
 1 

PLASMA PHYSICS 
 

V. WALL PHENOMENA: DIFFUSION & SHEATHS 
 
Debye Length: characteristic length of a plasma 
 
The screening of electrostatic fields in by the charges in a plasma leads to the Debye 
length λD. 
 

First, consider a positive charge q all by itself. The potential at a distance r from the 
charge is 

φ
πε

=
q

r4 0

. 

 
Now, consider a positive charge q in the middle of a plasma. It attracts electrons into its 
vicinity and repels positive ions. We will calculate φ  for this case. 
 
If we allow the particle to have both kinetic and potential energy, the probability factor 

becomes exp −
+








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2mv q

kT
dv dv dvx y z

φ
. φ  depends on position so the probability 

depends on position. 
 

The particle density is given by ( )n f v dv dv dvx y z= ∫  so n q
kT

∝ −

exp φ

 

 

for electrons n n e
kTe = −
−



0exp φ

 

for ions (we will suppose they are singly-ionized) n n e
kTi = −


0exp φ

 

Gauss’ Law can be written as 

∇ =.E σ
ε 0

 

φ−∇=E  so 

−∇ =2

0

φ
σ
ε

. 

This is Poisson’s equation. 
 

The charge density is σ
φ φ

= − + = − +
−



en en en e

kT
e

kTe i 0 exp exp . 

Assume that this potential term is very small, kTe <<φ  

σ
φ φ φ
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I am going to use spherical coordinates (and assume spherical symmetry) 
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Poisson’s equation becomes 
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The potential falls away exponentially. 

If we call   λ
ε

D
kT

n e
= 0

0
2  the Debye length then        φ

πε λ
= −
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Beyond a few Debye lengths, shielding by the plasma is quite effective and the potential 
due to our charge is negligible. 
 
This provides condition to determine if we have a plasma or not. 
 

(i) the system must be large enough L D>> λ  , and  
 (ii)  there must be enough electrons to produce shielding ND >>> 1  , where 
ND  is the number of electrons in a Debye sphere. 
 
Suppose there is a local concentration of charge. If plasma dimensions are much greater 
than  λD, then on the whole plasma is still neutral (we can describe the plasma as 
quasineutral) and we can take n n ne i≅ ≅ 0 . 
 
If we put an electrode into a plasma, it becomes shielded by a sheath of thickness ≈ λ D . 
 

)min   K,in  ( m 0.69 3-
e

e
D nT

n
T

=λ  

 
You do. Show 

e
Dpe m

kT
=λω .      We can now use λD and ωpe as the length and time 

scales to classify plasmas. 
 
The Necessity for Sheaths 
 
In practical plasma devices all have walls. Our analysis of plasmas up to this point has 
assumed that we are in the bulk of the plasma far from any boundary. In this chapter we 
characterise the behaviour at walls and boundaries. This analysis is particularly 
important for materials processing plasmas because the surface of the material being 
processed interacts with the plasma like a wall or solid boundary. 
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Because of the shielding that occurs over distances greater than the Debye length the 
bulk of the plasma will be at roughly constant potential (this potential is known as the 
“plasma potential”). When ions and electrons hit a wall they will be lost from the 
plasma. Because electrons have much higher thermal velocities than ions they will make 
more collisions with the wall and be lost faster than ions while the wall is at plasma 
potential. 
 
When the plasma is first ignited there is a net electron current to the chamber walls. 
Over time this leaves the plasma bulk with a net positive charge and thus raises its 
potential above that of the walls. That is the potential of the walls φw becomes negative 
with respect to the plasma. This potential drop provides a barrier for electrons and 
attracts ions. The equilibrium potential drop is that required to equalise electron and ion 
losses.  
 
The potential drop is confined to a layer of the order of some Debye lengths next to the 
wall due to the effects of Debye shielding. This layer of charge imbalance. which must 
exist on all cold walls with which the plasma makes contact, is called a sheath. 
 
 
 
 
 
 
 
 
 
 
 
The Collisionless Planar Sheath 
 
Consider the situation shown in the diagram to the 
left. Assuming ions enter the sheath at plane x = 0 
with velocity uo, we wish to calculate the potential 
as a function of x. 
 
