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Abstract

Solenoid magnets are often employed for focusing in low

energy beam transport lattices in the front-end of a machine.

We derive a relatively simple analytic formula for the non-

linear angular focusing kick imparted to particles traversing

the solenoid. Few approximations are made. The formula

provides a clear expression of the well-known Scherzer’s

Theorem from electron optics that all nonlinear terms of

an axisymmetric magnetic field provide more focusing and

that nonlinear terms are non-removable. The formula sug-

gests that for beam transport, little can be done to reduce

nonlinearities in solenoid-type magnets other than take a

simple design without abrupt changes as a function of axial

coordinate and appropriately choose the aspect ratio (char-

acteristic bore radius over axial length) of the magnet sys-

tem and the beam filling factor within the aperture to limit

nonlinear effects. Illustrative applications of the formula

characterize nonlinear focusing effects in iron-free and iron

type solenoid magnets.

INTRODUCTION

Solenoid magnets are appealing due to their simple field

structure in idealized form. However, as the level of detail

of the model description increases, the cross-coupled struc-

ture of the equations of motion describing particle focus-

ing in a solenoid become increasingly complicated and dif-

ficult to analyze. In this study, we derive a closed analytic

formula for the radial angular impulse imparted to a parti-

cle traversing an axisymmetric solenoid magnet including

both linear and all nonlinear field components. The only

approximation made is the paraxial approximation. The for-

mula applies to particles with arbitrary (conserved) canoni-

cal angular momentum. This is important because in many

cases particles are born from a source immersed in a mag-

netic field, and consequently, the particles can have finite

canonical angular momentum. Near the source, particles

are typically transported downstream using an axisymmet-

ric solenoid focusing lattice where the particle canonical an-

gular momentum is conserved. The surprisingly simple for-

mula obtained for the focusing impulse provides insight on

the nonlinear focusing properties of solenoid magnets. The

formula is applied to better understand nonlinear focusing

effects in solenoids, both as the radius of the particle within

the magnet aperture increases and as the aspect ratio and

structure of the solenoid is varied. The formula should be

possible to exploit in future studies to estimate how statisti-
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cal rms beam emittance (quality) evolves during transport

in a nonlinear solenoid lattice.

DERIVATION

We consider the a single particle of charge q and mass m

evolving in an axisymmetric (∂/∂θ = 0) applied solenoid

field Ba and employ r,θ,z cylindrical-polar coordinates. Be-

cause the magnetic field only bends particle trajectories, the

kinetic energy of the particle is constant, or equivalently, the

exact relativistic gamma factor (γ = 1/
√

1 − β2
= const)

and beta factors (β = const) are conserved. The applied

magnetic field of the solenoid is assumed axisymmetric, so

the particle evolves with a conserved angular momentum

Pθ ≡
[
x × (p + qA)

]
· ẑ = r (pθ + qAθ ) = const. Here,

x and p = mγẋ are the coordinate and mechanical momen-

tum of the particle,˙≡ d
dt

denotes a derivative with respect

to the time t, and A is the vector potential that generates

the applied field (i.e., Ba
= ∇ × A). Applying Stoke’s the-

orem to the expression for Pθ obtains the so-called Bush’s

theorem expression [1, 2]

Pθ = γmr2 θ̇ +
qψ

2π
= const. (1)

Here, ψ =
∫
r
d2x Ba

z (r, θ) =
∮
r

A · d� = 2πr Aθ is the

magnetic flux bounded by a circle of radius r. In general,

one cannot take Pθ = 0 for orbits that do not go through

the origin r = 0 (i.e., Pθ cannot in general be zeroed by

coordinate choice for all particles) which corresponds to the

axis of symmetry of the solenoid.

The static field Maxwell equations ∇ · Ba
= 0 and ∇ ×

Ba
= 0 allow Ba

= r̂Br (r, z) + ẑBz (r, z) to be expanded

as [1, 2]

Br (r, z) =

∞∑
ν=1

(−1)ν

ν!(ν − 1)!

