Cooling Connections Status Report: LBNL Effort

February, 2002

N. Hartman, E. Anderssen, M. Gilchriese, F. Goozen, T. Johnson, T. Weber, J. Wirth

ATLAS

Current Status

Second round of fittings made

- Fitting cross sections optimized for low mass
- Indium and Luer Lock variants machined
- Sector, exhaust, and capillary size fittings created

Laser welding in progress

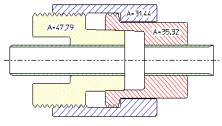
- New fittings have been sent out for laser welding (exhaust and capillary)
- Pre-production sector tubes (final bend shape) are being readied for welding

• Capillary, type 0, and type 1 tubing being evaluated

- 4 mm ID, 8 mm ID, and two capillary tubing sizes have all been obtained in aluminum for testing
- Preliminary capillary calculations have been made suggesting a capillary ID of ~0.8 mm
- A more accurate model of capillary pressure drop (as well as plans to measure this) is in the works

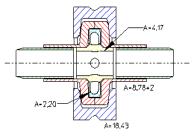
Prototype u-tube constructed

- Prototype designed for flexibility in alignment
- Frame length changed for u-tube clearance

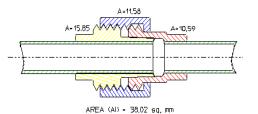

ATLAS

Pixel Detector

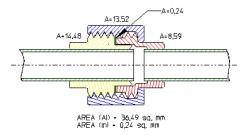
Fitting Comparisons – Mass and X-Section


Fitting	Metal X-Area	T Al/fitting	T Plastic/fitting	T Ni,In,Cu/Fitting	% X0/fitting	# fittings	%X0
Luer Lock (AI) - Baseline	115	6.0E-05	0.0E+00	0.0E+00	0.08%	75	5.63%
Variseal (w/ centering ring)	40	2.4E-05	9.4E-07	0.0E+00	0.03%	75	2.27%
Variseal (w/o centering ring)	36	2.1E-05	9.4E-07	0.0E+00	0.03%	75	2.03%
Indium Fitting (Stave Size - CuNi)^	13	0.0E+00	0.0E+00	4.7E-06	0.02%	75	1.75%
Reduced Mass Luer Lock	41	1.6E-05	0.0E+00	0.0E+00	0.02%	75	1.51%
Indium Fitting (Sector Size - AI)*	36	1.3E-05	0.0E+00	3.1E-07	0.02%	75	1.32%

Fitting Volume Smeared over hoop at radius 210 mm, 50 mm long.


AREA (AI) - 114,55 sq, mm

Current Luer Design



AREA (Al) = 40,16 sq. mm AREA (Plastic) - 2.20 sq. mm AREA (Al. no centering ring) - 35,99 sq. mm

Old Variseal Design

"Reduced-Mass" Luer Design

Sector Indium Design

"Reduced-Mass" Luer Fittings

Nut, Male, Female Fitting Pieces

Nut

Male – Sector Side

Female – In/Out Side

Male and Female Pieces Assembled

Sector Side - Assembled

In/Out Side - Assembled

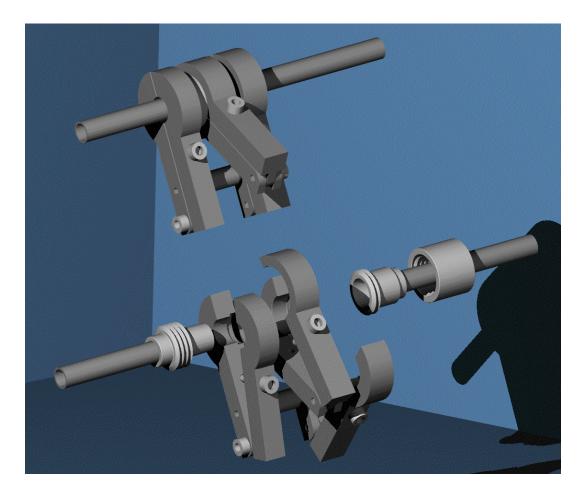
Sector Indium Fittings

Nut, Male, Female Fitting Pieces

Male – Sector Side

Female – In/Out Side

Male and Female Pieces Assembled (In Washer Not Shown)



Sector Side – Assembled

In/Out Side - Assembled

Fitting Wrench

- Works with Luer and Indium Fittings
- Prevents differentially torquing the two joining tubes
- Provides for assembly as well as disassembly