Conservation of energy requires that 
 

( )xeumum ii φ−= 2
02

12
2
1  
 

where m is the ion mass, φ(x) is the potential at 
position x and u(x) the velocity. Note that this 

wall 
plasma 

φ = φp 

φ = φw 

wall 

0 

0 
uo 

φ 

x 
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expression assumes the ion makes no collisions in moving between 0 and x. In general if 
the mean free path of the ions is greater than the distance x this assumption will be valid. 
 
The ion continuity equation gives  ( ) )(00 xuxnun i=  
 

Combining these equations gives  ( )
2

1

2
0

0
21 








−=

um
enxn
i

i
φ

 (1) 

 
Now to find an expression for the potential, φ(x), from the uncompensated charge in the 
sheath we must solve Poisson’s equation 

     )(2

2

0 ie nne
x

−=
∂
∂ φ

ε  (2) 

so we need an expression for ne. 
 
Assuming that if there is a magnetic field present, it is along the x direction, the fluid 
momentum equation for the electrons simplifies to: 
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On all but very short timescales the electrons can be viewed as massless (ie. they have 
no inertia), so take the limit as me→0. Then the terms on the RHS dominate and we can 
neglect the left-hand side.  
 

Hence   x
n

nm
kT

E
m
e e

ee

e

e ∂
∂

=  
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n

n
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x
e e

e

e

∂
∂
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Integrating gives  Cn
kT
e

e
e

+= lnφ
 

 

Therefore   







=

e
e kT

enn φexp0    (3) 

 
This is called Boltzman’s relation for electrons !!! 
 
Physical interpretation:- because electrons are so light they would accelerate indefinitely 
if the forces on them didn’t balance. Thus a gradient in density will cause movement, 
instantaneously setting up a charge separation with ions, that gives a balancing E field. 
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Combining equations (1), (2) and (3) above gives: 
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In order for the sheath to perform its function and repel electrons the potential must be 
monotonically decreasing with increasing x. This will only be the case if ni(x) > ne(x) for 
all x in the sheath. This condition corresponds to: 
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And since φ < 0 

   2
0

11
umkT ie

>  ⇒  
i

e

m
kTu >2

0  

 

The inequality   
i

e

m
kTu >0    is known as the Bohm sheath criterion. 

 

and  
i

e
B m

kTu =  is known as the Bohm velocity. 

 
To give the ions this minimum directed velocity uB there must be a small finite electric 
field in the plasma over a region prior to the sheath. This region, which is typically 
wider than the sheath, is often referred to as the presheath. If the ions have finite 
temperature, the critical drift velocity uB will be somewhat lower. 
 
The potential drop in the presheath responsible for accelerating the ions to the Bohm 
velocity must be of order 

  pBi eum φ=2
2
1   ⇒ e

kTe
p 2
=φ  which is half the 

electron temperature when quoted in electron volts. 
 
The ratio of the density at the sheath edge to that in the plasma can then be calculated 
according to the Boltzman relation. 

  pp
e

p
ps nn

kT
e

nn 61.0
2
1expexp ≈





=








=

φ
 

 
where np is the density in the bulk plasma and ns is the density at the boundary of the 
sheath and presheath. 
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Sheath Potential at a Floating Wall 
 
In equilibrium the net current to a floating wall must be zero. This means that ion and 
electron fluxes to the wall must balance one another. In the absence of collisions the ion 
flux must be constant throughout the sheath and is thus given by  Bsi un=Γ   and the 

electron flux at the wall is given by 







=Γ

e

w
ese kT

e
vn

φ
exp

4
1 , where 

2
1

8






=

m
kT

v e
e

π
  is the 

mean electron speed and φw is the potential of the wall with respect to the sheath-
presheath edge.  
 
Substituting for the Bohm velocity and equating the fluxes gives   
 

   















=
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

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e
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e

e
s

i

e
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e
m
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m
kTn φ

π
exp8

4
1 2

1
2

1

 

 
Solving for φw gives 

    
e

ie
w m

m
e

kT
π

φ
2

ln−=  

Thus the floating wall potential is negative and is linearly related to the electron 
temperature with a factor proportional to the logarithm of the square root of the ion-
electron mass ratio. 
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The High-Voltage Sheath 
 
When the voltage on an electrode in contact with the plasma is highly negative 

compared to the plasma-sheath edge, 0exp 0
0 →








=

e
e kT

eVnn since eV0 >> kTe. In this case 

all of the electrons will be driven out of the region near the electrode leaving only ions 
in that part of the sheath.  
 