∂2ν−1Bz0(z)

∂z2ν−1

(
r

2

)2ν−1

,

Bz (r, z) =

∞∑
ν=0

(−1)ν

(ν!)2

∂2νBz0(z)

∂z2ν

(
r

2

)2ν
,

(2)

where Bz0(z) ≡ Bz (r = 0, z) is the on-axis field. Thus,

the 3D field of the axisymmetric magnet with all nonlinear

terms can be regarded as specified by the on-axis (z = 0)

field. The lowest-order terms in the sums in Eq. (2): Br �

− 1
2

∂Bz0

∂z
r and Bz � Bz0 provide linear focusing. All higher

terms provide nonlinear focusing [1, 2].

The radial component of the Lorentz force equation for

the particle evolving in the magnetic field ẍ = [q/(γm)]x×

Ba can be expressed as

r̈ = r θ̇2 −
qr θ̇Ba

z

γm
. (3)
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Taking the paraxial approximation with r̈ � β2c2r ′′ in

Eq. (3) (exactly one has: z̈ = −
qr θ̇Ba

r

γm
and r̈ = ż2r ′′ −

qr θ̇Ba

r

γm
r ′) and then applying Eqs. (1) and (2) and consider-

able manipulation obtains the radial equation of motion:

r ′′ −
P2
θ

γ2 β2m2c2r3
� −

∞∑
n=0

r2n+1 (−1)n

22n+2

n∑
ν=0

2n − 2ν + 1

ν!(ν + 1)!(n − ν)!(n − ν + 1)!

⎡⎢⎢⎢⎢⎣
B

(2ν)

z0
(z)

[Bρ]

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

B
(2n−2ν)

z0
(z)

[Bρ]

⎤⎥⎥⎥⎥⎦
+

Pθ

γ βmc

∞∑
ν=1

(−1)ν

22ν (ν − 1)!(ν + 1)!

⎡⎢⎢⎢⎢⎣
B

(2ν)

z0
(z)

[Bρ]

⎤⎥⎥⎥⎥⎦ r2ν−1 .

(4)

Here, [Bρ] ≡ γ βmc/q = const is the particle rigidity and

B
(n)

z0
(z) denotes the nth derivative of Bz0 with respect to z

[e.g., B
(2)

z0
= B′′

z0
].

The angular impulse imparted to an energetic particle

that traverses the solenoid field at nearly constant radius

measures the focusing strength (interpreted as a nonlinear

thin-lens impulse). We define

Δr ′��focus ≡

∫ ∞

−∞

dz

[
r ′′ −

[Pθ/(γ βmc)]2

r3

]
�

∫ ∞

−∞

dz
[
RHS Eq. (4)

] �� r fixed

(5)

and obtain

Δr ′��focus =

−

∞∑
n=0

(2n + 1)!!

2n+1(n!)2(n + 2)!

∫ ∞

−∞

dz
��

B
(n)

z0
(z)

[Bρ]

���
2

r2n+1.
(6)

In the steps to obtain Eq. (6), all canonical angular mo-

mentum terms in Eq. (6) vanish because
∫ ∞
−∞

dz
∂νBz0

∂zν
=

0 for ν > 0, partial integrations are applied itera-

tively to show that
∫ ∞
−∞

dz

[
∂2ν Bz0

∂z2ν

] [
∂2n−2ν Bz0

∂z2n−2ν

]
=

(−1)n
∫ ∞
−∞

dz
(
∂nBz0

∂zn

)2
, and significant simplifications

have been made in numerical coefficients. The formula,

as derived applies to a single solenoid magnet in isolation

with an orbit extending from the beginning to the end of the

fringe field. Effectively the same result is obtained in a peri-

odic solenoid lattice (even with overlapping fringe fields) if

we replace
∫ ∞
−∞

dz · · · =⇒
∫

Period
dz · · · and interpret the

focusing impulse Δr ′ |focus as applying per lattice period.

