

Progress in development of ISOL RIB ion sources and targets for high power **Pierre Bricault TRIUMF XVIII International Conference on Cyclotrons and** their Applications 2007, Giardini Naxos, Sicilia, Italia

DA'S NATIONAL LABORATORY FOR CLE AND NUCLEAR PHYSICS ATOIRE NATIONAL CANADIEN LA RECHERCHE EN PHYSIQUE NUCLÉAIRE ET EN PHYSIQUE DES PARTICULES

Conseil national

National Research Canada de recherches Canada Council Canada

TRIUMF site

TRIUMF

- Introduction to RIB production using ISOL method
- Target Development
 - Composite targets
 - High Power Targets
- On-Line ion source development
 - Resonant Laser Ion Source
 - FEBIAD Ion Source
 - ECR Ion Source
- Future plans for TRIUMF RIB facility
- Summary

Physics with RIB

RIUMF

ISOL Method

5

- This method involves the interaction of light ion beam onto a thick high-Z target.
- The fragments produced are stopped into the bulk of the target material
- The radioactive atoms diffuse out of the target material matrix. => Diffusion process.
- Then the radioactive atoms effuse out of the oven to the ion source . => Effusion process.
- The radioactive atom is ionized => Ionization process.

The yield depends on the following parameters:

Y = Φσ χ(ε_Rε_Eε_i,)

 Φ = Incident beam intensity,

 σ = Cross section,

 χ = Target thickness,

 $\varepsilon_{R} = Diffusion efficiency, f(D_{0}, E_{A}, T)$

 $ε_{\mathbf{E}}$ = Effusion efficiency, f(χ, ΔHa, T)

 ε_i = Ionization efficiency.

Pierre Bricault, TRIUMF, International Conference on Cyclotrons and their Applications, Naxos, Sicily, 2007

6

ISOL Target Development

- Target used at ISAC, refractory metals, Ta, Nb, ...
- Foils of thin layers of refractory carbides (SiC, TiC, ZrC, LaC₂ ~ 0.1 mm thick) deposited on flexible exfoliated graphite sheet
- Development of the composite foil technique has allowed carbide target operation with up to 70 µA proton beam.

Composite Targets

- To dissipate the power for the composite carbide target we developed a new technique. Using a slip cast method, the carbide target material is bounded onto an exfoliated graphite foil(0,13 mm thick).
- The target is then cut out of the cast and inserted into the Tantalum target container.

RIUMF

Slip cast onto exfoliated graphite foil (0.13 mm thick)

Electron Scan of the LaC₂ after slip cast and sintering at 1600 °C.

High Power Target

1986	Eaton & Ravn, CERN/ISOLDE: 100 μA, 550 MeV, proton	Longitudinal fins on the Ta container					
1991	Talbert et al., 100 μA, 600 to 1200 MeV, proton	Cooling design consisting of an annular solid thermal conductor encasing the target with an outer He-filled gap separating the conductor from a water-cooled outer jacket					
	Nitchke, LBNL: 100 µA, 800 MeV, proton	Active conductive cooling using He gas flow.					
1991- 1996	Talbert et al., 100 μA, 600 to 1200 MeV, proton	Active conductive cooling with thermal barrier					
	Bennett, RAL: 100 μA, 800 MeV, proton	Passive radiative cooling approach.					
1998	Talbert et al., 100 μA, 500 MeV, proton	Active conductive cooling using water channels. Test at TRIUMF at 100 µA, 500 MeV, proton					
1999	Bennett, RAL: 100 μA, 800 MeV, proton Rutherford Ion Source Test, RIST project	Built a diffusion bounded Ta target, off-line test shows that emissivity ~ 0,7-0,8.					

RIST target

Target difficult to fabricate.

Very expensive target $\approx \text{\pounds}50 \text{ k!}$

Photo Courtesy of Roger Bennet, RAL.

- The RIST target was never put into practice, the test was never approved and further research on the subject abandoned.
- This design allows only target made from refractory metals, Ta, Mo, ... Limiting the production of RIB species.

Talbert et al., HPT

- The target temperature lower than the requested operating temperature, 2000 °C
- This design allows only target made from refractory metals, Ta, Mo, ...
 - This is somehow limits the production of RIB species.