Matrix Sheath  
 
On time scales which are small compared to the time it takes ions to respond to electric 
fields, (~1/ωpi), the ions remain in position as the electrons are expelled. If the ion 
density at the sheath edge is ns and we choose x = 0 at the plasma sheath boundary, we 
have 

   
0

2

2

ε
φ sen

dx
d

−=  

 

Integration gives    
2

2

0

xens

ε
φ −= . 

 
Setting φ = -V0 at x = s, we obtain the thickness of the matrix sheath    
 

2
1

0
2
1

00 22








=








=

e
D

s kT
eV

en
V

s λ
ε

 

The matrix sheath can have a thickness of tens or even hundreds of Debye lengths with 
the application of voltages between a few hundred volts up to say 30 kV. Such voltages 
are often applied to substrates in the Plasma Immersion Ion Implantation (PIII) surface 
processing technique. 
 
Child Law Sheath  
 
If the high voltage is applied over longer time scales (>1/ωpi) the ions will be accelerated 
by the electric field. Since the applied potential V0 is large we can neglect the initial ion 
energy, 2

2
1

Bium , in comparison and the ion energy and flux conservation equations can 
be written as  

  ( ) ( )xexumi φ−=2

2
1        and   ( ) ( )xuxenJ i=0 ,  

 
where J0 is the ion current which must remain constant throughout the sheath. 
 

Solving for n(x) gives   
2

1

0 2)(
−









−=

i
i m

e
e
J

xn φ  
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Since there are no electrons in the high voltage sheath, we can write Poisson’s equation 

as:   
2

1

0

0
2

2 2)(
−









−=−=

i

i

m
e

e
Jxen

dx
d φ

ε
φ  

Multiplying by dφ/dx and integrating from 0 to x gives 2
1)(22

2
1 2

1

0

0
2

φ
ε

φ
−








=








−

im
eJ

dx
d  

since dφ/dx = -E ~ 0 and φ ~ 0 at x = 0, (i.e. E and φ  small compared to the values in the 
bulk of the high voltage sheath). 
 
Taking the negative square root (since dφ/dx is negative) and integrating again gives 
 

   x
m

eJ

i

4
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2
1

0

04
3 2

2
3

−

















=−

ε
φ   (1) 

 
Letting φ = -V0 at x = s and solving for J0 gives 
 

   2

2
3

0
2

1
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9
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s
V

m
eJ
i








= ε   (2) 

 
This is known as the Child law of space-charge-limited current. It gives the current 
between two electrodes as a function of the potential difference between them if the 
electrode spacing s is fixed. However, in the case of a plasma sheath the ion current 
available from the plasma is fixed and given by J0 = ensuB, where ns is the ion density at 
the edge of the sheath and uB is the Bohm speed. In this case the sheath width s adjusts 
so that the Child law is satisfied. Substituting for J0, uB, and the electron Debye length 
yields:  

   
4

3

02
3
2









=

e
D kT

eV
s λ    (3) 

Thus the Child law sheath is larger than the matrix sheath by a factor of order 
4

1

0









ekT
eV

.  

Substituting equation 2 into equation 1 gives the following expression for the potential 
in the high voltage sheath as a function of position: 
 

     
3

4

0 





−=

s
xVφ   (4) 

The electric field E = dφ/dx is 
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The Child law derived here is valid only if the sheath potentials are large compared to 
the electron temperature given in eV. Since ion motion was assumed collisionless in the 
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derivation it is not appropriate for high pressure discharges (i.e. when the mean free path 
is less than the dimensions of the sheath). 
 
Sheaths at Curved Surfaces 
 
The derivations above have assumed a planar sheath and so could be done in one-
dimensional space. Calculations for sheaths around curved or pointed objects are much 
more complicated so we shall use physical principles and what we know of planar 
sheaths to get some insight into this situation. Plasma deposition and ion implantation 
processes using high bias must often treat complex shapes such as medical devices. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The matrix sheath around a curved object is shown schematically in the figure on the 
left. The ions (shown as dots) have not moved from their positions in the bulk plasma 
since this is a very short time after the application of the high voltage bias. The electrons 
however have been repelled form the region as shown by the shading. As time goes on 
and the ions respond to the electric field in the matrix sheath they are accelerated into 
the surface of the electrode. At the surfaces that are flat as the ions accelerate their 
density is considerably reduced so that the sheath must expand in order to contain 
enough ions to shield the applied potential out of the plasma. Around the curve the ions 
also accelerate, however, due to the geometry they converge on the curved tip. If the 
curvature is high enough this effect may compensate for the density reduction due to ion 
acceleration and the density in the sheath may not decrease. If the curvature is stronger 
still the convergence of ions may over shadow the density reduction due to acceleration 
and the sheath may actually contract as shown on the right. 
 
