

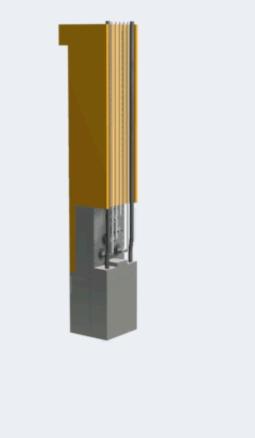
Luminosity Monitors for the LHC Status Update and Integration Plans

Alessandro Ratti

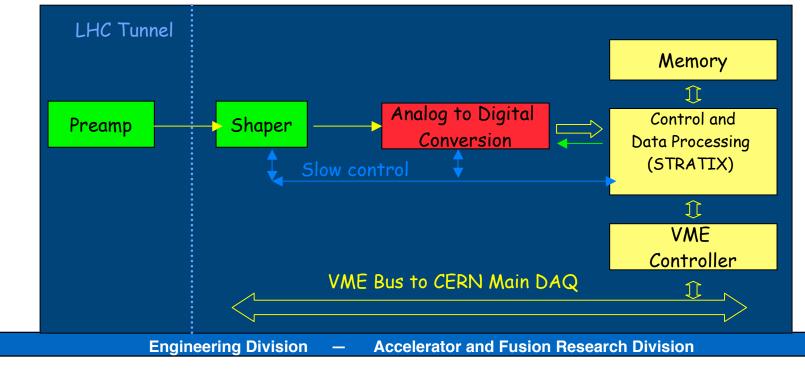
Mar. 10, 2006

Engineering Division – Accelerator and Fusion Research Division

- Status
- Ongoing R&D activities
- Organization and Planning
- System integration
- Conclusions



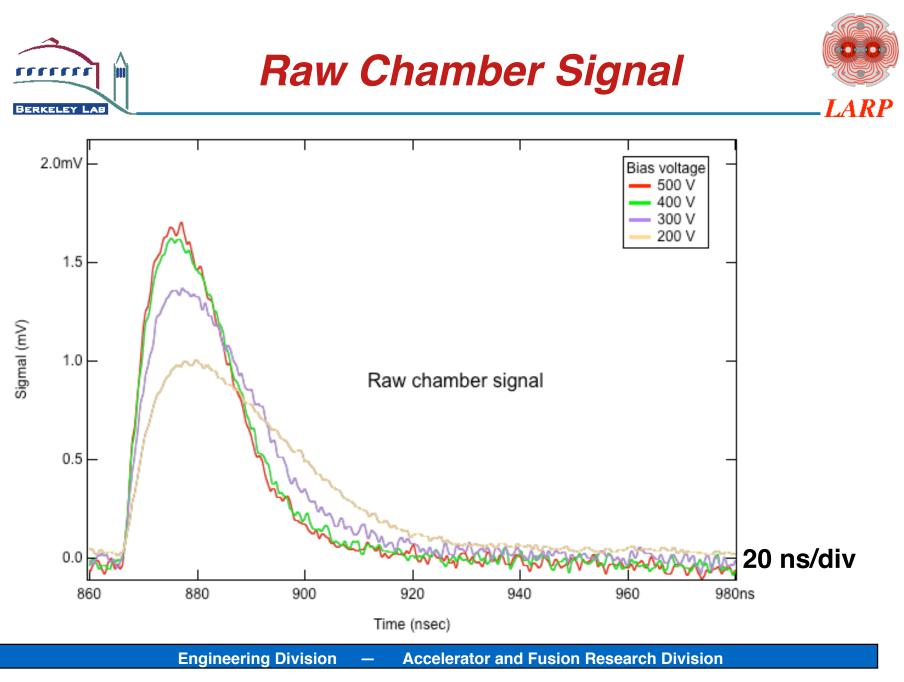
- Luminosity instrumentation funded by the US DoE through the LARP program
 - Have entered the final design stage
 - FDR in April 2006
- Activity originally proposed in ~1997
- We will instrument IP1 and IP5
 - Atlas and CMS
- Other groups plan to instrument TANs
- We are here to coordinate with other interested parties
 - Have a mock-up of the BRAN (LM) to test in the TAN


