

US LHC Accelerator Research Program berkeley - brookhaven - fermilab - slac

TAN Instrumentation for Optimization of LHC Luminosity

W.C. Turner LBNL

Presented at CERN the TAN Instrumentation Integration Workshop 10 Mar 2006

- The TAS absorbs ~200W of forward collision products that have escaped the beam tube in front of Q1 (mostly charged pions and photons)
- The TAN absorbs ~ 200W of forward neutral collision products (mostly neutrons and photons) and is placed in front of the outer beam separation dipole D2

99/02/17 11.53

- Peak pwr density 1-10 W/kgm (luminosity instrumentation located near the shower maximum)
- A radiation hard cable will allow electronics to be located in a region with pwr density < 10^{-5} W/kgm (100 Gy/oper yr)

99/02/20 18.30

- Contact dose < 0.1 mSv/hr at outer r = 55 cm and back surfaces of the TAN (ok to stand in region per CERN guidelines)
- Contact dose inside the inner absorber box exceeds 1 mSv/hr (requires remote handling per CERN guidelines)
- Our goal is to design a detector that can be operated indefinitely without maintenance or replacement

The left-right asymmetry ratio is a sensitive function of the crossing angle

- TAN 142 m from IP, Xing angle = ± 150 mrad

- Measurement of the asymmetry ratio at the position of the TAN allows determination of the beam-beam Xing angle

<u>Incident</u> particle fluxes on the TAN per pp interaction

Particle type	<n></n>	<e></e>	<n><e></e></n>
		(GeV)	(GeV)
Neutral	.48	1516.	726
hadrons			
Protons	.11	938.	102
Charged	.875	65.	57
Pions			
Photons	301	2.2	662
Electron/	24.5	0.3	7.2
positron			
Muons	.006	4.9	.03

An example: TAN neutrons L = 10^{34} cm⁻²s⁻¹, σ_{inel} = 80mb <n> = 0.48 neutrons/pp int f = 40 MHz bunch Xing

=> 8x10⁸ pp int/s

=> 3.8x10⁸ n/s

=> 9.6 n/bunch Xing

Design constraints for a detector placed near the shower maximum in the TAN

 Very high peak radiation fluxes and high induced activation over many years of operation, 170 MGy (17GRad)/oper yr,

Particle type	Peak Flux(cm ⁻² sec ⁻¹)
Charged hadrons	3.6×10 ⁸
Electron/positron	5.8×10 ¹⁰
Photons	8.1×10 ¹¹
Neutrons	3.2×10 ⁹

- Size limited to 80 x 80 mm² by beam-beam separation at the TAN
- ~ 25 ns clearing time between bunch crossings
- Sensitivity to a single pp interaction with good S/N ratio, ~ 270 mips in 40 x 40 mm²/ppi
- An Ar-N₂ gas ionization chamber is our detector choice the simplest detector that can meet the requirements

Parameters for an ionization chamber module

Active area(1 quadrant) Plate gap No. of gaps Gas Gap voltage Electron gap transit time mip per pp int (3 W/kgm) mip per bunch xing@10³⁴ Electron/ion pairs/cm-mip Ioniz e⁻/pp int Ioniz e⁻/bunch xing@ 10³⁴ Mean pulse height/pp int Mean pulse height/bunch xing

40mm x 40mm 1.0 mm 6 $Ar+N_2(6\%)$, 6x760 Torr 1200 V 22 nsec 268 $6.8x10^3$ 388 $9.5x10^4$ (6 gaps) $2.4x10^6$ (6 gaps) 15mV380mV

Bringing the beams into initial collision

- One approach start with a coarse grid map with successively finer mesh
- An example 43x43 bunches, $3x10^{10}$ p/bunch, $\beta^* = 18$ m, L = $3.8x10^{29}$ cm⁻²s⁻¹
- ∀ σ* = 95.5µm

Domain	Grid size	δL/L	Integration time
			(sec)
16 ^σ x 16 ^σ	4 ⁰	1%	30.3
8 ^σ x 8 ^σ	2 ⁰	"	"
4 ^σ x 4 ^σ	10	"	"
2 ^σ x 2 ^σ	0.5 ⁰	"	"
1 ^σ x 1 ^σ	0.25 ^o	"	"
0.5 ^σ x 0.5 ^σ	0.125 ⁰	"	"

• Total integration time approximately 3 min. Practical considerations of LHC operations will dominate the time needed to bring the beams into collision.

Concept for optimization of luminosity

An intentional transverse sweep of one beam introduces a time dependent modulation of luminosity

- ϵ = error offset amplitude
- d = intentional sweep amplitude

$$L \approx L_0 - L_0 \frac{\varepsilon d}{2\sigma_*^2} \cos(\omega t - \varphi); \varepsilon, d \ll \sigma_*$$

Define the detector current

$$I(t) = e\alpha\varepsilon_{det}m\sigma_{inel}L$$

• Integrate to obtain the luminosity and error offset, 0 < t < T,

$$L_{0} = \frac{\int_{0}^{T} I(t)dt}{e\alpha\varepsilon_{det}m\sigma_{inel}T}; \qquad \vec{\varepsilon} = -\frac{\hat{e}_{x}\int_{0}^{T}\cos(\omega t)I(t)dt + \hat{e}_{y}\int_{0}^{T}\sin(\omega t)I(t)dt}{\left(\frac{d}{4\sigma_{*}^{2}}\right)e\alpha\varepsilon_{det}m\sigma_{inel}T}$$

Prototype tests in the SPS H4 300-400GeV proton beam (unbunched)

- The shower produced by a single 300-400 GeV proton closely simulates the shower produced in a single pp interaction on LHC – ~231 mips/SPS p versus ~268 mips/LHC pp int (per quadrant)
- The SPS tests demonstrated
 - Sensitivity to single pp interaction in LHC
 - Average pulse height in agreement with MARS simulations
 - Axial shower development in agreement with MARS simulations
 - $N^{-1/2}$ scaling of noise
 - Linear scaling of pulse height with gas pressure up to 600kPa with constant E = 600V/mm
 - Left/right asymmetry measurement of the shower axis
 - Feasibility of a de-convolution approach to correct for pile-up in 40MHz operation

Waveform averaging improves proton shower S/N ratio

 Pulse height 4.2mV in good agreement with MARS prediction 4.4±0.8 mV

Noise averages to zero