HPT development

- Even though the ISAC facility has been designed for 100 μA, at the beginning (1998) it was not possible to operate the target with more than 1-3 μA.
- In 1999 a Nb foil target was operated with 10 μ A.
- In 2000 both the Ta and Nb target were operated with 20 μA, and a SiC made from pressed powder into pellets was operated with 10 μA.
- In 2001 the proton beam intensity was raised to 40 µA on Ta and SiC/graphite composite target. This was obtained by removing all the thermal heat shield around the target and by reducing the target heating, while maintaining the target central temperature at the same value.

ISAC Target

Initial Design can only dissipate 4-7 kW in the target.

With this target design we can go as high as 40 µA.
To go beyond this limit we have to add more effective cooling.
We developed our own radiative cooling target by adding fins to the tantalum target container.

High Power Target

RUMF

Improve the cooling by adding fins onto the target container. Emissivity: 0,92.

We demonstrated that a target equipped with fins can dissipate up to 17.5 kW.

Contrary to other designs we can use any target material, refractory metals or composite carbides or oxides, inside the Ta target container.

FRIUMF

We demonstrated the operation of our HPT at 100µA level for a 500 MeV proton beam.

Ion Sources

- The requirement for an ISOL ion source diverge from to a certain degree from the ones for an off-line ion source;
 - Because the production rate is somehow limited, We need highly efficient ion source,
 - Ionization efficiency most be independent of the pressure fluctuation,
 - Ion source free of instabilities in order to prevent reduction of the mass resolving power,
 - Has to operate in high radiation field and at high temperature to avoid condensable element to stick on the walls,
 - Maintenance free and long life-time,
 - Small size to avoid large nuclear waste inventory.

Laser Ion Source

RIUMF

Resonant Laser Ion Source

RUMF

Laser requirements

- Laser must be applicable to a wide range of elements
- For selectivity at least two resonant steps are required and third one is even better.
- High repetition rate to ensure that the atom sees at least one laser pulse while traveling inside the transfer tube.
- Need to focus the laser beams into a 3 mm diameter hole, ~ 25 m away
 - Good laser beams quality is required.
 - Large optics elements.
- Need to synchronize the laser pulse such they arrive at the same time inside the transfer tube.

TRIUMF Ti:Sa Laser

- We built our Ti:Sa laser using U. Mainz design. J.H. Yi et al, Japanese Journal of Applied Physics Part 1, Vol 42, Issue 8, p. 5066-5070 (2003)
 - We simplify the design to make fabrication more cost effective using CNC machining.
 - Improve cooling, better thermal stability
- We upgrade the laser system by double side pumping.
 - More than double the output power.