Engineering Division – Accelerator and Fusion Research Division

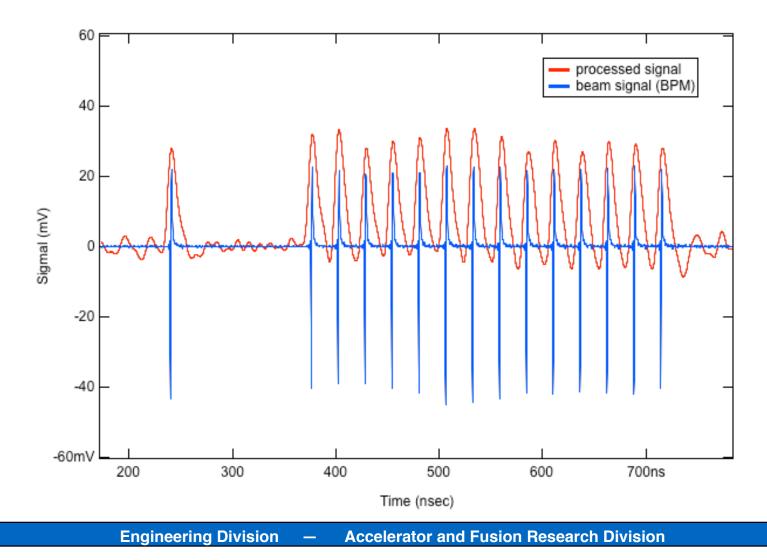
Signal Processing

- Very low noise pre-amp in the tunnel (by the INFN-PV group)
- Shaper section completes the analog signal processing
- ADCs integrated in a VME64 mezzanine card
 - Interface defined by CERN BDI group
- Plan to build the same system for Atlas ZDC

 Original Design developed by P.F. Manfredi, L. Ratti and G.Traversi of the University of Pavia using a cold termination technique:


• E. Gatti, P.F. Manfredi, IEEE Trans. Nucl. Sci, vol. NS 25, 1978, pages 66-74

Engineering Division – Accelerator and Fusion Research Division



- Tested the lumi detector at one of the hard x-ray beamlines at the ALS
 - X-ray to ion pair production very hard to calculate
 - White light configuration ~70-80 keV X-rays
- Chamber modification needed
- Tested proof of principle in August
- Complete set of data taken in September
- Required dedicated machine time to fill the ring with a 40 MHz bunch pattern
 - Pattern used allowed for a gap to measure single bunch response
 - Also tested without gap to see 'continuous' beam

- Planning a meaningful test of the materials is really hard: in most cases, test conditions are drastically different from LHC conditions
 - Shower vs. neutrons
 - Dose rate very different
- Parallel paths to minimize risk
 - Careful research of materials properties
 - Beam test if possible
- The most attractive setting is the CERN PS Booster
 - With 10^13 pps we estimate ~ 25:1 gain
 - 1 month in PSB ~2 years at LHC high luminosity
 - Will be discussing this possibility next week
 - Other sites are also being considered

- Installed in IR 10
 - Former experiment, now empty
- Goals
 - Become familiar with operation in a hadron collider environment
 - Benchmark device against the proven RHIC ZDC luminosity monitors
 - Investigate some sources of background
 - Develop signal processing implementation
 - Integrate electronics in accelerator environment
- RHIC run 6 will have p-p and Au-Au
 - Run planned for starting this week to ~Jun. 2006
- Multiple reasons to prefer Au-Au collisions
 - More neutron yield
 - Better neutron energy
 - Dedicated collisions have less effect on lifetime than in p-p mode
 - Beam-beam stronger in p-p

Engineering Division – Accelerator and Fusion Research Division

- Gas Installation and Distribution
 - Done by CERN
 - With the help of Christof Schaffer and David McFarlane
- Electronics in IP1 and IP5
 - Racks reservation:
 - ◆ 24 Us in USA 15 (L+R) and USC55 (L+R)
 - Cables at each location:
 - 1 NG28, 14x2x1mm², shielded twisted pair for power and control
 - 2 CNH50 coax cable for high voltage
 - 16 CK50 low loss coax cable for signal

