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Abstract 

A revision and improvement of analytic formulae for calculating sputtering yields is performed based on the large 
number of experimental and calculated sputtering yield data accumulated at IPP in the last three decades. The 
Bohdansky formula for calculating sputtering yields as a function of energy is revised by introducing a nuclear 
stopping cross-section based on an analytic fit to the K r - C  potential. New analytic expressions for the two fit 
parameters Q and Eth of the Bohdansky formula are deduced. Yamamura's formula for the angular dependence of 
the sputtering yield is shown not to be valid for self-sputtering and for heavy projectiles at energies near the 
threshold. 

1. Introduction 

One of the most critical problems in controlled thermonuclear fusion research is the erosion at limiters, divertor 
plates and vessel walls due to the impact of energetic plasma particles. This erosion causes a loss of material leading 
to thinning of the wall and to plasma contamination. 

An important erosion process is physical sputtering, i.e. the removal of surface atoms from a solid due to the 
impact on energetic particles. The sputtering process can be described as a momentum transport in a collision 
cascade initiated by the incident particle in the surface layer of the solid. A surface atom is ejected if its energy is 
higher than the surface binding energy [1]. Physical sputtering is quantified by the sputtering yield Y defined as the 
mean number of atoms removed from the surface of a solid per incident ion. 

The most widely used analytical formula for calculating sputtering yields was introduced in 1984 by Bohdansky 
[2]. The Bohdansky formula, which is based on Sigmund's analytic sputtering theory [1], describes the sputtering 
yield as a function of the projectile energy at normal incidence (a  = 0 °) 

( (E th )2 /3 ) (  g th /2  
V(Eo, a = 0  °) =QSTnF(e) 1 -- ~ EO 1 - E----o] ' (1) 

where E 0 is the projectile energy, a the angle of incidence, S~F(e) the nuclear stopping cross section, and e the 
reduced energy 

Me aL Z1ZEe 2 M 1 + M z 
e Eo/ETF with ETF = - -  (2) 

= EOMI + M E ZIZ2 e2 a L M2 

Z 1 and Z 2 are the nuclear charges, and M 1 and M 2 the masses of the projectile and the target atom, respectively, e 
is the electron charge (e 2 = 14.4 eVA) .  The Lindhard screening length a L is given by 

[ 9 ~  2 , 1 /3  2/3 1/2 * 
a L =  k | ~ / aB( Z1 + Z2/3) - = 0"4685( Z12/3 + Z~/3) -1/2 A, (3) 

] 
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where a B is the Bohr radius. The energy ETF can be written 

Mx + M2 ZIZ2(Z  2/3 + Z~/3) 1/2. (4) ETF(eV ) = 30.74 ME 

The values Q and Eth in Eq. (1) are used as parameters to fit the sputtering data. Q determines the maximum of the 
yield curve, and Eth i:~ the threshold energy where the sputtering yield becomes zero. The last two terms in Eq. (1) 
describe the threshold behaviour of the yield, not given in the analytic theory. 

For the dependence of the sputtering yield on the angle of incidence of the bombarding particles, Yamamura [18] 
proposed a procedure which is based on the assumption that the angular dependence can be described by a factor to 
the yield at normal incidence 

Y(E0, t~) = Y( E0, O/-  0°)(cos a ) - f  exp( f [1  - (cos O/)-11 cos Otop t). (5) 

The (cos a )  - f  term was proposed by Sigmund [1], the exponential term is chosen to produce a maximum in the 
angular dependence. The values f and aop t are used as fitting parameters, where aop t is the angle which 
corresponds to the maximum of the sputtering yield. 

In a recent IPP report  [4] we collected a large number of experimental and calculated yield data which include 
the experimental data compiled in an earlier report [5] and data accumulated in the years thereafter. During this 
compilation we foun6 some systematic deviations of the data from the Bohdansky and Yamamura formulae which 
were the reason to tl~dnk about possible improvements of Eqs. (1) and (5). For the case of the Bohdansky formula 
one point is that the nuclear stopping cross section s~F(e) used in Eq. (1) is based on an analytic fit to the 
Thomas-Fermi  potential [6,7] given by Matsunami et al. [8]. It is known that this cross-section is too large at low 
energies (E < 0.01). The other point is that values calculated with the Monte Carlo program TRIM.SP [9] using the 
K r - C  potential [10] are in good agreement with experimental data in many cases. Therefore, it seems reasonable to 
find a new fit for the stopping cross section s n in Eq. (1) based on the K r - C  potential for a consistent fit of the 
calculated data with the Bohdansky formula (1). Finally, it would be of interest to find an analytic expression for the 
fit parameters Q and Eth in Eq. (1). 

