CERN ACCELERATOR SCHOOL 2012:

ELECTRON CYCLOTRON RESONANCE ION SOURCES - I

Thomas Thuillier LPSC, 53 rue des Martyrs 38026 Grenoble cedex France E-mail: thuillier@lpsc.in2p3.fr

OUTLINE

- Electron Cyclotron Resonance Ion Source I
 - Introduction
 - Summary of the main microscopic processes occuring in an ECRIS
 - Electron Cyclotron Resonance Mechanism
 - Magnetic confinement and ECR plasma generation
 - Geller Scaling Law and ECRIS Standard Model

Ingredients of Electron Cyclotron Resonance Ion Source

• An ECR ion source requires:

- A secondary vacuum level to allow multicharged ion production
- A RF injection in a metallic cavity (usually multimode)
- A sophisticated magnetic Field structure that enables to:
 - Transfer RF power to electrons through the ECR mechanism
 - Confine long enough the (hot) electrons to ionize atoms
 - Confine long enough ions to allow multi-ionization ions
 - Generate a stable CW plasma
- An atom injection system (gas or condensables) to sustain the plasma density
- An extraction system to accelerate ions from the plasma
- In the following, we will try to detail these points to provide an overview of ECR ion sources

Ion creation through Electron Impact Ionization (in gas or plasma)

- Ions are produced through a direct collision between an atom and a free energetic electron
 - $e^- + A^{n+} \to A^{(n+1)+} + e^- + e^-$
 - Kinetic energy threshold E_e of the impinging electron is the binding energy I_n of the shell electron: $E_e > I_n$
 - Optimum of cross-section for $E_e \sim 2 3 \times I_n$
 - Higher energy electron
 can contribute significantly
 - Double charge electron impact ionization may also occur...

Ion creation through Electron Impact Ionization (in gas or plasma)

 Electron impact ionization cross section can be approximated by the semi-empirical Lotz Formula:

•
$$\sigma_{n \rightarrow n+1} \sim 1.4 \times 10^{-13} \frac{\ln(\frac{E}{I_{n+1}})}{EI_{n+1}}$$
, E electron kin. energy

- High charge state production requires hot electrons
- $Max(\sigma_{n \to n+1}) \sim \frac{1}{I_{n+1}^2}$ => the higher the charge state, the lower the probability of ionization

Example for Bismuth

Z	I _n (eV)	$\sigma_{max} (cm^2)$
1+	7.2	~2.4×10 ⁻¹⁶
22+	159	~4.9×10 ⁻¹⁹
54+	939	~1.4×10 ⁻²⁰
72+	3999	~7.8×10 ⁻²²
82+	90526	~1.5×10 ⁻²⁴

Ion loss through Charge-Exchange (in gas or plasma)

- The main process to reduce an ion charge state is through atom-ion collision e⁻
 - $A^{n+} + B^0 \rightarrow A^{(n-1)+} + B^{1+}$ (+radiative transitions)
 - Long distance interaction: the electric field of the ion sucks up an electron from the atom electron cloud
 - Any ion surface grazing signs the death warrant of a high charge lon
 - semi-empirical formula :
 - $\sigma_{CE}(n \rightarrow n-1) \sim 1.43 \times 10^{-12} n^{1.17} I_0^{-2.76} (cm^2)$ (A. Müller, 1977)
 - I_0 1st ionization potential in eV, *n* ion charge state

Example : Bismuth with O ₂	Ζ	1+	22+	54+	72+	82+
	σ_{CE} (cm2)	1.5×10 ⁻¹⁵	5.6×10 ⁻¹⁴	1.6×10 ⁻¹³	2.2×10 ⁻¹³	2.6×10 ⁻¹³

Zero Dimension Modelization

• The ion charge state distribution in an ECRIS can be reproduced with a 0 Dimension model including a set of balance equations:

$$\frac{\partial n_i}{\partial t} = \sum_{j=j_{\min}}^{i-1} n_e n_j \left\langle \sigma_{j \to i}^{EI} v_e \right\rangle + n_0 n_{i+1} \left\langle \sigma_{i+1 \to i}^{CE} v_{i+1} \right\rangle - n_0 n_i \left\langle \sigma_{i \to i-1}^{CE} v_i \right\rangle - \sum_{j=i+1}^{j_{\max}} n_e n_j \left\langle \sigma_{i \to j}^{EI} v_e \right\rangle - \frac{n_i}{\tau_i}$$

- n_i ion density with charge state i
- σ , cross section of microscopic process
 - Electron impact or charge exchange here
- τ_i is the confinement time of ion in the plasma
- $-\frac{n_i}{\tau_i}$ represents the current intensity for species i (in fact losses)
- Free Parameters: ne, f(ve), τ_i
- Model can be used to investigate ion source physics

Losses (ion extraction, wall...)

