<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd">

<html lang="en">

<head>

<meta http-equiv="content-type" content="text/html;">

<title>HIF News</title>

<meta name="generator" content="BBEdit 6.0">

<SCRIPT language="JavaScript">

<!--

function popup(){

cuteLittleWindow = window.open("page.html", "littleWindow", "location=no,width=320,height=320");

}

//-->

</SCRIPT>

<script language="JavaScript">

<!--

function MM_swapImgRestore() { //v3.0

var i,x,a=document.MM_sr; for(i=0;a&&i<a.length&&(x=a[i])&&x.oSrc;i++) x.src=x.oSrc;

}

function MM_preloadImages() { //v3.0

var d=document; if(d.images){ if(!d.MM_p) d.MM_p=new Array();

var i,j=d.MM_p.length,a=MM_preloadImages.arguments; for(i=0; i<a.length; i++)

if (a[i].indexOf("#")!=0){ d.MM_p[j]=new Image; d.MM_p[j++].src=a[i];}}

}

function MM_findObj(n, d) { //v3.0

var p,i,x; if(!d) d=document; if((p=n.indexOf("?"))>0&&parent.frames.length) {

d=parent.frames[n.substring(p+1)].document; n=n.substring(0,p);}

if(!(x=d[n])&&d.all) x=d.all[n]; for (i=0;!x&&i<d.forms.length;i++) x=d.forms[i][n];

for(i=0;!x&&d.layers&&i<d.layers.length;i++) x=MM_findObj(n,d.layers[i].document); return x;

}

function MM_swapImage() { //v3.0

var i,j=0,x,a=MM_swapImage.arguments; document.MM_sr=new Array; for(i=0;i<(a.length-2);i+=3)

if ((x=MM_findObj(a[i]))!=null){document.MM_sr[j++]=x; if(!x.oSrc) x.oSrc=x.src; x.src=a[i+2];}

}

//-->

</script>

</head>

<body bgcolor="#FFFFFF" alink="#FFFFFF" vlink="#FFFFFF" onLoad="MM_preloadImages('buttonovr.gif')" link="#FFFFFF">

<table border="0" width="936" cellspacing="0" cellpadding="0" align=center>

<TR>

<td width="936" height="144" align="left" valign="top"> <img src="headerx.gif" width="936" height="144" align="top"></td>

</TR>

</table>

<table width="936" border="0" cellspacing="0" height="5" align=center>

<tr>

<td><font face="Arial, Helvetica, sans-serif" size=2>June '01 Issue</font></td>

<td>

<div align="right"><font face="Arial, Helvetica, sans-serif" size=2>LBNL-PUB-844-00-12</font></div>

</td>

</tr>

</table>

<hr width="936">

<table border="0" width="936" cellspacing="0" cellpadding="0" align="center">

<tr>

<td rowspan="0" width="72" height="516" align="center" valign="top" nowrap scope="col" border=1>

<A href=june01issue.pdf><img src="printbutton.jpg" width="72" height="77"></a><BR>

<BR><DIV align=center><Font face=arial size=2>Print Version</font></DIV><BR>

<A HREF="javascript:popup()">

<img src="editorbutton.jpg" width="72" height="77"></A><BR>

<BR><DIV align=center><Font face=arial size=2>Contact Editor</font></DIV><BR>

<A href=mailto:pmbronte@lbl.gov><img src="subscribebutton.jpg" width="72" height="77"></a><BR><BR><DIV align=center><Font face=arial size=2>Subscribe</font></DIV><BR>

<A href=index.html><IMG src=homebutton.jpg></A><BR><BR><DIV align=center><Font face=arial size=2>Home</Font></DIV><BR>

<BR>

<BR>

<BR>

<BR>

<BR>

<BR>

<DIV align=center valign=bottom><FONT face=helvetica size=1 color="#669999">

mbronte<BR>08/01/2001

</FONT></DIV>

</td>

<td rowspan="0" width="536" height="516" align="left" valign="top" nowrap scope="col">

<Font face=helvetica size=3 color="#0033FF"><B>Flibe vapor pressure 30% lower than previous estimates</B></font><BR>

The pressure of the vapor species in equilibrium with the molten salt flibe

(Li2BeF4), in the range of 600° C, target chamber operating temperatures,

were determined using activity coefficients obtained from three independent

measurement methods. This work,<a href="fig1.jpg" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('Image7','','buttonovr.gif',1)">

