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Study of the projectional emittance is an efficient way of probing the quality of a particle beam . In this work we deal with some
computational aspects of the problem. We present the argument that in a beam optic code for the design or evaluation of the
performance of electrostatic extractors/accelerators which produce such (round) beams, one must include in the calculation beamlets
with skew angles. This is necessary if one wants to compare calculations with emittance measurements for a beam with transverse
temperature . We have developed new steps and modified an existing code for such a purpose and produced calculated results of
emittance plots that can be compared with experimental observations.

1. Introduction

An intense particle beam is usually formed by the
extraction and acceleration of particles emanating from
an emitter or source . In many applications, one prefers
a beam with uniform intensity and low divergence . One
way of studying the quality of the beam is to examine
its transverse phase space intensity distribution in, e.g .
x-x' (the projectional emittance [1]), using an emit-
tance scanner [2-6]. The principal elements of the
scanner consist of two slits placed perpendicular to the
propagating direction of the beam . One slit allows a
portion of the beam to pass to measure the x coordinate
of that portion. Another slit, located somewhat further
downstream, measures the angle with respect to the
beam axis (the x' coordinate) and a detector behind the
second slit measures the intensity . By moving the sec-
ond slit transversely, different values of x' and intensity
are recorded for the given x. Thus, by varying x and
x', an emittance plot is produced . In this paper we
concern ourselves with the computational aspect that
arises from the consideration of the design of the ex-
tractor (accelerator) of a round beam using an axisym-
metric electrostatic lens system, and how the computa-
tion is related to the emittance measurement method
mentioned above. From this study we hope that we
learn how to obtain a good quality beam for the desired
application or for further acceleration . In general terms
the procedure of our study is as follows: A beam optic
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code is used to trace the beam through the accelerator
under study, and a phase space distribution in r-r' at a
certain location is obtained . Then this is converted into
a distribution in x-x' space that can be used to com-
pare with a measured projectional emittance if desired.

For a beam with finite temperature, it becomes nec-
essary to include particle motion in the azimuthal direc-
tion (the skew velocity component) in addition to mo-
tion in the radial and axial directions . The reason for
this is explained in section 2. On the other hand, before
the beam tracing starts, we have to have a scheme to
represent a continuous 3-D velocity distribution
(Maxwellian in our case) with a finite number of
beamlets . One such method is presented in section 3.
Because of the skew velocity component, we have to
modify the usual 2-D axisymmetric beam tracing code
[7] in order to correctly handle the particle motion . This
is described in section 4. The mapping from r-r' space
to x-x' space mentioned above is presented in sections
5 and 6. Finally, in section 7, some results of the
calculations are compared with data from an H- accel-
erator in our experiment .

It should be mentioned also that the beam dynamics
presented is nonrelativistic because this work is con-
cerned with the low energy acceleration of an ion beam
(up to several hundred keV) . We leave the generaliza-
tion to relativistic motion (e .g ., more appropriate to an
electron beam), to a future study.

2. The necessity of skew beams

Suppose we have a particle beam emerging from a
circle around the origin in the x-y plane of an emitter
with its axis along the z direction as shown in fig. 1 .
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Fig . 1 . Schematic drawing of a particle beam in which the
beamlets have no skew velocity component.

Each point within the circle emits particles which shall
be represented by beamlets in the scheme explained in
the following sections. (The "emitter" of the particles
does not need to be a flat disc, but we shall use it for
now for simplicity). Next consider the coordinate sys-
tem in fig . 2. A beamlet starting at point 0 has in
general a velocity vector

v= v,P+ vB§+ v2î,

y

X
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Fig. 2 . Coordinate system .

z

where vB = rd is what we call the skew velocity . Now
suppose that all the beamlets in fig. 1 have no such
velocity component. All those starting at x = 0, for all
y, have x' =0 (recall that x' = dx/dz), whereas those
starting at x * 0 have finite x' . Thus, in the x-x' phase
plot, we should see a distribution like the one sketched
in fig . 3. This is clearly different from what we observe
in our measurement of projectional emittances, a typical
shape of which is sketched in fig . 4. On the other hand,
if those beamlets starting at x= 0 have skew velocity
components and therefore have nonzero x', then they

X'

Fig. 3. Sketch of the shape of the projectional emittance
produced by the beam shown in fig . 1.

can contribute to the width of the emittance plot on the
x' axis . Thus, the discrepancy can be resolved by in-
cluding in the analysis beamlets with skew angles, which
carry the information about the transverse temperature
of the beam.