Elastic Collision in an ECRIS plasma

- The electromagnetic interaction between charged particles only occurs in distances shorter than the Debye Length λ_D (mm to μ m).
- The e-e and e-ion electromagnetic interaction in the Debye sphere (radius~ λ_D) generate a mean force acting on individual charged particles that continuously, and little by little, <u>change their mean velocity direction</u>
- The Elastic interaction is modelized by the mean time to deviate the initial trajectory by 90°. They are known as the Spitzer formulas:
- Electron/Electron collision (Hz): $v_{ee}^{90^{\circ}} = 5.10^{-6} \frac{n \ln \Lambda}{T^{3/2}}$
- Electron-lon collision (Hz) : $v_{ei}^{90^{\circ}} = 2.10^{-6} \frac{\text{zn } \ln \Lambda}{\text{T}^{3/2}}$
- Ion/Ion Collision (Hz) : $v_{ii}^{90^{\circ}} = z^4 \left(\frac{m_e}{m_i}\right)^{1/2} \left(\frac{T_e}{T_i}\right)^{3/2} v_{ee}^{90^{\circ}}$
- T in eV, n in cm-3, z = ion charge state, $\ln(\Lambda) \sim 10$
- One should note that these perpetual interaction tends to randomize the velocity direction of a particle inside the plasma

90°

Motion of a charged particle in a constant magnetic field

- The Individual motion of a charged particle in a magnetic field is ruled by:
- $m \frac{d\vec{v}}{dt} = q \vec{v} \times \vec{B}$
- Velocity is decomposed as $\vec{v} = \vec{v}_{\parallel} + \vec{v}_{\perp}$ with $\vec{v}_{\perp} \cdot \vec{B} = 0$ and $\vec{v}_{\parallel} \parallel \vec{B}$
 - We define the space vectors $\vec{e}_{\parallel} = \frac{\vec{B}}{B}$, $\vec{e}_{\perp 1} = \frac{\vec{v}_{\perp}}{v_{\perp}}$ and $\vec{e}_{\perp 2} = \vec{e}_{\parallel} \times \vec{e}_{\perp 1}$
- General solution for the velocity is:

• The particle trajectory is an helix with radius ρ and pitch p =**()**

 $\vec{e}_{\perp 2}$

The Electron Cyclotron Resonance (1/3)

: Motion of an electron in a constant Magnetic Field B and a perpendicular time varying Electric Field $E_x(t)$

• Assume
$$\vec{B} = B\vec{z}$$
; $\vec{E}(t) = E \cos \omega_{HF} t \vec{x}$

- Assume initial particle velocity $\vec{v}_0 = \vec{0}$, and q = -e with e > 0
- Assume $\omega_{HF} = \omega = \frac{eB}{m}$ (ECR resonance condition)

• Let's solve
$$m \frac{d\vec{v}}{dt} = -e\vec{v} \times \vec{B} - e\vec{E}(t)!$$
 (1)

• Complex notation:
$$\tilde{E}(t) = Ee^{i\omega t}\vec{x}$$

• We look for velocity solution of type:
$$\vec{\tilde{v}} = \begin{cases} a(t)e^{i\omega t} \\ b(t)e^{i\omega t} \end{cases}$$

• Let's substitute in (1):

$$\vec{v} = \frac{d}{dt} \begin{vmatrix} ae^{i\omega t} \\ be^{i\omega t} \\ 0 \end{vmatrix} = -\omega e^{i\omega t} \begin{vmatrix} a \\ b \\ 0 \end{vmatrix} \begin{vmatrix} a \\ b \\ 0 \end{vmatrix} \begin{vmatrix} a \\ b \\ 1 \end{vmatrix} \begin{vmatrix} a \\ b \\ 0 \end{vmatrix} = \begin{pmatrix} \frac{eE}{m} \\ 0 \\ 0 \end{vmatrix} e^{i\omega t} \rightarrow \begin{cases} \dot{a} + i\omega a = -b\omega - \frac{eE}{m} \\ \dot{b} + i\omega b = a\omega \end{cases}$$

0

 \vec{B} (•)

The Electron Cyclotron Resonance (2/3)

The Electron Cyclotron Resonance (3/3)

