

Introduction to Accelerators Lecture 4

Basic Properties of Particle Beams

William A. Barletta Director, United States Particle Accelerator School Dept. of Physics, MIT

Homework item

From the last lecture

We computed the B-field from current loop with I = constant

₩ By the Biot-Savart law we found that on the z-axis

$$\mathbf{B} = \frac{I}{cr^2} R \sin \theta \int_{0}^{2\pi} d\varphi \, \hat{\mathbf{z}} = \frac{2\pi I R^2}{c \left(R^2 + z^2\right)^{3/2}} \, \hat{\mathbf{z}}$$

What happens if we drive the current to have a time variation?

Question to ponder: What is the field from this situation?

We'll return to this question in the second half of the course

Is this really paradoxical?

Let's look at Maxwell's equations

 $\nabla \cdot \mu_{o} \vec{H}(\vec{r},t) = \mathbf{0} \qquad \nabla \times \vec{E}(\vec{r},t) = -\frac{\partial \mu_{o} \vec{H}(\vec{r},t)}{\partial t}$ $\nabla \cdot \varepsilon_{o} \vec{E}(\vec{r},t) = \rho(\vec{r},t) \qquad \nabla \times \vec{H}(\vec{r},t) = \vec{J}(\vec{r},t) + \frac{\partial \varepsilon_{o} \vec{E}(\vec{r},t)}{\partial t}$

Take the curl of $\nabla x E$

$$\nabla \times \nabla \times \vec{E}(\vec{r},t) = -\frac{\partial \mu_0 \nabla \times \vec{H}(\vec{r},t)}{\partial t} = -\frac{\partial \mu_0 \vec{J}(\vec{r},t)}{\partial t} - \frac{1}{c^2} \frac{\partial^2 \vec{E}(\vec{r},t)}{\partial t^2}$$

₩ Hence

$$\Rightarrow \nabla \times \nabla \times \vec{E}(\vec{r},t) + \frac{1}{c^2} \frac{\partial^2 \vec{E}(\vec{r},t)}{\partial t^2} = -\frac{\partial \mu_0 \vec{J}(\vec{r},t)}{\partial t}$$

The dipole radiation field: note the similarity to the static dipole

Now on to beams

Beams: particle bunches with directed velocity

- ₭ Ions either missing electrons (+) or with extra electrons (-)
- # Electrons or positrons
- # Plasma ions plus electrons
- ***** Source techniques depend on type of beam & on application

Electron sources - thermionic

Electrons in a metal obey Fermi statistics

$$\frac{dn(E)}{dE} = A\sqrt{E} \frac{1}{\left[e^{(E-E_F)/kT} + 1\right]}$$

Electrons with enough momentum can escape the metal

$$p_z^2/2m > E_F + \phi$$

yields

$$J_e = \int_{-\infty}^{\infty} dp_x \int_{-\infty}^{\infty} dp_y \int_{p_{z,free}}^{\infty} dp_x (2/h^3) f(E) v_z$$

some considerable manipulation yields the Richardson-Dushman equation

$$I \propto AT^2 \exp\left(\frac{-q\phi}{k_B T}\right)$$

$$A = 1202 \ mA/mm^2K^2$$

Brightness of a beam source

* A figure of merit for the performance of a beam source is the brightness

$$B = \frac{\text{Beam current}}{\text{Beam area 0 Beam Divergence}} = \frac{\text{Emissivity (J)}}{\sqrt{\text{Temperature/mass}}}$$

$$= \frac{J_e}{\left(\sqrt{\frac{kT}{\gamma m_o c^2}}\right)^2} = \frac{J_e \gamma}{\left(\frac{kT}{m_o c^2}\right)}$$

Typically the normalized brightness is quoted for $\gamma = 1$

Other ways to get electrons over the potential barrier

- ✤ Field emission
 - → Sharp needle enhances electric field

- \rightarrow Photon energy exceeds the work function
- → These sources produce beams with high current densities and low thermal energy
- \rightarrow This is a topic for a separate lecture

Electron beams can also be used to ionize the gas or sputter ions from a solid

What properties characterize particle beams?