Since any particle beam in nature has a temperature
(or some kind of transverse energy spread), a correct,
precise beam tracing code should take skew beamlets
into account. There exist several codes that handle the
optics of particle beams [7], but to our knowledge, this
issue has not been addressed before .

3. Representing a 3-D drifting Maxwellian velocity dis-
tribution with a finite number of beamlets

In this section we shall work out a method for
representing the starting condition for the computation

X'

Fig. 4 . Sketch of the shape of the projectional emittance
observed ma typical experiment with a real particle beam.



of skew beam dynamics. Suppose that each point in the
disc emitter in fig. 1 produces a certain current density
carried by particles with a Maxwellian velocity distribu-
tion. How should we represent them with a finite num-
ber of beamlets?

Let the particles have a velocity distribution function
f given by [8]
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f ,n+= .f

	

dv,f

	

dvof

	

dv~
00 00 0

where dA = IdA I z is a surface element of the emitter.
Let us first outline the general scheme of beamlet

representation and then illustrate it with an example.
We divide J+ into N x N beamlets,

J

	

V,

K

K+1dv

	

VO I.+1dv

	

00do vf,KL - f r

	

rf
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0 z
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where

K, L=1,---,N,

(10)

and a similar equation holds for nKL . The divisions are
imposed in such a way that each beamlet carries the
same current. We define

IKL = JKL - dA,

	

(11)

and we demand that the IKL s equal each other for all
K, L . This condition leads to simple equations for the
vr , K s and v,,, ,s, which can be solved easily . The beamlets
so obtained have the following properties :

Next we show an example of 5 x 5 representation .
For the first integral in eq . (10), we choose two parame-
ters, a l , a2, whose values are to be determined . There-
fore, we have five ranges of integration,

f
_az

a 1

f
.a22,

	

fail

	

and

	

fag .

g(Y) = 1 + erf(Y),

	

(19)

h(y) =e-YZ+1~Yg(Y),

	

(20)

G = g(Y)

	

(21)h(y) '

Eat = -e-«2+ e -a1 ,

Ea3 = 0,

Ea4 = - e -a1 + e-az,

Eas=e-a21 ,

F1 = -erf(a,)+1,

	

Fa2 =- erf(a2 )+erf(a, ,

Fa3 =2erf(a 2 ), Fa4 =erf(a l )-erf(a2 ),

Fas =1-erf(a,),

(18)

and the ERL , FRL are same functions with al and a2
replaced by ßl and N2 .

The condition eq . (11) requires that all the products
F.KFRL equal each other . It is logically simple to require
that all the F«K s equal each other, and the same for the
FRLs . This leads to identical conditions for the as and
ßs . For the as, we have two independent conditions,

1 - erf(a l ) = erf(al ) - erf(a 2 ),

	

(22)

1 - erf(al ) = 2 erf(a 2 ) .

	

(23)

We have similar plans for the second integral in eq . (10)
f=exp

L
- (û12 -(û) 2 -( vZ u v° ) 2 ] , (2 ) with the corresponding parameters #1, ß2 . Then we

evaluate eq . (10) explicitly . The results are
where

JKL= PC19(Y)E.KFpL+BClg(Y)F.KERLve = rd = the skew velocity, (3)
+zClh(y)F.KFOL , (15)

2kT,
u=

(
)1/2, (4)m nKL = C2g(Y)F«KFRL, (16)

kT, = the particle temperature, (5) (VKL) EaK ERL I

2E0 ~/2
= PC +u 3F3F 19C3 ZC3 , (17)

aK FRL
F

v0 = (
= the initial driftm ) velocity, (6)

where

and we have ignored the normalization factor in f
'T TTr 1

because it does not concern us in the
ment . Define, for a beam moving in

following develop- C,
4

= 8 u ,
the +z direction

C2
3

= 8u =, and c3 F ,
m

EO
1/2

(7)
0=~ T, )., 0

00 00 °°

(8)
erf(Y) -

2
fYdt e" = the error function,
o

JKL = J+, (12)
K, L

1
IKL = PI11 for the magnitude of the current

carried by each beamlet, and (13)