The radial form of the angular kick integral in Eq. (5)

with the Pθ term subtraction may appear unusual, but it is

the appropriate form to take. In analysis of the familiar x-

plane Hill’s equation x′′ + κ(z)x = 0, it is well-established

that Δx′ |focus = −
∫ ∞
−∞

dz κ(z)x � −x
∫ ∞
−∞

dz κ(z) pro-

vides an impulse measure of strength of the lattice focus-

ing function κ(z) [1]. Equation (5) provides the correct

impulse measure for orbits in cylindrical-polar coordinates

with Pθ = const. It can be shown that the formula produces

the correct results for free-space, continuous focusing [i.e,

x′′ + k2
β0

x = 0 and y
′′
+ k2

β0
y = 0 with k2

β0
(z) ≥ 0 speci-

fied], and for linear optics approximationmagnetic focusing

(with fringe field).

DISCUSSION

Note from the impulse equation (6) that the first term

gives the familiar Larmor-frame focusing strength with

Δr ′ |focus = −r
∫ ∞
−∞

dz [kL (z)]2 where kL = Bz0/(2[Bρ]) is

the Larmor wavenumber [1, 3]. All higher-order terms are

negative definite since they are z-integral accumulations of

(B
(n)

z0
/[Bρ])2 with a negative numerical coefficient. This

shows that all nonlinearities contribute stronger focusing

as the radius of the particle increases and are not remov-

able. Also, the sign of Bz0 is irrelevant for all nonlinear

terms showing that the polarity of magnet coils (or perma-

nent magnet material) is irrelevant to all orders (However,

in a periodic lattice, if neighboring solenoid magnets over-

lap the relative polarity of neighboring pairs of magnets can

matter). Nonlinear terms may potentially be made larger or

smaller by varying the magnet structure in z, but it is not

possible to completely eliminate terms since B
(n)

z0
cannot be

identically zero for all z. Intuitively, one expects a weaker

nonlinear impulse if any axial variations of the solenoid

magnet structure are made gradually. Rapid changes will

likely to increase on-axis field derivative amplitudes driving

more nonlinearity. Thus, one expects methods such as the

necking down an iron yoke in the ends of the solenoid mag-

net or use of “bucking coils” to contain the axial fringe ex-

tent to potentially do more harm than good in terms of non-

linear effects by increasing the amplitude in higher deriva-

tives of the on-axis field Bz0(z). The best one might do is

to provide magnet designers with as small an aspect ratio

(characteristic coil radius divided by axial length of mag-

net structure) as possible, keep the magnet design simple

with gradual, if any, tapering, and to limit nonlinear effects

through the choice of the fill factor of the beam in the mag-

net aperture. Not surprisingly, this is consistent with usual

front-end applications of solenoids in accelerator systems.

Finally, results suggest making a ring with solenoid focused

is not a good idea since errors are not removable and can be

expected to accumulate lap-by-lap leading to potential rms

emittance growth unless the beam fill factor in the solenoids

is very small. These points are further illustrated by the re-

sults in the following Application section.

Results found as a consequence of Eq. (6) are known in

the electron optics community as Scherzer’s Theorem which

is applicable to the focusing of charged particles by axisym-
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metric fields (both magnetic, electric, and combined) [4].

The analogous results appear to be derived in eikonal pertur-

bative formulations and have significantly complicated ex-

pression. The present result in Eq. (6) has considerably sim-

plified form and follows to all orders within the context of

the paraxial approximation. The paraxial approximation is

usually very good in charged particle accelerators – though

it is weakest near the source (injection energy). Equation (6)

can be generalized to include non-paraxial effects, but the

expression of results become considerably more complex.

APPLICATIONS

We employ the impulse measure of solenoid focusing

strength in Eq. (6) to calculate the ratio of nonlinear (n ≥ 1

terms) to linear (first n = 0 term) focusing terms as

F ≡
Δr ′ |Nonlin focus terms

Δr ′ |Linear focus term

=

∞∑
n=1

(2n − 1)!!

2n+1(n!)2(n + 2)!