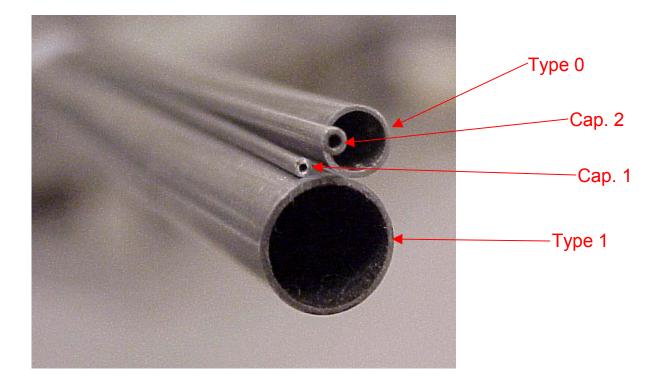
Fitting #'s Fabricated and Sent out for Welding

LUER:					INDIUM:				
Number Ordered:					Number Ordered:				
Fitting Tally	Sectors	U-tubes	Blanks	Totals	Fitting Tally	Sectors	U-tubes	Blanks	Totals
Male - Sector Bore	40			40	Male - Sector Bore	40			40
Male - Blanks			20	20	Male - Blanks			20	20
Female - Capillary	20			20	Female - Capillary	20			20
Female - Exhaust	20	20		40	Female - Exhaust	20	20		40
Female - Blanks			10	10	Female - Blanks			10	10
Nut - Exh/Sector	40	20	10	70	Nut - Exh/Sector	40	20	10	70
Totals	120	40	40	200	Totals	120	40	40	200

Samples sent out for welding

- Capillaries
 - 4 Luer 1.2 m long capillaries (Capillary 2 size)
 - 4 Indium 1.2 m long capillaries (Capillary 2 size)
- Type 0 tubing
 - 4 Luer 2 m long type 0 tubes (longest available)
 - 4 Indium 2 m long type 0 tubes (longest available)
- U-tubes
 - 3 Full Indium u-tubes (with trapped nuts)
 - 3 Full Luer u-tubes (with trapped nuts)

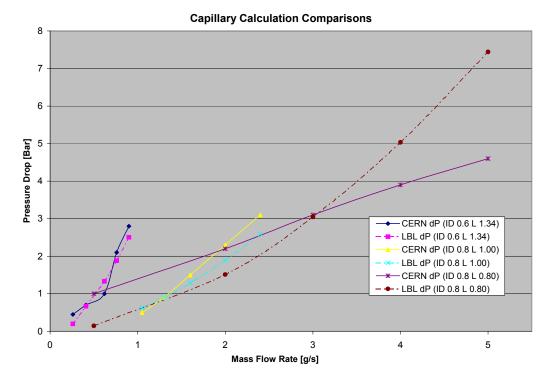
Sector Pre-production Welding Plans


• Delivery and Handling

- Each sector tube will be cleaned and mounted to a "carrier" plate
- The fittings will be cleaned and assembled to nominal position on the carrier
- The carrier/sector tube assembly will be dry-bagged and shipped to the laser weld vendor

Welding Setup

- The vendor will align a plate supplied by LBL to the welder's worktable
 - Plate will have alignment pins corresponding to each sector outlet
- Carrier plate will have two sets of alignment holes, one for each side of sector tube
 - Carrier plate will self align to fixture on welder's worktable, in position for welding either side
- Fitting height will be adjustable (within ~0.2 mm) to suit most preferable weld geometry
- Quality Assurance
 - The sector tube's welds will be inspected with an He leak detector to 10-7 Torr, without removing sector tube from carrier
 - Carrier and welded sector tube will be re-bagged and shipped back to LBL