(VKL)
JKL= for the beamlet directions . (14)
nKL



This gives

erf(a,) =', erf(a 2 )=s . (24)

Thus a, = 0.5951, a2 = 0.1792, and F.K = s for all K .
We have the same results for ß,, 82 and the FßL s. From
these we obtain the r, B components of the velocity
ratio, independent of the drift velocity vo ,

(UKL)

	

_ -0.9898, -0.3761, 0.0000, 0 .3761,u ?.ê

0.9898 .

	

(25)

The z component of the velocity ratio in eq. (17)
depends on the drift velocity vo through the quantity G .
It can easily be evaluated once the values of kT, and vo
are given . For small and large values of vo, we have the
limits

1 - 1 (v)
VO -0 C 2 u '

8k
where (v) _ (

	

m)1/2,
(26)

vo E,
00 --~oo

	

u - ( kT,)

	

'	(27)

For a representation with more than 5 x 5 beamlets,
the situation is not a great deal more complicated . For
example, for 11 x 11 representation, we have five as
with the conditions

erf(a,) = ]'I, erf(a 2 ) _ ;; , . . ., erf(a,) = I ', .

4 . Skew beam dynamics
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We have tested a 45 x 45 representation (together
with the mapping formula described in section 5) ; the
results are shown in appendix B .
We should remark that, for the purpose of "beam

launching", the method described in this section is
sufficient, but not necessary. There are other methods
[9], each with some advantages and disadvantages .

To conclude, with the magnitudes of beamlet cur-
rents given by eq. (13) and directions given by eq . (14),
we are ready to start the beam tracing provided that we
have the correct beam dynamics to take into account
the skew motion.

With the initial condition of the beam specified by
the method described above, suppose now it enters a
region of external electrostatic force . Let the Lagrangian
of a particle of the beam be [10]

L= Zm(r2 +r2d2 +i 2)-qV(r, z),

	

(28)

where we have assumed that V has no 0 dependence for
an axisymmetric situation. Then the equations of mo-
tions are

In eq . (29), J is the angular momentum of the particle
due to skew motion . Eqs. (30) and (31), together with
the Poisson equation [8]

(32)

form the basis of our new beam tracing code. It is still a
2-D code, involving only r and z coordinates . The
method of obtaining the space charge density n from
the beamlet currents is described in detail in ref . [7] .
The fields - aVlar, - a V/az are treated either as con-
stants or linear functions of coordinates within mesh
units imposed on (r, z) . Solving eq. (30) exactly within
a unit would involve elliptic integral, which is quite
messy. In practice, we use an approximation by replac-
ing the r in the centrifugal force term in eq . (30) with
ro , the starting value in the unit, or with (r, + r2 + r3)/3
when we use a triangular mesh.

5 . Mapping from r-r' phase space to x-x' phase space

After we run the beam tracing code for a certain
problem, with ingredients outlined in previous sections,
we obtain a plot of the distribution of points in r-r'
space for a chosen location in z . Now we want to
convert this distribution into a corresponding distribu-
tion in x-x' space to construct a projectional emit-
tance .

First, let us consider the total current in the phase
space. Suppose p4 is the current intensity distribution
[11 in transverse phase space . Then the total current I is
the integral of this distribution,

I = fdx dy dx' dy' p4(x, y, x', y'),

	

(33)

= f r dr dB dr' da' p4(r, 0, r', a'),

	

(34)

where (see fig. 2)

dx vx dr v, I dB VO

x - dz - vz '

	

r = kz - vz '

	

a-rkz = V
z,

and

r2=x2+y2 r .2+a'2=x .2+y~2 .

mr 2d =J = const ., (29)

J avmr =
_ _
mr3 q ar ' (30)

av
mï = - q_az' (31)



with
z

cos B = r ,

	

sm B = r =

	

1 -Xrz

	

.