∫ ∞
−∞

dz
[
B

(n)

z0
(z)

]2

∫ ∞
−∞

dz
[
Bz0(z)

]2 r2n

=

[
(r/rc )2

2

∫ ∞
−∞

dz [rcB
′
z0

]2 +
5(r/rc )4

26

∫ ∞
−∞

dz [r2
c
B′′
z0

]2

+
7(r/rc )6

32 ·26

∫ ∞
−∞

dz [r3
c
B′′′
z0

]2 +· · ·

]
/
[∫ ∞
−∞

dz [Bz0]
2
]
.

(7)

Here, rc is the closest approach radius of the magnet coils

(or material structures). This factor is arbitrary (divides out

of terms) but is inserted to illustrate characteristic scaling.

Note that [Bρ] divides out of the expression for F , so the

fractional error depends only on the field structure and not

the dynamics – thereby simplifying error characterization.

First, we apply Eq. (7) to a simple thin-coil iron-free

solenoid design with a coil of N I amp-turns, radius R and

axial length � is centered at z = 0. The on-axis field

is straightforward to calculate analytically from the Biot-

Savart law [5] to show that

Bz0(z) =
μ0(N I )

2�

⎡⎢⎢⎢⎢⎣ (z + �/2)√
(z + �/2)2

+ R2
−

(z − �/2)√
(z − �/2)2

+ R2

⎤⎥⎥⎥⎥⎦
with μ0 = 4π × 10−7N/A2. Associated integrals in Eq. (7)

are surprisingly difficult to express in simple closed analytic

form, but are convergent and can be evaluated numerically

to plot the nonlinear impulse fraction F as a function of

r/R ∈ [0,1] for values of magnet aspect ratio R/�. Repre-

sentative plots of Bz0, B′
z0

, B′′
z0

, and F are given in Fig. 1.

Note that F can become relatively large at high fill factors.

Finally, we apply the fractional nonlinear impulse for-

mula (7) to an S4 solenoid magnet in the front-end of the

FRIB accelerator [6]. The S4 solenoid is a typical iron yoke

magnet with an operating field |Bz0 | ∼ 1 Tesla, a clear

bore radius of 7.94 cm, and a material (iron) axial length

of 39.51 cm. The axial field Bz0 is generated from a finite

element magnet design code. The fractional error impulse

evaluated with the first two terms of Eq. (7) is

F � 0.125

(
r

rc

)2
+ 0.0278

(
r

rc

)4
+ Θ

(
r

rc

)6
.

These two terms are adequate to provide almost full con-

vergence (so noisy numerical high-order derivatives not

needed). Typical fill factors of the beam within the magnet

aperture are ∼ 50%, corresponding to an ∼ 3% nonlinearity

(increasing to 8% and 15% at 3/4 and full aperture), which

drives negligible emittance growth in simulations [7].
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Figure 1: (Color) For a thin-coil iron-free solenoid: (upper)

Bz0, B′
z0

, and B′′
z0

(rescaled), and (middle, lower) fractional

nonlinear impulse F .

ACKNOWLEDGMENT

The author benefited from discussions with Q. Zhao

(MSU/FRIB) and J.J. Barnard (LLNL).

REFERENCES

[1] S. Lund and J. Barnard, US Particle Accel. School, Beam

Physics with Intense Space Charge, 2015: https://

people.nscl.msu.edu/~lund/uspas/bpisc_2015/

[2] M. Reiser, Theory and Design of Charged Particle Beams,

(New York: Wiley, 2nd Edition, 2008).

[3] J.D. Lawson, The Physics of Charged-Particle Beams, (Ox-

ford: Clarendon Press, 1977).

[4] Hawkes and Kasper, Prin. of Electron Optics, (AP, 1989).

[5] J.D. Jackson, Classical Electrodynamics, (Wiley, 1999).

[6] E. Pozdeyev, et al., NA-PAC 2013, Pasadena CA, WEOAB1.

[7] S.M. Lund, et al., HB2014, MOPAB17.

THPF139 Proceedings of IPAC2015, Richmond, VA, USA

ISBN 978-3-95450-168-7
4050Co

py
rig

ht
©

20
15

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

4: Hadron Accelerators
T12 - Beam Injection/Extraction and Transport