Ti:Sa tuning range

TRIUMF

Laser Ion Source

RUMF

RIB Development Plasma Ion Source Bernas-Nier Nielsen Hagen

TRIUMF

1A 1

	1 H							Alkal	i metals	.NC	Haloo	iens						² He
1	1.00794 Hydrogen	2A 2	_					Vika	ine an' m	e is		gases	3A 13	4A 14	5A 15	6A 16	7A 17	4.00260 Helium
	³ Li	⁴ Be						rans Othe	sitic mal		ant	Inides	E	6 C	7 N	⁸ O	⁹ F	¹⁰ Ne
2	6.941 Lithium	9.01218 Beryllium						Othe	r non-meta	ls	Actini	des	10.811 Boron	12.0107 Carbon	14.0067 Nitrogen	15.9994 Oxygen	18.9984 Fluorine	20.1797 Neon
	¹¹ Na	¹² Mc						Symbol in w	hite: element	t has no stab	le nuclides		¹³ Al	¹⁴ SI	¹⁵ P	¹⁰ 5	¹⁷ Cl	¹⁸ Ar
3	22.9898 Sodium	24.305 Magnesiur	2R 2	4R 1	5R 5	6R 6	7R 7	R R	8R Q	8R 10	1R 11	2R 12	26.9815 Aluminum	28.0855 Silicon	30.9738 Phosphorus	32.065 Sulfur	35.453 Chlorine	39.948 Argon
	¹⁹ K	20 Ca	²¹ Sc	²² Ti	²³ V	²⁴ Cr	²⁵ Mn	²⁶ Fe	²⁷ Co	²⁸ Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	³² Ge	³³ As	³⁴ Se	³⁵ Br	³⁶ Kr
4	39.0983 Potassium	40.078 Calcium	44.9559 Scandium	47.867 Titanium	50.9415 Vanadium	51.9961 Chromium	54.938 Manganese	55.845 Iron	58.9332 Cobalt	58.6934 Nickel	63.546 Copper	65.409 Zinc	69.723 Gallium	72.64 Germanium	74.9216 Arsenic	78.96 Selenium	79.904 Bromine	83.798 Krypton
	³⁷ Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	⁴¹ Nb	⁴² Mo	⁴³ Tc	44 Ru	⁴⁵ Rh	⁴⁶ Pd	47 Ag	⁴⁸ Cd	⁴⁹ In	50 Sn	⁵¹ Sb	⁵² Te	⁵³	54 Xe
5	85.4678 Rubidium	87.62 Strontium	88.9059 Yttrium	91.224 Zirconium	92.9064 Niobium	95.94 Molybdenun	[98] I Technetium	101.07 Ruthenium	102.9055 Rhodium	106.42 Palladium	107.8682 Silver	112.411 Cadmium	114.818 Indium	118.710 Tin	121.760 Antimony	127.60 Tellurium	126.9045 Iodine	131.293 Xenon
	55 Cs	56 B a	5/-/1 *	² Hf	⁷³ Ta	74 W	⁷⁵ Re	⁷⁶ Os	77 Ir	⁷⁸ Pt	⁷⁹ Au	⁸⁰ Hg	⁸¹ TI	⁸² Pb	⁸³ Bi	⁸⁴ Pc	³⁵ At	⁸⁶ Rn
6	132.90545 Cesium	137.327 Barium	La-Lu	178.49 Hafnium	180.9479 Tantalum	183.84 Tungsten	186.207 Rhenium	190.23 Osmium	192.217 Iridium	195.078 Platinum	196.96655 Gold	200.59 Mercury	204.383 Thallium	207.2	208.9804 Bismuth	[209] Polonium	[210] Astatine	[222] Radon
	⁸⁷ Fr	88 Ra	89-103 **	¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	¹¹⁰ DS	¹¹¹ Uuu	¹¹² Uuk		¹¹⁴ Uuc				
7	[223] Francium	[226]	AC-Lr	[261] Rutherfordiu	[262] m Dubnium	[266] Seaborgium	[264] Bohrium	[277] Hassium	[268] Meitnerium	[281] Darmstadtiur	[272] n Unununium	[285] Ununbium		[289] Ununquadiu	m			
			*						<i></i>									
				⁵⁷ La	⁵⁸ Ce	⁵⁹ Pr	⁶⁰ Nd	⁶¹ Pm	⁶² Sm	⁶³ Eu	⁶⁴ Gd	⁶⁵ Ib	66 Dy	⁶⁷ HO	⁶⁸ Er	⁶⁹ I m	⁷⁰ Yb	⁷¹ Lu
				Lanthanum	Cerium	Praseodymiur	Neodymiun	Promethiun	Samarium	Furonium	Gadolinium	Terhium	Dysprosium	Holmium	Frbium	Thulium	Ytterbium	Lutetium
			**	⁸⁹ AC	⁹⁰ Th	⁹¹ Pa	238 0280	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	⁹⁶ Cm	⁹⁷ BK	⁹⁸ Ct	⁹⁹ ES	¹⁰⁰ Fm	¹⁰¹ MC	¹⁰² NO	¹⁰³ Lr
				Actinium	Thorium	Protactiniur	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendeleviu	n Nobelium	Lawrencium

FEBIAD invented by R. Kirchner and E. Roeckl, Nucl. Instr. and Method 133 (1976) 187-204.

- Our FEBIAD is similar to the ISOLDE hollow cathode design.
- On-line tests of the FEBIAD (Forced Electron Beam Induced Arc Discharge) Fall 2006 with a TiC/C_{gr} for ³⁴Ar>³⁴C+β⁺+v experiment
- and June 2007 for ¹⁸F experiment.