Capillary, Type 0, and Type 1 Tubing

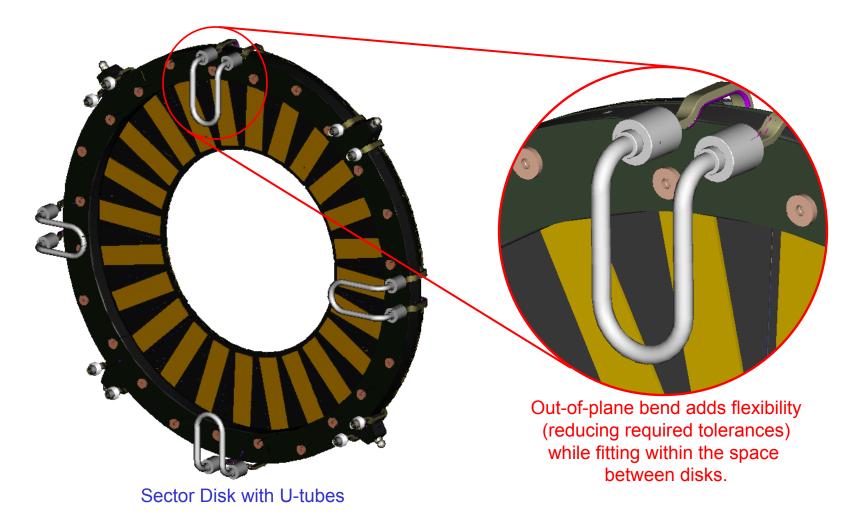
Tubing Type	Nominal ID [mm]	Actual ID [mm]	Actual OD [mm]	Wall [mm]
Capillary 1	-	0.48	1.19	0.36
Capillary 2	-	0.88	1.59	0.36
Туре 0	4	4.05	4.76	0.36
Type 1	8	7.92	8.73	0.41

Capillary Pressure Drop Calculations

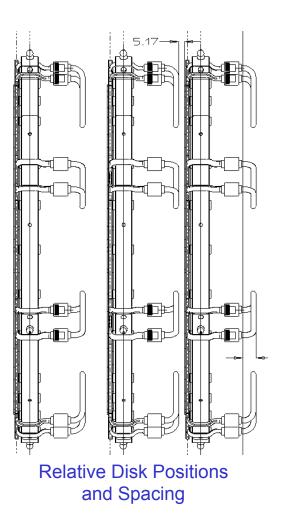
- Model based on all liquid flow in capillary (simple pipe flow correlations)
- Results match CERN calculations fairly closely
- Student is now working on two phase solution, as well as developing methods to measure dP at LBL for QA/QC purposes (without evaporative cooling system present)

February 2002 Cooling Services Connections

Estimated Capillary Size Calculations


Pressure Drop (Bar) vs. Capillary Length, Flow Rate, and ID

Flow Rate [g/s]	Capillary ID [mm]							
Length 300	0.50	0.60	0.70	0.80	0.90	1.00		
1.50	3.18	1.34	0.65	0.35	0.20	0.12		
2.25	6.43	2.71	1.31	0.71	0.40	0.24		
3.00	10.64	4.48	2.17	1.17	0.67	0.40		
Length 600	0.50	0.60	0.70	0.80	0.90	1.00		
1.50	6.36	2.68	1.30	0.70	0.40	0.24		
2.25	12.86	5.42	2.63	1.42	0.81	0.49		
3.00	21.28	8.97	4.35	2.34	1.34	0.80		
Length 900	0.50	0.60	0.70	0.80	0.90	1.00		
1.50	9.54	4.02	1.95	1.05	0.60	0.36		
2.25	19.29	8.13	3.94	2.12	1.21	0.73		
3.00	31.92	13.45	6.52	3.51	2.01	1.20		
Length 1200	0.50	0.60	0.70	0.80	0.90	1.00		
1.50	12.72	5.36	2.60	1.40	0.80	0.48		
2.25	25.72	10.84	5.26	2.83	1.62	0.97		
3.00	42.56	17.93	8.70	4.68	2.68	1.61		


Assumptions

- Flow rate up to 3 g/s
- Capillary length of at least 0.6 m
- Must not exceed dP of 3 bar in capillary
- Colors denote unacceptable dP (orange), borderline dP (yellow), and safe dP (green)
 - Target capillary size is somewhere in the range of ID 0.7 to 0.9 mm
 - This size most closely matches capillary "size 2"

U-tube Design

U-tube Shape

Bent U-tube (Using exhaust tubing)

ATLAS

Pixel Detector

Upcoming Work

• Testing of reduced mass luer and indium fittings

- Testing to be done in March
- Still need to fabricate adapter pieces for welding up test samples

Sector pre-production welding

- Fabricate 10 sector tubes with Luer and Indium fittings
- Verify weld QA and alignment system success (i.e. carriers and alignment plate)

Capillary testing

- Robustness tests
 - Bend/unbend repetitions
 - Pressure/leak testing (with swage lock connectors)
- Verification of target pressure drop
 - Develop model of two phase flow
 - Devise method for measuring pressure drop in absence of evaporative cooling system

• Full system prototype

- Complete cooling circuit prototype from pp1 to sector
- All "real" fittings all laser welded (including 4/8 mm tubes)
- Completed sometime before next summer
- Plans to test in Marseille with evaporative cooling plant