For the case of the Yamamura formula it was found during the compilation mentioned above that Yamamura's 
assumption of Eq. (5) is not correct in some cases. Yamamura gave also analytic scaling laws for calculating the 
fitting parameters f and O/opt of Eq. (5). However, these scaling laws are based on a relatively limited number of 
sputtering yield data. Due to the large number of data accumulated also for oblique angles of incidence it is possible 
to prove the validity of the formulae for f and O/op t. 

2. New formulae for the energy dependence of the sputtering yield at normal incidence 

The first step for a possible improvement of the Bohdansky formula is to replace the analytic fit to the 
TF [8] Thomas-Fermi  nuclear stopping cross section s n 

3.441v~-ln(e + 2.718) 

s~XF(e) = 1 + 6.355Vce-e + e(6.882V~- -- 1.708) ' (6) 

by one based on the K r - C  potential [10]. This stopping cross section Sn ~ c  can be approximated by 

{).5 ln(1 + 1.2288e) 
Snr'rc(e) = e + 0.1728v~-e + 0.008e °'s°4 " (7) 

Eq. (7) does not show the correct behaviour for high energies, as sn(e) has to tend to (In e / e )  [11], but Eq. (6) with 
other constants does not reproduce the stopping determined from the K r - C  potential. In the energy range of 
interest (e < 100) Eqi. (7) is a good approximation. The differences between the two equations for the nuclear 
stopping cross section (6) and (7) are shown in Fig. 1; the differences increase below e = 0.1 down to lower reduced 
energies. The case of tungsten self-sputtering, see Fig. 2, demonstrates the better fit with the revised Bohdansky 
formula 

o 0o, l th/   l(l ] 2' (8) 
which includes the new stopping cross-section formula (7). This revised Bohdansky formula (8) gives better 
agreement with experimental and calculated data than the original Bohdansky formula (1) but still exhibits 
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Fig. 1. Nuclear stopping cross section Sn(e) based on the Kr-C potential (solid line, calculated with Eq. (7)) and on the 
Thomas-Fermi potential (dashed line, calculated with Eq. (6)) as a function of the reduced energy e. 

deviations in the high keV range. Besides, the best fit to the data in the low keV range differs from calculated data 
in the energy regime near  the threshold, see Fig. 2. Bohdansky [12] made an at tempt  to describe the behaviour of  the 
threshold energy as a function of  the mass ratio by the following formulae 

l Es Mx 
r(i--S_~, ) for M22 < 0.2, 

Eth = ) / M \2/5 
.1  

8 s ~22 for M--~>0.2, 

(9) 
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Fig. 2. Energy dependence of the tungsten self-sputtering yield fitted with the Bohdansky formula (1) (dashed line) and with the 
revised Bohdansky formula (8) (solid line). 
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where y is the maxinmm energy transfer factor, 3' = 4M1M2/(M1 + ME) 2 and E s is the surface binding energy (heat 
of sublimation). However, there exists a number of calculated data below the threshold energy given by Eq. (9). 
Taking these values into account for fitting with Eq. (8) leads to deviations of the fit with the available data at higher 
energies. Therefore, in order to reduce the influence of yield data in the threshold regime on the entire fit, data at 
energies below the threshold energy from Eq. (9) were not taken into account for fitting. This demonstrates that the 
threshold terms in Eqs. (1) and (8) do not correctly describe the threshold behaviour. At  the time when Eq. (1) was 
introduced nearly no data near the threshold energy for sputtering were available. Actually, some efforts are made 
for a better understanding of the threshold behaviour [13] but, because of the dependence of Eth on the mass ratio 
and angle of incidence, the Ansatz by Bohdansky in Eq. (1) is kept. 

The second step for an improvement of Eq. (1) is to find an analytic expression for the fit parameter Q and a 
better description of Eth based on Eq. (8) and the large number of collected data. In order to obtain an analytic 
scaling of the resulting value Q with the project i le/ target  parameters, we start from Sigmund's formula (Eq. (2.3.7) 
in Ref. [14]) for the sputtering yield Y 

Y=AFD, (10) 

where F D is the deposited energy and A a constant. Assuming power potentials of the form [14] 

V(r) cxr -1/m, m<l ,  (11) 

the values of A and F D can be written 

F m 1 
A 

8(1 - 2m)  NCmE 1-2m' 

M1 
F D = as NSn(Fo)  = otsN4"traLZlZ2 e2 IV12+''''''~-~ Sn(~" ) . U l  (12) 