 
Diffusion and mobility – phenomena in the bulk plasma 
 
Suppose the plasma density in the bulk plasma is higher near the centre vessel than it is 
near the sheath edges (i.e. the bulk plasma has a non-constant density). Ions and 
electrons will collide with each other and with neutral particles and diffuse outwards. 
Suppose there is an electric field. The ions and electrons will move but the neutral 
particles will not. Diffusion and mobility in the plasma bulk leads to the loss of ions and 
electrons from the plasma.  
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Diffusion 
 
First, consider a gas of two kinds of neutral particles, A and B. The B particles are in the 
minority. 
 
There are two ways we might look at diffusion. 
 
(i)  Suppose the background of A particles is uniform, but the density of the B 
particles is not. The B particles collide with the A particles until the non-uniformity is 
smoothed out. 
 

The continuity and momentum equations for the B particles are 

( )∂ρ
∂

ρB
B Bt

+ ∇ =. v 0  

 ( )ABBABBBBB
B

B p
t

vvvvv
−−−∇=∇⋅+ υρρ

∂
∂

ρ  

 
Let us make some simplifications. 
The non-uniformity is small so n n nB B B= +0 1 , where 0 indicates the uniform, constant 
part and 1 indicates a small first-order part that varies in space and time. 
There are no zero order drifts so v 0A

0 =  and v 0B
0 = . 

 
We will use p n kTB B B= . 
 
Note that collisions between particles of the same type do not contribute to diffusion.  
 
To first order, the equations become 

∂
∂
n
t

nB
B B

1
0 1 0+ ∇ ⋅ =v  (1) 

∂
∂

ν
v

vB B

B B
B BA Bt

kT
m n

n
1

0
1 1= − ∇ −  (2) 

 
Take ∇ ⋅  of (2) and substitute using (1). 

∂
∂
n
t

D nB
B B

1
2 1= ∇  

D kT
m

=
ν

 is the diffusion coefficient.  

(Note a 
1 2 1

2ν
∂
∂BA

Bn
t

 term has been dropped.) 

The units of D are m2 s−1. 
 
The meaning of D 
 
(a) In terms of a scale length L, any initial non-uniformity is smoothed out in a time 

T L
D

≈
2

. 
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(b) D
vrms≈

2

ν
. Then D m≈

λ
τ

2

. i.e., the diffusion coefficient is based on a random 

walk with a step equal to the mean free path between collisions. 
 
You do. Show this. 
 
(ii) A steady state where there is a density gradient of the B particles. There will 
clearly be a steady flow or flux of these B particles. 
 

The momentum equation is (we will drop the subscripts and the superscripts) 

0 v= − ∇ −
kT
mn

n ν     or    v = −
∇D n
n

. 

The flux of the B particles is 
Γ = = − ∇n D nv . 

This equation Γ = − ∇D n  is known as Fick’s Law. 
 
Mobility 
 
Next, suppose the B particles are electrons and there is an E field. The A particles are 
still neutrals. 
 

The momentum equation for electrons is 
0 E v= − − ∇ −en p m ne e eν  

Rearrange 

v Ee
e

e

e

e
m

kT
m

n
n

= − −
∇

ν ν
    or    v Ee e eD n

n
= − −

∇
µ   

µ
ν

=
e

m
 is the mobility. µ and D are known as transport coefficients. 

The units of µ are m2 V−1 s−1. 
 
These drift velocities are << the random velocities of the particles. 
 
Free diffusion is driven by the density gradient and drift is driven by the electric field. 
 
 
Weakly-ionized plasma, no magnetic field 
 
Ambipolar diffusion 
 
In a plasma there are ions and electrons. The electrons tend to diffuse more rapidly than 
the heavier ions. If this results in ne being different from ni, an E field is established. 
This E field accelerates the ions and slows down  the electrons, so, to a good 
approximation, they diffuse together. (This is the first key idea concerning diffusion of a 
weakly-ionized plasma.) 
 

Write down the equations for ions and electrons 

v Ee e eD n
n

= − −
∇

µ  
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v Ei i iD n
n

= −
∇

µ . 