- LBNL will deliver for BRAN
 - 4 chambers with electronics for IP1 and 5
 - Gas control system
 - DAQ with programming
 - Installation support
 - Hardware commissioning
- CERN will provide
 - Local installation
 - Gas supply and distribution
 - HV and DC power supplies
 - Control system integration
 - VME64 infrastructure and DABIV boards



ARP

LHC Project Document No

Integration planning at CERN

- Technical, installation, safety, electronics, responsibilities, deliverables...
- Met with all relevant parties at CERN

Engineering Division

 EDMS process underway

	-
	80985 Document No.
	Date: 1999-0
echnical Specificatio	'n
JMINOSITY MO	NITOR
Abstract nization chambers that sample energy dops itors are primarily sensitive to high energy interact in the TAN absorbers to produce hu sin meators are placed near the maximum and shower energy doposition are propo- dises a measurement of relative haminskip to measure luminosity with 40MHz, or be adurates to allow measurement of bearts-	neutrons produced near zero degree dronic-electromagnetic showers that of shower emergy deposition in the sional to luminosity, the signal stren . The ionization chambers and mch-by-bunch, resolution. The an crossing angle. Small modulatio
the IP allows measurement of beam-beam sd in a slow feedback loop to reduce the bea	separation at the IP. The measureme m separation to zero and maintain fl
Checked by:	
	DMINOSITY MO DATA STATES AND AND AND AND AND AND AND AND AND AND

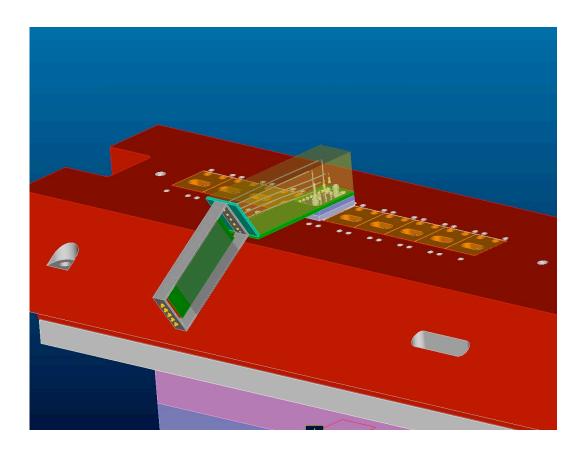
Accelerator

CERN CH-1211 Geneva 23

	LHC-	
	Page 3 of 13	
	Table of Contents	
1. DISCLAIMER - INTRODUCTION		
2.	SYSTEM DESCRIPTION	
2.1	INTRODUCTION 5	
2.2	GAS SYSTEM	
2.3	HIGH VOLTAGE AND DC SYSTEMS	
2.4	REMOTE MONITORING AND EQUIPMENT PROTECTION	
2.5	INSTALLATION	
з.	MODES OF OPERATION7	
4.	OPERATING PARAMETERS	
5.	EXTERNAL CONNECTIONS	
5.1	GAS LINES 8	
5.2	SIGNAL, CONTROLS AND HV CABLES 8	
5.3	NETWORK INTERFACES 8	
6.	SYSTEM SAFETY	
6.1	RADIATION SAFETY 8	
6.2	COMPRESSED GASES	
6.3	HIGH VOLTAGE	
7.	GAS HANDLING SYSTEM9	
7.1	GAS DISTRIBUTION	
7.2	TEMPERATURE AND PRESSURE MONITORING AND RELIEF	
7.3	COMPRESSED GAS SAFETY CONSIDERATIONS	
7.4	GAS ANALYSIS - SPECTROSCOPY + RADIATION10	
8.	HIGH VOLTAGE DISTRIBUTION10	
8.1	DC BIAS TO THE ELECTRODES10	
8.2	CONTINUITY CHECK	
9.	DATA ACQUISITION SYSTEM 10	
9.1	SYSTEM INFRASTRUCTURE - THE VME DABIV BOARD	
9.2	MEZZANINE CARD	
9.3	FPGA PROGRAMMING	
10.	CONTROL SYSTEM INTERFACE	
11.	HARDWARE COMMISSIONING11	
11.1	HV TESTING	
11.2	HARDWARE CHECKOUT	
12.	PLANNING	
12.1	MILESTONES	
12.2	BEAM COMMISSIONING AND BEAM REOUIREMENTS	
12.5	LUMINOSITY MEASUREMENTS IN IP2 AND IP8	
13.	LUMINUSITT MEASUREMENTS IN IP2 AND IP8	