Now, if we have a point in r-r' space with coordi-
nates r,, r,, skew velocity al and current

h = 2mrto Orto Jio ,

	

(37)

where rto = the initial radius of the ring of current when
the beamlet starts, Orto = the width of the ring, and
Jto = the initial current density carried by the beamlet,
then

Pa = -f-8(r -rt )S(r'-ri)S(a-ai)(38)

Put this pa into eq . (34), after some calculus, (see
appendix A), and since [1] pz = dzl/dx dx', we have

x' ) = fay a y'p,Pz(z>

h 1
~rrt xz

1- rtz

~XSIx'-I riz-a�

	

z
/1 ri

X

Fig . 5 . Geometric meanings of the factors in eq . (39).

(39)

P 2

a

r

X

r l

X

X

Fig. 6. (a) A point in (r, r') is mapped into a line in (x, x') by
eq. (40) . (b) The intensity factor in eq . (39) .

Fig. 7. A point in (r, r') is mapped into a half-ellipse in
(x, x') by eq . (41).
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The relations between
are

C.F. Chan et al. / Dynamos of skew beams and the

the two coordinate systems [1]

projectronal emutance

x'

x' = r' cos B - a' sin B, (35)y' = r' sin B + a' cos B .

The inverse relations are
r
'

'yr '=x'z + 1
r y r' (36)

a ' = -xl y+
'x

r y r ,



If there is skew velocity, al :0 0, and

r2
.

1
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There is a simple geometric interpretation for every
factor in eq . (39) . One can easily verify the following:
the factors preceding the S function give the portion of
the current ring passed through the slit with width dx .
The length of the arc is just dx/sin 0 (see fig . 5) . And
the argument in the S function is just the condition that
the angle x' is due to the combined motions in the
radial and skew directions .

If there is no skew velocity, a, = 0, and the argument
of the S function gives

That is, a point in r-r' space is mapped into a straight
line passing through the origin in x-x' space as shown
in fig. 6a, with intensity distribution sketched in fig. 6b .
The sum of the contributions from these phase points
would give a plot that looks like the one sketched in fig .
3 .

(41)

A point in r-r' space is mapped into a half-ellipse (see
fig . 7). If al > 0, we get the half that is below the line
eq . (40). (It should be noted that this line is not the
major axis of the tilted ellipse.) Specifically, from eq .
(41), we get
/ z1
l az+ bz Ixz -2axx'+x'z = bz,

	

(42)
r /l

where a = r1/rl , and b = a, .
Next we consider the value of al . After the beam

optics calculation, we obtain the final values rl, rl for
the phase point at location z. The value of (vo)1 is
obtained by using eq . (29) and the initial values rlo,
(VB>10+

(vo>1- rlo (ve>10

Recall that (vo)lo is determined by the beam initial
temperature kT� therefore eq . (43) takes care of the
accounting of beam heating due to radial compression
or cooling due to expansion. Thus,

33 kV

(43)

Fig. 8. Trajectory and exit r-r' phase plots of a H - ion beam from an axisymmetric electrostatic accelerator. We use 35 X 5 X 5
beamlets in r-r'-a' space. (Ion beam optics with skew beams. r =1.456 cm, E =33 kV, p =13 mT, I= 31 mA . Assumptions :

kT, = 4 eV, uniform j at the ermtter) . (a) All beams. (b) Phase space in r-r' .



6. Practical implementation of the mapping

2

Ox' , _

	

rt sin - ' x' + ') -sin- '
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where ((ue)/u)to is the input value from eq . (14), (see
also the example in eq . (17)), and Er is the beam energy
at the phase plot location . Notice that b is just the
intercept of the half-ellipse with the x' axis .

In order to do the mapping in practice, we have to
impose a grid in the x-x' plane. Suppose we integrate
eq. (39) from x, to x, +1 , then

We deposit this amount of current, say, at the lower left
corner of the grid cell under consideration : (x� x, ),
where x. is given by eq . (41), in which x takes the value
of x, . In order to calculate the contribution of one point
(rt , rl) to P2 on the whole grid, it is necessary to
calculate the intersections of the half ellipse of eq . (42)
with the grid lines.

0 2 0

(45)

7. Application of the method and comparison of the
results with data

We have studied a test case for the mapping formula
eq. (39), as well as for the beamlet representation de-
scribed in section 3, with a "flat-Maxwellian" distribu-
tion which has a known analytic solution . The result is
quite satisfactory and it is presented in appendix B.