N is the atomic density of the solid and a s is a dimensionless function of the mass ratio M2/M 1 and the angle of 
incidence [2,14]. NS~I(E o) is the nuclear stopping power. The other values appearing in Eq. (12) are given by the 
following formulae 

r/l 
Fm= O ( 1 ) - ~ , ( 1 - m ) '  (13) 

2m M m 
ff__Ama 2 ""1 aL ) Cm= 2 ( M2 ) ( 2zlz2e2 (14) 

A m is a dimensionless function of the parameter  m which varies slowly from m = 1 at high energies down to m - 0 
at very low energies [14]. a L is given in Eq. (3), qJ(x) is the digamma function which is defined by 

d In I'(x) 
¢(x)  dx r ' ( x ) / r ( x ) .  (15) 

Introducing Eq. (14) into Eq. (12) and Eq. (12) into Eq. (10) leads to 

Ym 

I~.m e2(1- 2m)[ 9"ff2 ) 1/3(-1+ 128 oz B-l+2m 

22m(1 - 2m)A m 
E 2m- l ( Z l Z 2 )  1-2m(Z2/3 + Z2/3) 1/2-m M~-mM~ 

M1 +M20~$Sn(~) 

_ E2m-l.e I Z =qm s Jm~, 1, Z2, M1, M2)°/sSn(E), (16) 

where qm is a constant. Here the term Ym instead of Y is chosen to demonstrate the dependence of the theoretical 
sputtering yield on the interaction potential parameter m. One can try to compare Ym given in Eq. (16) with the yield 
Y of the revised Bohdansky formula (8) neglecting the threshold terms, i.e. Ym = QSn(E) and one obtains 

2m--1 qmEs fmCq = Q. (17) 
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Fig. 3. The value a s (see text) versus the ratio of target to projectile mass. Solid symbols represent calculated data (c), open symbols 
experimental data (e). The thin solid line is Sigmund's theoretical curve [13], the thick solid line is the best fit to the data, the 
dashed curve is the value of Rp/R given by Gott [16]. The shaded area shows the spreading of the a s values given by Bohdansky in 
Ref. [2]; the lower limit of the shaded area represents the formula given in the same publication. 

Assuming  a s to be a constant,  a l inear relation be tween  QE~s -2m and fm could best  be achieved by using m = 1 / 6  
which was shown earlier [15,9] to give the best  agreement  with data from simulations.  The  value m = 0, which 
corresponds to hard spheres,  gives no reasonable  fit. Apply ing  m = 1 / 6  changes  Eqs. (16) and (17) to 

QE 2/3= ql /60ls f l /6(Zl ,  Z2, g l ,  M2),  (18) 

where  

/ '1/6 ( e 2 ) 2 / 3 0  .8853 - 2/3a B 2/3 

q l / 6  = 9 1 / 3 2 x  , (19) 
- '~"1 /6  

~ r  5/6,1At 1 / 6  

"f - -  7 2 / 3 7 2 / 3 [ 7 2 / 3  d- Z 2 / 3 )  1 /3  *'*1 ' " 2  (20) 
J 1 / 6  - -  L'a "r"2 ~,'-'1 M1 + M2 

a B is the Bohr radius and A1/6 is determined by interpolat ion o f  known values for several m [14], 
o 

a B = 0 .529 A ,  / ' l / 6  = 0.531,  and Aa/6 = 3.8.  ( 21 )  

Introducing Eq. (20) in Eq. (18) results in a value of  ql/6 = 1.633. In Ref.  [4] a s was used as a constant  with a fitted 
value o f  0.17 leading to ql/6Ots = 0.278; systematic  deviations from a linear relationship given in Eq. (17) are thought  
to be a consequence  o f  the constant  value of  a s. However ,  the dimensionless  parameter a s is a function o f  the mass 
ratio M z / M  1. It can be determined from the experimental  and calculated Q values using Eq. (18) and the known 
charges Z i and masses  M~ of  projecti les and targets. The  d e p e n d e n c e  o f  a s on the mass ratio M2/M 1 is shown in 
Fig. 3. A best  fit for as  is achieved with the formula 

0.15 + O.05M2/M 1 
a s = (22 )  

1 + O.05(M2/M1) 1"6' 
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Fig. 4. The value QE 2/3 versus fl/6Ots, see Eqs. (18) and (20). Solid squares represent calculated data, open squares experimental 
data. The solid line is given by Eq. (23). 

as shown also in Fig. 3. Eq. (18) can, therefore, be written 

M5/6M 1/6 0.15 + O.05M2/M 1 
QE2/3 1.633Z2/3Z2/3( Z2/3 

Z2/3] 1 / 3 2  "~ MI+M21+O.05(M2/M1) 1"6" 
+ (23) 

Eq. (23) leads to a good fit of the experimental and calculated Q values with the predic ted  charge and mass 
dependence, see Fig. 4. Especially, at low values of fl/6 this procedure gives a better fit than Fig. 141 in Ref. [4] as 
expected. 