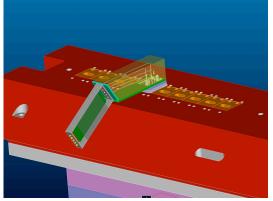
- Build one complete unit. This includes:
 - Final design review (by April 06)
 - a chamber, mating TAN bar, gas handling system, tunnel electronics package (pre-amps)
 - Complete DAQ chain w. shapers, mezzanine boards and acquisition firmware integrated in CERN VME system
 - no luminosity specific firmware/software
- Complete documentation of chamber production and electronic processing system
- Test existing prototype in RHIC
- Rad hard study and tests (if possible)

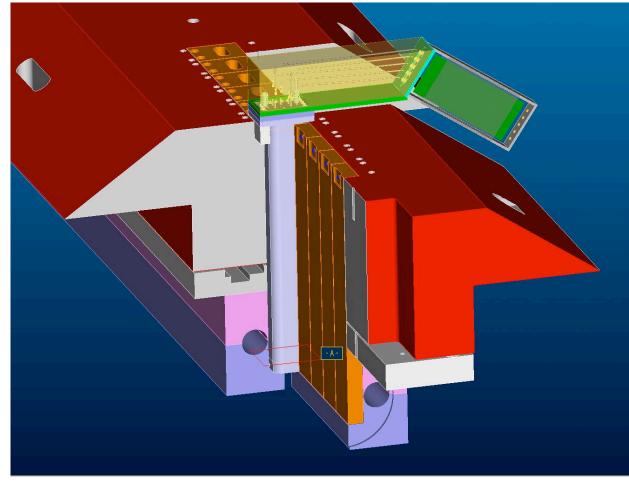
All beamline devices will be delivered to CERN in time for LHC tunnel installation before the beam runs


- Space we claim:
 - All vertical space above the device
 - Some longitudinal space next to our device
 - Front end electronics and cabling conduit
 - Space at the end of TAN for front end pre-amps
 - Current plan is to place electronics on the side of the TAN
- Need ~ 1-2 interaction lengths of material before LUMI
 - Important to keep the working conditions similar if surroundings change
 - IE if a detector is removed, replace it with an equivalent material and size

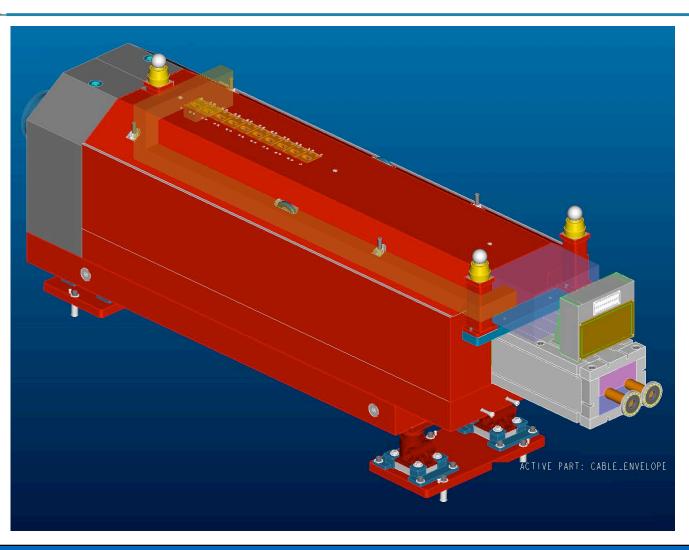
Proposed Installation

- Finalizing the installation plan
- Optimal for electronics performance
- Checking radiation dose levels