FEBIAD first run

FEBIAD first run

RIUMF

FEBIAD first run

RIUMF

FEBIAD run#2

RIUMF

-ITE:Anode A

$\epsilon_{V,H} = 16 \pi \mu m$

FEBIAD-Mk-XI

RIB Development

Electron Cyclotron Resonance Ion Source

TRIUMF

	1A 1																		8A 18
	1 H								Alka	i metals		Hal	ogens						² He
1	1.00794 Hydrogen	2A 2							Alka	ine earth m	etals	Not	ole gases	3A 13	4A 14	5A 15	6A 16	7A 17	4.00260 Helium
	³ Li	₄ Be							Trans	sition metal	S	Lan	thanides	5 B	6 C	7 N	⁸ O	⁹ F	¹⁰ Ne
2	6.941 Lithium	9.01218 Beryllium							Othe Othe	r metals r non-meta	ls	Act	inides	10.811 Boron	12.0107 Carbon	14.0067 Nitrogen	15.9994 Oxygen	18.9984 Fluorine	20.1797 Neon
	¹¹ Na	¹² Mg							Symbol in w	hite: elemen	t has no stab	le nuclides		13 AI	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ Cl	¹⁸ Ar
3	22.9898 Sodium	24.305 Magnesium	3B	3	4B 4	5B 5	6B 6	7B 7	8B 8	8B 9	8B 10	1B 1	1 2B 12	26.9815 Aluminum	28.0855 Silicon	30.9738 Phosphorus	32.065 Sulfur	35.453 Chlorine	39.948 Argon
	¹⁹ K	²⁰ Ca	21	Sc	²² Ti	²³ V	²⁴ Cr	²⁵ Mn	²⁶ Fe	²⁷ Co	²⁸ Ni	²⁹ CI	u ³⁰ Zn	³¹ Ga	³² Ge	³³ As	³⁴ Se	³⁵ Br	³⁶ Kr
4	39.0983 Potassium	40.078 Calcium	44.95 Scand	559 dium	47.867 Titanium	50.9415 Vanadium	51.9961 Chromium	54.938 Manganese	55.845 Iron	58.9332 Cobalt	58.6934 Nickel	63.546 Copper	65.409 Zinc	69.723 Gallium	72.64 Germanium	74.9216 Arsenic	78.96 Selenium	79.904 Bromine	83.798 Krypton
	³⁷ Rb	³⁸ Sr	39	Y	40 Zr	⁴¹ Nb	⁴² Mo	⁴³ Tc	44 Ru	⁴⁵ Rh	⁴⁶ Pd	47 A	g ⁴⁸ Cd	⁴⁹ In	50 Sn	کر Sp	⁵² Te	53	54 Xe
5	85.4678 Rubidium	87.62 Strontium	88.90 Yttri	059 ium	91.224 Zirconium	92.9064 Niobium	95.94 Molybdenun	[98] I Technetium	101.07 Ruthenium	102.9055 Rhodium	106.42 Palladium	107.868 Silver	2 112.411 Cadmium	114.818 Indium	118.710 Tin	121.760 Antimony	127.60 Tellurium	126.9045 Iodine	131.293 Xenon
	55 Cs	56 Ba	57-71	ا *	⁷² Hf	⁷³ Ta	74 W	⁷⁵ Re	⁷⁶ Os	⁷⁷ Ir	⁷⁸ Pt	⁷⁹ A	u ⁸⁰ Hg	⁸¹ TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
6	132.90545 Cesium	137.327 Barium	La-	Lu	178.49 Hafnium	180.9479 Tantalum	183.84 Tungsten	186.207 Rhenium	190.23 Osmium	192.217 Iridium	195.078 Platinum	196.9665 Gold	5 200.59 Mercury	204.383 Thallium	207.2 Lead	208.9804 Bismuth	[209] Polonium	[210] Astatine	[222] Radon
	⁸⁷ Fr	⁸⁸ Ra	89-10)3 **	¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	¹¹⁰ Ds	111Uu	u ¹¹² Uuk		¹¹⁴ Uuc				
7	[223] Francium	[226] Radium	Ac-	٠Lr	[261] Rutherfordiu	[262] n Dubnium	[266] Seaborgium	[264] Bohrium	[277] Hassium	[268] Meitnerium	[281] Darmstadtiur	[272] n Unununi	[285] um Ununbium		[289] Ununquadiu	ım			
				*	57 La	58 Ce	⁵⁹ Pr	60 Nd	⁶¹ Pm	⁶² Sm	63 Eu	⁶⁴ Go	⁶⁵ Tb	66 Dy	⁶⁷ Ho	⁶⁸ Er	⁶⁹ Tm	70 Yb	⁷¹ Lu
					138.9055 Lanthanum	140.116 Cerium	140.9077 Praseodymium	144.24 n Neodymiun	[145] I Promethiun	150.36 Samarium	151.964 Europium	157.25 Gadoliniu	158.9253 Im Terbium	162.50 Dysprosium	164.9303 Holmium	167.259 Erbium	168.9342 Thulium	173.04 Ytterbium	174.967 Lutetium
				**	⁸⁹ Ac	90 Th	⁹¹ Pa	⁹² U	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	⁹⁶ Cn	n ⁹⁷ Bk	⁹⁸ Cf	⁹⁹ Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² No	¹⁰³ Lr
					[227] Actinium	232.0381 Thorium	231.0359 Protactiniur	238.0289 D Uranium	[237] Neptunium	[244] Plutonium	[243] Americium	[247] Curium	[247] Berkelium	[251] Californium	[252] Einsteinium	[257] Fermium	[258] Mendeleviur	[259] n Nobelium	[262] Lawrencium