* The beam momentum refers to the average value of p_z of the particles

$$p_{beam} = \langle p_z \rangle$$

* The beam energy refers to the mean value of

$$E_{beam} = \left[\left\langle p_z \right\rangle^2 c^2 + m^2 c^4 \right]^{1/2}$$

∗ For highly relativistic beams pc>>mc², therefore

$$E_{beam} = \langle p_z \rangle c$$

Measuring beam energy & energy spread

- # Magnetic spectrometer for good resolution, Δp one needs
 - → small sample emittance ε_i (parallel particle velocities)
 - \rightarrow a large beamwidth w in the bending magnet
 - → a large angle φ

- ₭ Examples:
 - → Non-intercepting: Wall current monitors, waveguide pick-ups
 - → Intercepting: Collect the charge; let it drain through a current meter
 - Faraday Cup

The Faraday cup

Simple collector

Proper Faraday cup

Bunch dimensions

For uniform charge distributions We may use "hard edge values

For gaussian charge distributions Use rms values σ_x , σ_y , σ_z

We will discuss measurements of bunch size and charge distribution later

We need to measure the particle distribution

Measuring beam size & distribution

		transverse		longit.			1						
PROPERTY MEASURED	intensity/charge	osition	size/shape	Smittance	Size/shape	Smittance	Q-value + ΔQ	Snergy + ΔE	olarization	Effect on beam			
Secondary emission monitors	•	-	•	•	• •			•		IN	- x	×	
Wire scanners	<u> </u>	•	•	•							x	<u> </u>	
Wire chambers		•									x	x	
Gas curtain				\bullet							x		
Residual-gas profile monitors				•						x			
Scintillator screens											x	x	x
Optical transition radiation											x		
Synchrotron radiation						lacksquare				x			
Scrapers and measurement targets													x
Beamscope													x
Effect on beam: N none - slight, negligible + perturbing D destructive				•	prim indir	ary p ect u	ourpo se	se					

Some other characteristics of beams

Beams particles have random (thermal) \perp motion

* Beams must be confined against thermal expansion during transport

Beams have internal (self-forces)

- # Space charge forces
 - \rightarrow Like charges repel
 - → Like currents attract
- * For a long thin beam

$$E_{sp}(V/cm) = \frac{60 \ I_{beam}(A)}{R_{beam}(cm)}$$

$$B_{\theta}(gauss) = \frac{I_{beam}(A)}{5 R_{beam}(cm)}$$

Net force due to transverse self-fields

In vacuum:

Beam's transverse self-force scale as $1/\gamma^2$

- → Space charge repulsion: $E_{sp,\perp} \sim N_{beam}$
- → Pinch field: $B_{\theta} \sim I_{beam} \sim v_z N_{beam} \sim v_z E_{sp}$

$$\therefore F_{sp,\perp} = q (E_{sp,\perp} + v_z \times B_{\theta}) \sim (1-v^2) N_{beam} \sim N_{beam} / \gamma^2$$

Beams in collision are *not* in vacuum (beam-beam effects)

At Interaction Point space charge cancels; currents add

==> strong beam-beam focus

--> Luminosity enhancement

--> Strong synchrotron radiation

Consider 250 GeV beams with 1 kA focused to 100 nm

 $B_{peak} \sim 40 Mgauss$

Applications determine the desired beam characteristics

Energy	$E = \gamma mc^2$	MeV to Te V
Energy Spread (rms)	$\sigma = \Delta \mathbf{E}/\mathbf{E},$	~0.1%
Momentum spread	Δγ/γ	
	∆ p/p	
Beam current (peak)		10 – 10 ⁴ A
Pulse duration (FWHM)	Τ _p	50 fs - 50 ps
Pulse length	σ _z	mm - cm
(Standard deviation)		
Charge per pulse	Q _b	1 nC
# of Particles number	N _b	
Emittance (rms)	ε	1 π mm-mrad / γ
Normalized emittance	$\varepsilon_n = \gamma \beta \varepsilon$	
Bunches per	M _b	1- 100
macropul s e		
Pulse repetition rate	f	1 - 10 ⁷
Effective bunch rate	f M _b	1 - 10 ⁹

Emittance is a – measure of beam quality

What is this thing called beam quality? or How can one describe the dynamics of a bunch of particles?