In Fig. 3 Sigmund:s theoretically predicted a s is also included. As shown in Fig. 3 the choice for a s in Eq. (22) is 
in good agreement with Sigmund's value [13] only at low mass ratios. For large mass ratios Bohdansky [2] gave an 
analytic expression for a s based on the ratio of the projected range Rp to the total range (path length) R. 
Bohdansky's formula, also shown in Fig. 3, seems still too high at large mass ratios. Gott derived the following 
formula [16] 

Rp 4 + 6M2/M a 
a s =  -R- = 3(1 +ME~M1) 2' ME~M1 >_4, (24) 

based on the work of Lindhard et al. [17]. Eq. (24) shows too low values at large mass ratios but it should be 
mentioned that Eq. ('.24) neglects inelastic energy losses. Eq. (22) gives an empirical fit to the total mass ratio range. 

The measured values of a s given by Bohdansky in Ref. [2] show a stronger spreading as the values given here. 
This spreading is shown in Fig. 3 by the shaded area and is due to the fact that Bohdansky's a s is calculated for 
rn = 0 in Eq. (16); it should also be mentioned that Bohdansky used the Born-Mayer  screening length aBM = 0.219 
Pt [18] independent of Z for the calculation of q0 (m = 0) in Eq. (16) (while for Sn(E) the Lindhard screening length 
a L, see Eq. (4), was used which depends on Z 1 and Z2), leading to a stronger variation of a s with Z. 

The large number of values of the threshold energy Eth obtained by fitting experimental and calculated sputtering 
yields with the revised Bohdansky formula (8) gives the possibility to introduce a better scaling of the threshold 
energy with the mass ratio. The best fit is achieved with the formula 

Es I lMI)  +b3 Mll with bl=7.0,  b2=-O.54,  b3=O.15, b4=l.12 , (25) 

see Fig. 5. Earlier fits vary somewhat but give similar results. It should be remembered that these data are only valid 
for normal incidence, and that the fit values Q and Eth depend on the analytic formula (8) for the energy 
dependence chosen t0r the fitting procedure. Besides, calculated values at very low energies had to be omitted for 
the fitting procedure. 
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Fig. 5. The relative threshold energy, Eth/E s, versus the ratio of target to projectile mass. Solid squares represent calculated data, 
open squares experimental data. The solid line, given by Eq. (25), is a fit to all available data. 

The fit formulae (23) and (25) give a good guess for the values of Q and Eth used in the revised Bohdansky 
formula (8) as shown in Figs. 4 and 5. Nevertheless, in cases where data are available it is preferable to use the 
specific fit values given in the figures of the report [4]. 

The universal Eq. (16) can also be used to make quick estimates of the sputtering yield of different projecti le-target  
combinations. Neglecting the threshold terms the sputtering yield has a maximum where Sn(e) has a maximum. This 
occurs at about e = 0.3, see Fig. 1. Therefore, the maximum yield is reached at an energy, using Eq. (4), 

E~nax(eV) = ErF0.3 = 9.22 M1)v~--~-M2 ZlZ2(Z21/3 + Z2/3) 1/2. (26) 

Inserting this energy into the yield Eq. (16) with m = 1 /6  the maximum possible sputtering yield at normal incidence 
can be estimated. For light ion sputtering ( M  2 >> M 1) and the additional approximation M 2 = 2Z 2 the yield ratio of 
different target elements with the indexes (1) and (2) assuming the same projectile becomes 

ylmax[7(1)~ (Z(2) 11/2[E~2))2/3 
/6 I,~2 } _ _  _ _  (27) 

Yl~X (Z(22) ) 1 Z(21)] t E(1) " 

For the case of light ion bombardment of W or C this results in a yield ratio of about 4. 
Also, the ratio of maximum self-sputtering yields of different materials becomes 

y ~ x ( 2 ( 1 ) )  2(1) 114/9 (E(2) / 2/3 

y ~ ( Z ( 2 )  ) ( ~ - ~ ]  1 ~s(1~ ] . (28) 

This ratio is about 45 for W self-sputtering to C self-sputtering in good agreement with experimental data [4]. For a 
power potential with m = 0, as is often assumed for sputtering, this yield value becomes about 300. 