Remember that in a weakly-ionized plasma νe and νi are electron-neutral and ion-neutral 
collision frequencies. Electron-ion collisions can be ignored. 
 
Set the electron flux equal to the ion flux 

Γ = − − ∇ = − ∇n D n n D ne e i iµ µE E . 
Solve for E and substitute to obtain 

Γ = − ∇D na . 

where D
D D

a
e i i e

e i

=
+
+

µ µ
µ µ

 is the ambipolar diffusion coefficient. 

 

 From above µ
ν

µ
νe

e e
i

i i

e
m

e
m

= =,   and ν ∝ ∝v kT
m

, so µ µi e<< . 

D
T
T

Da
e

i
i≅ +







1 . 

You do. Show this. 
 
 If Ti = Te, 

D Da i≅ 2   
 
Example 

Let us apply ∂
∂
n
t

D na= ∇2  to a plasma slab where the initial electron density profile is 

shown in the sketch. 

 
 

 We will treat this as a 1-dimensional problem so 
∂
∂

∂
∂

n
t

D n
xa=
2

2 . 

 This can be solved by separation of variables. Write n = f(x)g(t) and substitute. 
This leads to 

n A x
D T

B x
D T

t
T

a

t
T

a

=








 +











− −
e cos e sin . 

 Now substitute the initial conditions. This gives 

n n x
L

t
T= 





−

0e cos π where T L
Da

=
2

π
. 

The electron density profile remains the same but the peak decreases exponentially with 
time.  
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You do. Show this. 
 
Weakly-ionized plasma in a magnetic field. 
 

First consider electrons. 
Start with the momentum equation, 

( )0 E v B v= − + × − ∇ −en p m ne e eν  
The z-component equation yields the same µe and De as before. 
The x- and y-component equations are 

v E D
n

n
x

v

v E D
n

n
y

v

x e x
e ce

y

y e y
e ce

x

= − − −

= − − +

µ
∂
∂

ω
ν

µ
∂
∂

ω
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This yields 

2211 τω
µ
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diaBE
ee n

nD
+

+
+

∇
−−= ×

⊥⊥⊥
vvEv  

 where µ µ
ω τ ω τ⊥ ⊥=

+
=

+e
e

ce
e

e

ce

D D
1 12 2 2 2 and . 

 
 If ω τce

2 2  << 1, B is small and has little effect on diffusion. 
 If ω τce

2 2  >> 1. B is large and diffusion across B is retarded.  
 
 This is the second key idea. Mobility and diffusion across the magnetic field are 
smaller. In this case 

D
v

r v

r
e

m

ce

m

Le

m

Le
⊥ ≈ ≈







 





≈

λ
τ

ω τ

λ
τ
λ τ

2

2 2

2

2 2

2

, 

i.e., the diffusion coefficient is based on a random walk with a step equal to the Larmor 
radius.  
 
Diffusion of ions and electrons is ambipolar but is complicated. Whether the diffusion of 
a particle is primarily along z or prependicular depends sensitively on the plasma 
boundaries. 

 
 



 14 

Fully ionized plasma in a magnetic field 
 

Collisions between electrons and ions. Can derive an expression for υ ei  and obtain an 
expression for the resistivity 

η ||
 ln

= × −5 25 10 5
3

2
. Z

Te

Λ
 and  η η⊥ = 2 ||  (Te in eV).  

It is usually adequate to take lnΛ ≈ 10 . 
 
Note that η is independent of n, decreases rapidly as Te increases. 
 
Start with the single fluid equations (so diffusion in this case is automatically 
ambipolar) 

0 j B= × −∇p  
0 E v B j= + × −η  

Multiply the second by × B and substitute using the first. 
( )

BE
ie

BE n
n

B
TTnkp

B ×
⊥

×
⊥

⊥ +
∇+

−=+∇−= vvv 22

ηη
. 

So we can define a D⊥  for a fully-ionized plasma.  
 

Compare this with D⊥  for a weakly-ionized plasma. It is ∝
1

2B
, but is ∝ n as well, 

decreases with T, and is automatically ambipolar. 
 

Comment 
 
Laboratory verification of the 1/B2 dependence proved elusive. The experimental results 
were better described by the empirical formula  

D
kT
eB

e
⊥ =

1
16

. 

This was called Bohm Diffusion, usually many orders of magnitude larger. Anomalous 
losses due to oscillations and asymmetries are responsible. 

 