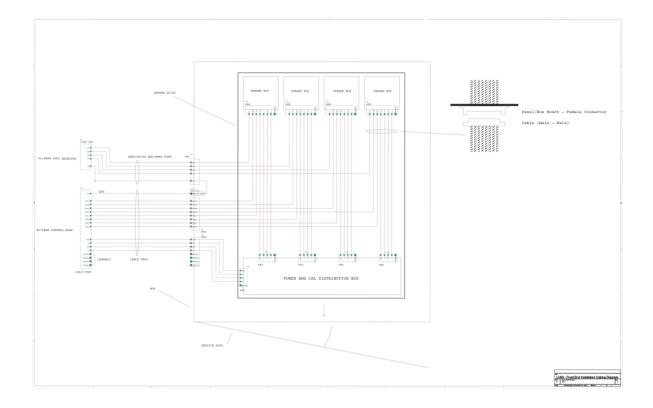

Engineering Division – Accelerator and Fusion Research Division

Proposed Installation (cont.)

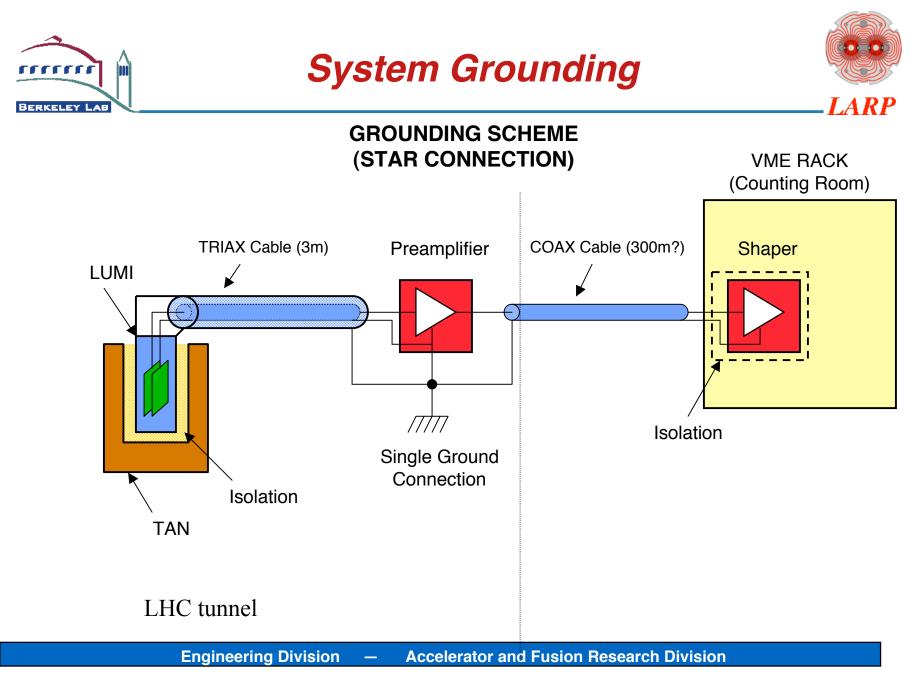


Engineering Division – Accelerator and Fusion Research Division

Alternate Installation



Engineering Division – Accelerator and Fusion Research Division



Cabling Diagram

Engineering Division – Accelerator and Fusion Research Division

Conclusions

- BRAN is on track to be completed on time for first LHC beam collisions
 - Collaboration between LARP and CERN
- Important R&D is being done in parallel with the final design
 - RHIC test will expedite LHC operation with beams
 - Rad hard test will help final choice of critical components
- TAN areas are likely to be very crowded
 - We want to plan ahead and ensure compatibility
 - We look forward to the test of the mockups
- We have integrated our schedule with that of the LHC