3. Angular dependence of the sputtering yield 

The large number of data accumulated for oblique angles of incidence allows us also to check the validity of the 
available formulae for the angular dependence of the sputtering yield. Yamamura [3] proposed an analytic fit 
formula for f based on data available at the time 

f =  1/~s (0.94 - 1.33 × lO-3M2/M1). (29) 
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Theoretical consideral:ions [3] led to the following analytic expression for O~Op t 

Otop t = Tr/2 - - a L n X / 3 ( 2 t ~ ~ )  -1/2, (30) 

where n is the density of the target material (in atoms/.~3). As the yield at normal incidence is fixed, uncertainties in 
Y(E o, 0) enter the fitting procedure for Y(Eo, el) strongly. We used Yamamura's formula (5) for fitting available 
yield data measured and calculated at IPP as a function of the angle of incidence for a given energy E 0 [4]. The 
obtained fit parameters f and aop t are used to check Eqs. (29) and (30). Before, the limitations of formula (5) are 
discussed. 

Yamamura's formula (5) relies on the assumption that the threshold energy is independent of the angle of 
incidence a. This is approximately correct for light projectiles but seems not to be the case for heavy projectiles as 
shown in Ref. [13]. Therefore, Eq. (5) is not applicable in the threshold regime for sputtering for heavy projectiles 
and especially in the case of self-sputtering, where the angle of incidence is limited due to the surface binding 
potential. 

Yamamura's proposed fit for f ,  see Eq. (29), exhibits a linear relation between f / ~  and the mass ratio 
M J M  1. Our collected data for f obtained as fit parameter with Eq. (5) agree with Eq. (29) for large mass ratios, but 
at low mass ratios we observe strong deviations which scale from the ion energy. Therefore we prefer to plot f as a 
function of the ion energy for different ion / ta rge t  combinations in order to facilitate reading off the value of f for a 
given mass ratio and a given energy. This plot is shown in Fig. 6. The shaded area gives the range of f-values due to 
Yamamura's fit formula (29) for the plotted ion/ ta rge t  combinations. 

Yamamura's formula for Crop t (Eq. (30)) fits our data for aoot obtained with Eq. (5) only well for light projectiles 
(M2/M 1 > 3)  and not too low energies, but for heavy projectiles and self-sputtering as well as for ion energies near 
the threshold we observe systematic deviations. Figs. 7 and 8 show aop t as a function of the ion energy for light 
projectiles (M2/M 1 > 3) and self-sputtering, respectively. In Fig. 8 (self-sputtering) the values for Crop t a r e  taken 
directly from the data points due to the unsatisfying fit with Eq. (5). For large mass ratios aop t agrees with 
Yamamura's formula (30) at high ion energies, as can be seen in Fig. 7. The shaded area gives the range of aop t 
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the projectile-target combinations shown to the right of the figure. 
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values due to formula (30) for the plotted ion/target  combinations. At ion energies near the threshold %pt becomes 
smaller and it may even reach zero. For low mass ratios and self-sputtering (Fig. 8), on the contrary, the values of 
%pt at energies near the threshold have a tendency to become larger. This behaviour can be understood considering 
that, especially for self-sputtering, chemical binding forces at the surface cause an acceleration and a refraction for 
projectiles leading to a change in the angle of incidence [19]. This effect is negligible for ion energies much higher 
than the binding forces but it will be of importance in the threshold regime. The values of %pt for self-sputtering 
and low energies for which Yamamura's formula (5) does not apply can be taken from the lines given by the data 
points. 

4. Conclusions 

The large number of measured and calculated sputtering yield data accumulated in the last three decades at IPP 
allowed the revision and improvement of analytic fit formulae to describe sputtering yields. The Bohdansky formula 
for calculating sputtering yields as a function of the projectile energy at normal incidence was modified by replacing 
the nuclear stopping cross-section based on an analytic fit to the Thomas-Fermi potential by one based on the Kr -C  
potential which results in a better fit of the sputtering data especially at low incident energies. The Bohdansky 
formula uses two fit parameters, the threshold energy for sputtering, Eth , and the parameter Q, which determines 
the maximum of the yield curve. The large number of fitting values obtained for Q and Eth based on the large 
number of experimental and calculated sputtering yield data allowed also the derivation of analytic expressions for 
Q and Eth. The scaling formula for Q is based on Sigmund's theory for sputtering. The formula for Eth is an 
empirical scaling with the mass ratio. Furthermore, simple formulae for the ratio of the sputtering yields of different 
targets for the same projectile are given for some limiting cases. 

The validity of the formula for the angular dependence of the sputtering yield given by Yamamura has also been 
checked. It appears that Yamamura's formula is not correct for self-sputtering and for heavy projectiles at energies 
near the threshold. For not too low energies, i.e. above 1 keV, Yamamura's procedure is acceptable. 
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