 J
(electronic charge (e) = 1.602 × 10-19 C, and C × V = J)

hc ≈ (6.626 × 10-34 × 1/1.602 × 1019 eV•s) × (3 × 1017 nm/s) 
≈ 1240 nm•eV

The photon energy   λ = 400 nm is ≈ 3.1 eV
λ = 700 nm is ≈ 1.77 eV
λ = 1550 nm is ≈ 0.8 eV

⇒ These are in the range of the bandgaps of most 
semiconductors.  Photon energy is an important factor that 
determines the behavior of an optical wave in a 
semiconductor photonic device.
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