Next we apply the method to calculate the perfor-
mance of an accelerator of H- ions for magnetic fusion
energy or other applications [11] . In the example pre-
sented below, we choose to use a 35 X 5 X 5 beamlet
representation in r-r'-a' space due to computer time
limitations . The initial velocity components are given by
eq . (25) in section 3. In fig . 8 we show the trajectory
plot of all the beamlets and the r-r' phase plot at the
beam exit location . The H- tons start their paths from
the "emitter" at the left hand side . An emitter in this
case is the assumed plasma boundary, with the require-
ment that the electric field there is low (< 1000 V/cm).
The source plasma, located to the left of this boundary,

33 kV

Fig. 9. A subset of beamlets in fig . 8, corresponding to 35X5X2 to r-r'-a' space, with (ue)/u=±0.9898. (Ion beam optics with
skew beams. r =1.456 cm, E = 33 kV, p = 13 mT, 1= 31 mA. Assumptions : kT, = 4 eV, uniform j at the emitter) . (a) One set of

skew beams. (b) Phase space in r-r' .



actually also contains positive ions and electrons. Their
effect on this calculation is believed to be not signifi-
cant and therefore is neglected. Our goal here is not to
do a detailed comparison of the calculation with data,
but rather to demonstrate the utility of the method .
Therefore, a simplified physical picture mentioned above
is adopted and we content ourselves with the following
preliminary comparison .

In fig . 9, we show the trajectory plot and the corre-
sponding exit phase plot for one set of beamlets with
(°e)/u equal to ±0.9898, (see eq. (25)) . This shows the
effect of the centrifugal force term, which makes the
beamlets "leave" the axis .

Accompanying the r-r' phase plot of fig . 8 is a table
(not shown) that contains, for each point, the values of
rl , ri', al, and It as described in section 5 . We use the
mapping formula eq. (45) to generate another table that
contains the intensity distribution in x-x' phase space.
Finally, a computer program developed by one of us
(W.F .S .) is used to produce a percentage contour plot,
shown in fig . 10. The measured intensity distribution,
processed by the same contour plotting program, is
shown in fig . 11 .

As one can see, there is quite a change in appearance
in going from the r-r' phase plot in fig. 8 to the x-x'
projectional emittance shown in fig. 10 . The result is
reasonably close to the measured projectional emittance
shown in fig. 11 . We believe that even better agreement
could be achieved by using more refined physical input
for the calculation ; we leave that for future investiga-
tions .

There are two technical points that should be ad-
dressed. First, the emittance data shown in fig. 11 is not
centered at the origin because there is a magnetic field
at the upstream part of the accelerator to sweep out the

E

0
v

0
N

0
ru

0

i

nr5r20

	

33 .00 kV
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a - .4 - .0 .4 .e
X(cm)

Fig. 10 . Projectional emittance plot converted from the r-r'
phase plot in fig. 8 with the averaging procedure described in

appendix C.

nb v

X
0
ru

0
ni

8. Discussions and conclusions

- .e - .4 - .0 4
X(cm)

Fig . 11 . Projectional emittance plot from experimental meas-
urement.

unwanted electrons, which are extracted together with
the H- ions. This deflects the ion beam somewhat and
causes the shift of the center of the plot. (We ignore this
effect in the calculation, too.)

The second point is that, in order to produce fig . 10,
we have used a method of averaging in x-x' phase
space. As we mentioned at the beginning of this section,
we used only a 5 X 5 beamlet representation in r'-a'
space for the problem in fig. 8; this was due to com-
puter time limitations in tracing a large number of
beamlets over some distance . This is far less than the
45 X 45 representation we used in the simple test prob-
lem in appendix B. The 5 X 5 representation, however,
produces too much fluctuation in intensity P2 over the
x-x' grid and does not give a smooth-looking contour
plot . We use the method of averaging to smooth out the
initial result. This is explained in appendix C. We
should emphasize that the use of this procedure is not
strictly necessary but it is economical to do so . In our
experience with several other cases of applications of
the work described in this paper, this method works
rather well.