<img name="Image7" border="0" src="fig1.gif" width="108" height="105" align=right></a>

performed by doctoral student Grant Fukuda

and Prof. Donald Olander, found that the vapor pressure of flibe

is approximately

30% lower than values estimated by extrapolation from high-temperature vapor

pressure measurements that have been used previously for IFE chamber design,

as shown in the figure. The lower vapor pressure will result in heavy ions

being stripped to lower charge states than previously thought, and therefore

the ions can be more easily focused on the target. The vapor phase is composed

of over 90% BeF2, with the remaining vapor being primarily the mixed dimer

LiBeF3. The methods developed in this work also predict the partial pressures

of these species. Beam ions will miss the target if they strip within the

final focus magnet region. For temperatures near the 460ƒC melting temperature

of flibe, the new results reduce the vapor pressure here, and the consequent

beam strippin

by a factor of approximately 50%. Despite this large improvement, even lower

flibe temperatures may be required to keep beam loss here sufficiently small.<Font color="#0033FF"><I>-

Per Peterson and Grant Fukuda</I></Font><BR><BR>

<BR>

<Font face=helvetica size=3 color=0033FF><B>First beam in Moscow accelerator</B></font><BR>

<DIV align=justify>

The TeraWatt Accumulator (TWAC) project at Moscows' Institute for Theoretical and Experimental Physics (ITEP)

has successfully passed its proof-of-principle test. TWAC is designed for studies in 3 areas: High-energy density

in matter, which is related to inertial fusion energy and stellar interiors; relativistic nuclear physics;

and cancer therapy using carbon ions. The design parameters are a beam energy of 105 Joules, delivered in

20-100 ns, for a power of „1012 W (1 Terawatt), and a power density that can be expressed as 120 TW/cm2, or

10 TW/g. In the TWAC proof-of-principle test, Carbon 4<sup>+</sup> ions from the laser ion source were pre-accelerated

in the accelerator/ accumulator facility's new U-3 pre-injector, injected and accelerated in the UK booster

ring to 300 MeV per nucleon, stripped to 6<sup>+</sup> and stacked into the U-10 storage ring. This marks the completion

and commissioning of the new facility's main systems of the new facility's main systems - ion source, ion

pre-injector, radio-frequency and power supply for the booster ring, beam transport lines and pulsed magnetic

elements. Later this year, the system to extract and transport the beam to the beam-target interaction area

will be constructed. Other upgrades over the next three years will bring the heavy-ion beam to its target

values. An emphasis will be placed on developing diagnostics to measure plasma parameters

in the unique parameter range of up to Te ~10 eV, ne ~ 1023 cm<sup>-3</sup>, and P = 10-100 Mbar. <Font color=0033FF><I>- Boris Sharkov</I></font></DIV><BR><BR>

<Font face=helvetica size=3 color=0033FF><B>Simulation of aiming and rotation errors in HCX</B></font><BR>

The HCX experiment will investigate the mechanisms that determine the fraction

of the open aperture that can be filled by beam, using a driver-scale beam

of ~700 mA at 1.7 Mev. By understanding <a href="fig2.jpg" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('Image8','','buttonover2.gif',1)">

<img name="Image8" align=right border="0" src="fig2.gif" width="122" height="117"></a>

how to optimize the transport system

aperture, we can maximize beam brightness and minimize fusion driver costs.

Near the electrostatic quadrupole surfaces, increasingly nonlinear forces

may degrade the beam quality and cause particle loss. A single-slice model

is used to explore these mechanisms. The transverse space charge forces

are treated self-consistently, but the three dimensional external forces

are represented by a moment expansion of the fully three-dimensional applied

fields, numerically obtained for the electrostatic quadrupole focusing elements.

The simulations exploit the flexibility designed

into HCX to study the sensitivity to varying the aiming of the beam from

the injector and to rotating the first electrostatic quadrupole. HCX can

be operated in a mode where simulations predict a circular cross section

beam with no measurable degradation. (All measurements here are at the end

of HCX after propagation through the 20 periods of electrostatic quadrupoles.)

However, simulating an aiming error of 0.006 radians into the transport

system, shows plainly observable effects in slit scan and witness plate

measurements of the beam. Similarly, a 4f quadrupole rotation results in

the tilted and squared beam cross section shown in the figure.<Font color=0033FF><I>

- Irv Haber</I></font> </td>

</tr>

</table><BR>

<table border="0" width="936" cellspacing="0" cellpadding="0" align="center">

<img src="newsfooter.gif" width="936" height="72" align="middle">

</table>

</body>

</html>