New ECR Ion Source

- MISTIC new ECR ion source, Collaboration between GANIL and TRIUMF,
- ECR with longitudinal and radial magnetic confinement.
- Operates at 3 6 GHz, N. Lecesne, P. Bricault-TRI-DN-05-23.

MISTIC

MISTIC fabrication is completed

Quartz plasma chamber

> Ion source equipped with a movable 2 gap extraction electrodes

Future plans

ISAC-II

- Presently 1/4 of the ISAC beam time is devoted to T/IS Dev.
- Request for beam time for approved High priority experiments > 4 years

RUMF

- Use of BL4 can provide up to 200 µA proton at 450 MeV,
 - **Two new target stations will** allow;
 - **RIB** development,
 - Simultaneous **RIB** to two or three experiments simultaneously

Summary

- ISAC High Power target operates at 100 µA level, => BL2A A/C steerer: October 2007.
- Composite carbide targets (SiC, TiC and ZrC) operate up to 70 μA routinely.

Target	Target composition	Target Thickness	I _{Proton} µA	RIB
Ta #14 HP	Ta foils	21,8 g/cm ²	70	^{38m} K
Ta #15	Ta foils	21,8 g/cm ²	35	⁸ Li
Ta #16 HP	Ta foils	21,8 g/cm ²	100	^{9,11} Li, ⁵¹⁻⁵³ K
Ta #17	Ta foils	21,8 g/cm ²	35	⁸ Li, ¹⁵⁶ Ho, ¹⁶⁰ Lu
SiC #13 HP	SiC/C _{gr} foils	28 g/cm ²	65	^{8,9} Li, ^{20,21} Na
Ta #18	Ta foils	21,8 g/cm ²	35	⁸ Li, ¹¹ Li
TiC #2 HP	TiC/C _{gr}	24,1 g/cm ²	70	³⁴ Ar

Summary

- Since 1998, the vast majority of the Radioactive Ion Beams has been produces using a hot surface ion source.
- A large program to equip the TRIUMF-ISAC RIB facility with ion sources that can efficiently ionize nearly all elements is underway
 - Resonant Laser Ion Source is quite advanced,

RUMF

- New generation of Ti:Sa solid state lasers.
- FEBIAD ion source is being developed on-line. New design will incorporate a new radiation hard coil.
- ECR (MISTIC) prototype is ready for tests,
 - Goal is to finalize the tests for next spring and start specifications for a new target module. On-line tests end 2009.
- Future 5-year plan to equip ISAC facility with new target stations to allow 2 to 3 simultaneous RIB to experiments.

33

Thank you.

New RIB at ISAC

Target	Ion Source	Proton intensity (µA)	New RIB
Ta#15	TRILIS	35	⁹⁻¹² Be and ^{104-114,116-119} In
Ta#17HPT	TRILIS	65	^{84,86,87,89,90} Y and ^{99-113,116-117} Ag
TiC#2HPT, SiC#14HPT	FEBIAD	70	^{6,8} He
TiC#2HPT	FEBIAD	70	^{19,20} O
TiC#2HPT, SiC#14HPT	FEBIAD	70	17-19,23-25Ne
TiC#2HPT	FEBIAD	70	²⁷⁻²⁹ Mg
TiC#2HPT	FEBIAD	70	^{32,34,38-45} Cl
TiC#2HPT	FEBIAD	70	^{33-35,41-45} Ar
SiC#14HPT	FEBIAD	70	²³ Mg
SiC#14HPT	FEBIAD	70	17-18 F

http://www.triumf.info/facility/research_fac/yield.php

TRIUMF

ISAC RIB

RUMF

Cyclotron Stability

• Above 20 µA we are relying on the proton beam to heat the target,

RIUMF

- When the proton beam goes off the target cooling occurs within seconds. It takes several minutes before the target reaches optimum temperature,
- We improved the proton beam stability to avoid disturbance in RIB delivery.

Now we can run for several hours without any beam interruption.