The main results of this paper are the 3-D bearnlet
representation scheme, the inclusion of the centrifugal
force term in the 2-D beamlet dynamics and the map-
ping formula. We have shown that by including skew
beamlets in the beam optic calculation, we are able to
obtain a projectional emittance that can be compared
with experimental observation . Furthermore, for rea-
sonable assumptions of the initial beam properties, the
calculated projectional emittances agree reasonably well
with experimentally measured ones. Without the inclu-
sion of skew beamlets, the comparison is poor .
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The centrifugal force term is inversely proportional
to r3; thus it effects strongly only on those beamlets
near the axis . The resulting change in overall space
charge distribution is relatively small because those
beamlets also carry smaller amounts of current (recall
that each beamlet actually represents a ring of current
in our axisymmetric system.) It is for this reason that
ion optics codes that do not include skew bean-Jets can
be used successfully in many cases for design purposes,
even though they predict incorrect projectional emit-
tances .

Next let us discuss the question of maximal change
in angle in going from r-r' space to x-x' space due to
skew motion . Applying ax'/ax = 0 to eq. (41), we ob-
tain the maximal values

Recall that

r,

Thus, the angle is increased by the square root factor .
From the expression for a, given by eq. (44), we see
that the increment is contributed to by various factors .
In the case we studied in section 7, the increase is only a
few percent. In cases where one has large beam com-
pression ratio and high temperature, the effect would be
larger.
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Appendix A

Derivation of the mappingformula

In section 5 we have

P2(x,x') = fdydy 'jmr 8 (r - rl) 8(r '- rt) 8 (a'- at)

(A .1)

8(f(Y)) = E

	

1

	

ô(Y-Y0,)>

where f(yo,) = 0, therefore

8(r-rt)

	

Yi+ IS(Y

	

)+I
Yr

~,(Y_yl_),
~i-

where yl t= ± Jrt -x2 .
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(46)

(47)

(A .2)

We have a similar formula for 8(r' - r,') . Notice, how-
ever, that the choice of

/2 ,2 ~2
Yi f = +

	

rl	- x

	

- a1

is not independent of the choice of y l t, in view of eq .
(35) and the assumption that we have an axisymmetric
beam. Therefore, we have only two terms (instead of
four terms),

8(r-rl)S(r'-ri')

=
Yi3+ I

yT s(Y-Yi+)s(Y-Ya +)

+ Yri

	

YT
~,(Y_yl_),(Y,

-Yi-)

Putting eq . (A.3) into eq. (A.1), we obtain

PAX ,

PAX ,

/

	

Il ri
[sl-X,

+ ,x
)

	

2Trr3 Yl y~

	

r~

	

Y~ ri

x'

	

Il

	

ri

	

2S_

	

( -x ' Y'
+

	

x -a,
2mri Y,Yt

	

ri

	

Y~ ri

	

t )

(
Sl-x .Y ,

+Yi
x
--ai)ri ri

Thus, we obtain eq . (39).

Appendix B

A flat-Maxwellian distribution [81 is defined as

(A.3)

+S
( x'ri

-Y~

	

-ai)I,

	

(A.4)

where yl = I Yt t I and yi = I Y1', 1 .
Now, if al = 0, the two 8 functions combine to form

28 because of the relation S(- x) = 8(x). If al * 0,
then because ai is symmetrically distributed around the
beam axis, we can always find another beamlet with
a' _ -a,, so that eq . (A.4) can be simplified, without
double counting,

(A.5)

From the relation x2 + y 2 = r 2, we obtain xx' +yly; =
rlr,' . This relation, together with eqs. (35) and (36),
enables us to use eq . (A.2) to transform the 8 function
in eq . (A.5) into the following from :

I
ri S I x'

	

r

	

x 2

- ( ri
x - al' / 1

	

r2	I I

	

(A.6)
V

Test of the mapping formula with a flat-Maxwellian dis-
tribution

ay Iy=yo,

P4 = P.(x, Y)exp [ - ( x2 +Y 2 )/u 2 1>

	

(B.1)
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where po(x, y) = const . for r :!5; t o , z = dx/dt, etc ., and
u is given by eq . (4). Then after the integration over y
and j , we have

P2 = a1r. -x 2 exp[
-X,2/b2

	

(B .2)

where b2 = 2kT,lß 2mc 2 , /3 = 2/c,
= dx/dz as before .