Each of N_b particles is tracked in ordinary 3-D space

Not too helpful

Configuration space:

 $6N_b$ -dimensional space for N_b particles; coordinates (x_i, p_i) , $i = 1, ..., N_b$ The bunch is represented by a single point that moves in time

Useful for Hamiltonian dynamics

Configuration space example: 1 particle in an harmonic potential

We don't care about each of 10^{10} individual particles But seeing both the x & p_x looks useful

Option 3: Phase space (gas space in statistical mechanics)

6-dimensional space for N_b particles The ith particle has coordinates (x_i, p_i) , i = x, y, zThe bunch is represented by N_b points that move in time

In most cases, the three planes are to very good approximation decoupled ==> One can study the particle evolution independently in each planes:

Particles Systems & Ensembles

- * The set of possible states for a system of *N* particles is referred as an *ensemble* in statistical mechanics.
- * In the statistical approach, particles lose their individuality.
- * Properties of the whole system are fully represented by particle density functions f_{6D} and f_{2D} :

$$f_{6D}(x, p_x, y, p_y, z, p_z) dx dp_x dy dp_y dz dp_z \qquad f_{2D}(x_i, p_i) dx_i dp_i \quad i = 1, 2, 3$$

where

$$\int f_{6D} \, dx \, dp_x \, dy \, dp_y \, dz \, dp_z = N$$

Longitudinal phase space

- * In most accelerators the phase space planes are only weakly coupled.
 - \rightarrow Treat the longitudinal plane independently from the transverse one
 - → Effects of weak coupling can be treated as a perturbation of the uncoupled solution
- * In the longitudinal plane, electric fields accelerate the particles
 - → Use *energy* as longitudinal variable together with its canonical conjugate *time*
- * Frequently, we use *relative energy variation* δ & *relative time* τ with respect to a reference particle

$$\delta = \frac{E - E_0}{E_0} \qquad \tau = t - t_0$$

* According to Liouville, in the presence of Hamiltonian forces, the area occupied by the beam in the longitudinal phase space is conserved

Transverse phase space

* For transverse planes $\{x, p_x\}$ and $\{y, p_y\}$, use a modified phase space where the momentum components are replaced by:

$$p_{xi} \rightarrow x' = \frac{dx}{ds}$$
 $p_{yi} \rightarrow y' =$

where s is the direction of motion

[∗] We can relate the old and new variables (for $Bz \neq 0$) by

$$p_i = \gamma m_0 \frac{dx_i}{dt} = \gamma m_0 v_s \frac{dx_i}{ds} = \gamma \beta m_0 c x'_i \qquad i = x, y$$

where
$$\beta = \frac{v_s}{c}$$
 and $\gamma = (1 - \beta^2)^{-1/2}$

Note: x_i and p_i are canonical conjugate variables while x and x_i ' are not, unless there is no acceleration (γ and β constant)

Look again at our ensemble of harmonic oscillators

Particles stay on their energy contour.

Again the phase area of the ensemble is conserved

Emittance describes the area in phase space of the ensemble of beam particles

Emittance - Phase space volume of beam

Twiss representation of the emittance

X

x'

- * A beam with arbitrary phase space distribution can be represented by an equivalent ellipse with area equal to the rms emittance divided by π .
- * The equation for such an ellipse can be written as

$$\frac{\left\langle w'^{2}\right\rangle}{\varepsilon_{w,rms}}w^{2} + \frac{\left\langle w^{2}\right\rangle}{\varepsilon_{w,rms}}w'^{2} - 2\frac{\left\langle ww'\right\rangle}{\varepsilon_{w,rms}}ww' = \varepsilon_{w,rms} \qquad w = x, y$$

** Accelerator physicists often write this equation in terms of the so-called *Twiss Parameters* β_T , γ_T and α_T

$$\beta_{Tw}w'^2 + \gamma_{Tw}w^2 + 2\alpha_{Tw}ww' = \varepsilon_w \qquad w = x, y$$

where

$$\langle w^2 \rangle = \beta_{Tw} \varepsilon_w \qquad \langle w'^2 \rangle = \gamma_{Tw} \varepsilon_w \qquad \langle w w' \rangle = -\alpha_{Tw} \varepsilon_w \qquad w = x, y$$

US Particle Accelerator School

From: Sannibale USPAS lectures

Force-free expansion of a beam

Notice: The phase space area is conserved

Matrix representation of a drift

℁ From the diagram we can write by inspection

$$\begin{pmatrix} x \\ x' \end{pmatrix} = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix} \Longrightarrow \begin{array}{l} x = x_0 + L x'_0 \\ x' = x'_0 \end{array}$$

$$\langle x^2 \rangle = \left\langle \left(x_0 + L x_0' \right)^2 \right\rangle = \left\langle x_0^2 \right\rangle + L^2 \left\langle x_0'^2 \right\rangle + 2L \left\langle x_0 x_0' \right\rangle$$
$$\Rightarrow \qquad \left\langle x'^2 \right\rangle = \left\langle x'^2 \right\rangle \\ \left\langle xx' \right\rangle = \left\langle \left(x_0 + L x_0' \right) x_0' \right\rangle = L \left\langle x_0'^2 \right\rangle + \left\langle x_0 x_0' \right\rangle$$

Now write these last equations in terms of β_T , γ_T and α_T

Recalling the definition of the Twiss parameters

$$\beta_{T}\varepsilon = \beta_{T0}\varepsilon + L^{2}\gamma_{T0}\varepsilon - 2L\alpha_{T0}\varepsilon$$
$$\gamma_{T}\varepsilon = \gamma_{T0}\varepsilon$$
$$-\alpha_{T}\varepsilon = L\gamma_{T0}\varepsilon - \alpha_{T0}\varepsilon$$

$$\Rightarrow \begin{pmatrix} \beta_T \\ \gamma_T \\ \alpha_T \end{pmatrix} = \begin{pmatrix} 1 & L^2 & -2L \\ 0 & 1 & 0 \\ 0 & -L & 1 \end{pmatrix} \begin{pmatrix} \beta_{T0} \\ \gamma_{T0} \\ \alpha_{T0} \end{pmatrix}$$

For your notes, as shown in many books:

This emittance is the phase space area occupied by the system of particles, divided by π

The rms emittance is a measure of the mean nondirected (thermal) energy of the beam

Why is emittance an important concept

 $Z = \lambda/8$

 $Z = \lambda/12$

 $\mathbf{Z} = \mathbf{0}$

X'

 $Z = \lambda/4$

1) Liouville: Under conservative forces phase space evolves like an incompressible fluid ==>

2) Under linear forces macroscopic (such as focusing magnets) & γ =constant emittance is an invariant of motion

Χ

Emittance conservation with B_z

- * An axial B_z field, (e.g., solenoidal lenses) couples transverse planes
 - → The 2-D Phase space area occupied by the system in each transverse plane is no longer conserved y

- ** In a frame rotating around the *z* axis by the *Larmor frequency* $\omega_L = qB_z/2g m_0$, the transverse planes decouple
 - \rightarrow The phase space area in each of the planes is conserved again

Emittance during acceleration

* When the beam is accelerated, $\beta \& \gamma$ change

- \rightarrow x and x' are no longer canonical
- → Liouville theorem does not apply & emittance is not invariant

$$y'_{0} = \tan \theta_{0} = \frac{p_{y0}}{p_{z0}} = \frac{p_{y0}}{\beta_{0} \gamma_{0} m_{0} c} \qquad y' = \tan \theta = \frac{p_{y}}{p_{z}} = \frac{p_{y0}}{\beta \gamma m_{0} c} \qquad \frac{y'}{y'_{0}} = \frac{\beta_{0} \gamma_{0}}{\beta \gamma}$$