For the test we consider a "pill-box" problem in
which an ion beam, with initial conditions : radius = 1
cm, kT, = 1 .5 eV and E0 = 6.0 eV, propagates only a
short distance in z . In this way, we obtain an initial
phase plot without actually having to go through the
beam dynamic part of our program . In order to gain
sufficient fineness and accuracy we choose to use a
relatively large number of beamlets for this test prob-
lem . Namely, in r-r'-a' we use 25 x 45 x 45 bean-Jets.

In fig. 12a we show the r-r' phase plot . Each point
in this plot represents, in addition to the r, r' values
shown, an intensity given by eq . (37) and one of the 45
skew velocity components . Feeding all these quantities
into eq. (45) and choosing a 100 x 100 grid in x-x', we
obtain a matrix of P 2 values . Then with the help of a
percentage contour plotting code we generate fig . 12b,
the projectional emittance computed from discrete
beamlets . One can see that the contours in this plot are
quite similar to those contours of p2 = const . in ref . [8] .

From the matrix of p2 values, we have also com-
puted (x 2) and (x'2) . The magnitudes are very close to
those obtained from the analytic formula [8] . We re-
mark also that figs . 12a and 12b are the typical plots of
the initial phase of an ion beam entering an accelerator.

a = 2Fbpo , and x'

X

v
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m
N

0
v

RNMB
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Fig . 12 . (a) r-r' phase plot of a flat-Maxwellian distribution . (b) Projectional emittance plot converted from the plot in (a) . Starting
from the center of the plot, it shows the areas for 20, 40, 60, 80 and 90% of the total current .

Appendix C
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The method of averaging to x-x' space
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As we explained at the end of section 7, an auxiliary
averaging procedure is used to smooth out the result
from the mapping calculation in the case when we use
an economical but undesirably small number of beamlets
in the representation of a continuous velocity distribu-
tion . We used an averaging procedure in which the
intensity value in eq . (45) at each point in the x-x' grid,
whenever it is nonzero, is replaced by the average of its

x(cm)
Fig. 13 . Projectional emittance plot converted from the r-r'

phase plot in fig . 8 without the averaging procedure .
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own intensity plus those of the surrounding eight points .
The "nonzero" condition is due to the fact that we want
to apply this procedure only to the interior points of the
emittance. This averaging process can be repeated a
number of times as explained below.

In fig . 13, we show the "raw" result of the contour
plot from the mapping calculation for the problem
described in section 7. Notice that there are five dark
streaks (corresponding to high intensities) in the x'
direction . This is a consequence of the five beamlet
representation in x' space. The gap widths between
these streaks are < 10 mrad . The width of the grid cells
in x' we used in this plot is 1 mrad (50 mrad/50 cells) .
If we define N. to be the number of cells per gap, then
_ gap width

Nc

	

cell width
` 10 .

Then, in analog to a diffusion problem [12], we
assert that in order for any information to disperse from
one streak halfway to the next streak, in either direc-
tion, it has to take (N,/2)z steps. Therefore, we choose
the number of times to repeat the averaging process to
be

N z
Navg = (

	

c

2

	

= 25 .

In practice, the result is not sensitive to the exact
value of N,,, g. From fig . 13 we produce fig . 10 by using
Navg = 20 . For each average, we use

fnew ( t, J)

= v [ P20 -1, J)+P20, J)+P20+ 1, J)
+P2 (t-1, j+1)+P2 (i, J+1)

+P2 (i+1, J+1)+P2(t-1, j-1)

+P2(t , J-1)+Pz(i+1, J-1)],

C F. Chan et al. / Dynamics ofskew beams and the projectional em:ttance

provided P2(i, J) =A 0. Otherwise, we skip this process.
We have also tried to do the average only in the x' (i .e .,
J) direction, but the results are not much different for
the cases we studied.

This method of averaging is used only to smooth out
the intensity fluctuation . It is a cheap way to "fill in
with more beamlets" between the gaps. Obviously, we
should not overdo it, or it will wash out the detail
features of the emittance plot. On the other hand, if we
are willing to use more beamlets, we can get smooth
results without using this process, as we showed in the
test case in appendix B.
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