In this case $\frac{\varepsilon_{y}}{\varepsilon_{y0}} = \frac{y'}{y'_{0}} \qquad = > \qquad \beta \gamma \varepsilon_{y} = \beta_{0} \gamma_{0} \varepsilon_{y0}$

- * Therefore, the quantity $\beta \gamma \epsilon$ is invariant during acceleration.
- * Define a conserved normalized emittance

$$\varepsilon_{n\,i} = \beta \gamma \varepsilon_i \qquad i = x, y$$

Acceleration couples the longitudinal plane with the transverse planes The 6D emittance is still conserved but the transverse ones are not

US Particle Accelerator School

From: Sannibale USPAS lectures

Nonlinear space-charge fields filament phase space

Consider a cold beam with a Gaussian charge distribution entering a dense plasma

At the beam head the plasma shorts out the E_r leaving only the azimuthal B-field

The beam begins to pinch trying to find an equilibrium radius

×

Example 2: Filamentation of **longitudinal phase space**

Data from CERN PS

The emittance according to Liouville is still conserved

Macroscopic (rms) emittance is not conserved

Non-conservative forces (scattering) increases emittance

Is there any way to decrease the emittance?

This means taking away mean transverse momentum, but keeping mean longitudinal momentum

We'll leave the details for later in the course.

$$\varepsilon^2 = R^2 (V^2 - (R')^2)/c^2$$

- # RMS emittance
 - → Determine rms values of velocity & spatial distribution
- # Ideally determine distribution functions & compute rms values
- * Destructive and non-destructive diagnostics

Example of pepperpot diagnostic

- # Size of image ==> R
- ℁ Spread in overall image ==> R´
- ℁ Spread in beamlets ==> V
- # Intensity of beamlets ==> current density

Wire scanning to measure R and ε

- Measure x-ray signal from beam scattering from thin tungsten wires
- Requires at least 3 measurements along the beamline

Matching beams & accelerators to the task

What are the design constraints?

- ₭ Beam particle
- ℁ Beam format
- **₩** Type of accelerator
- * Machine parameters

Accelerator designer needs figures of merit to compare machine alternatives

- ✤ Physics based
 - → Colliders
 - Energy reach, Collision rate (Luminosity), Energy resolution
 - → Light sources
 - Spectral range, Spectral brilliance
- ₭ Economics based
 - → Total cost, \$/Watt, €/Joule, operating cost
 - → Lifetime, Reliability, Availability
- ⋇ Facility based
 - → Size, Weight, power consumption
 - ==> Accelerating gradient, efficiency
- ₭ Technology based
 - → Technical risk, expansion potential

irtici e Accel erator Schoo

High Energy Physics Figure of Merit 2: Number of events

Events = *Cross* - *section* × (*Collision Rate*) × *Time*

Beam energy: sets scale of physics accessible

We want large charge/bunch, high collision frequency & small spot size

Example from high energy physics: Discovery space for future accelerators

FOM 1 from condensed matter studies: Light source brilliance v. photon energy

FOM 2 from condensed matter studies: Ultra-fast light sources

Primary, secondary, & tertiary design constraints

	the off			X	1) CY					
	Particle	Energy	Current	Quality	4E/E	2 ¹ /S ⁰ /S ¹	Pulse ler	Micro-by	Poldrizo	
HEP. NP	p, i, e	1	2	2	1	2	2	1	1/3	
Light sources	е	2	1	1	1	2	3	1	_	
FELs	е	2	1	1	1	2	1	3	_	
Spallation sources	p, i	3	1	2	1	2	2	3	_	
Radiography	e, p	2	1	1	2	3	1	2	_	
Therapy	e, p	1	1	2	2	3	3	3	_	
Cargo screening	i	2	1	3	3	2	3	3	_	