- ECR heating in a general transverse Electric Field (with $\vec{B} = B\vec{z}$)
 - Static linear polarization time varying Electric field:
 - for $\vec{E}_x(t) = E \cos \omega t \vec{x}$:
 - $\overrightarrow{v_1}(t) = \frac{(-e)Et}{2m}(\cos \omega t \, \vec{x} + \sin \omega t \, \vec{y}) + \frac{eE}{2m\omega}\sin \omega t \, \vec{x} => \text{ECR HEATING}$
 - Now for $\vec{E}_y(t) = E \sin \omega t \vec{y}$, applying the same reasoning, one can find the same result:
 - $\overrightarrow{v_2}(t) = \frac{(-e)Et}{2m}(\cos \omega t \, \vec{x} + \sin \omega t \, \vec{y}) + \frac{eE}{2m\omega}\sin \omega t \, \vec{x} \Rightarrow \text{ECR HEATING}$
 - Static Rotating time varying electric field:
 - Clockwise rotation case :
 - The electric field turns in the opposite direction of the electron

•
$$\vec{E}_{-}(t) = \vec{E}_{x}(t) - \vec{E}_{y}(t) = E \cos \omega t \, \vec{x} - E \sin \omega t \, \vec{y}$$

- $\overrightarrow{v_{-}}(t) = \overrightarrow{v_{1}} \overrightarrow{v_{2}} = \overrightarrow{0}$ => NO ECR HEATING
- Counter-Clockwise rotation case:
- · Electron and electric field turn in the same direction

•
$$\vec{E}_+(t) = \vec{E}_x(t) + \vec{E}_y(t) = E \cos \omega t \, \vec{x} + E \sin \omega t \, \vec{y}$$

•
$$\overrightarrow{v_+}(t) = \overrightarrow{v_1} + \overrightarrow{v_2} = \frac{(-e)Et}{m}(\cos \omega t \, \vec{x} + \sin \omega t \, \vec{y}) + \frac{eE}{m\omega}(\sin \omega t \, \vec{x}) => \text{ECR HEATING}$$

ECR Stochastic Heating (1/5)

- : In the former slides, we studied the ECR heating starting from an electron at rest (v_0=0)
- In reality, the electron always has an **initial velocity** $v_0 \neq 0$
- Let's look at the influence of v_0 on the ECR heating, introducing the Phase shift between \vec{E} and \vec{v}_0 : $\vec{v}_0 = \vec{v}_0$

• $\varphi = (\vec{E}(0), \vec{v}_0)$

- When $\varphi = \pi$, $\vec{E}(0) \parallel \vec{v}_0$, acceleration is maximum: it is the ideal case studied previously \rightarrow <u>electron gains energy</u>
- When φ = 0, acceleration is now in the opposite direction, the electron is decelerated
 → electron loses energy!
- So, how does it work???

ECR Stochastic Heating (2/5)

- Let's solve again (1): $m \frac{d\vec{v}}{dt} = -e\vec{v} \times \vec{B} e\vec{E}(t)$, still using complex notations, but with the initial condition $v_0 \neq 0$
 - $\vec{v}(t) = a(t)e^{i\omega t}\vec{x} + b(t)e^{i\omega t}\vec{y}$
 - $\overrightarrow{v_0} = \overrightarrow{v}(0) = v_0(\cos\varphi\,\overrightarrow{x} + \sin\varphi\,\overrightarrow{y})$
 - so $\operatorname{Re}(b(0)) = \operatorname{Re}(-v_0 i e^{i\varphi}) = v_0 \sin \varphi$ and $\operatorname{Re}(a(0)) = \operatorname{Re}(v_0 e^{i\varphi}) = v_0 \cos \varphi$
 - and still $\vec{E}_x(t) = E \cos \omega t \vec{x}$
- Same solving, but now: $\dot{b} = \frac{ieE}{2m} \rightarrow b(t) = \frac{ieE}{2m}t + b(0)$
- The velocity expression is now :

•
$$\vec{v} = \frac{(-e)Et}{2m}(\cos \omega t \, \vec{x} + \sin \omega t \, \vec{y}) + \frac{eE}{2m\omega}\sin \omega t \, \vec{x} +$$

 $v_0(\cos(\omega t + \varphi) \, \vec{x} + \sin(\omega t + \varphi) \, \vec{y})$
Former solution ($v_0 \neq 0$)
Initial condition ($v_0 \neq 0$)

ECR Stochastic Heating (3/5)

• Finally, the general solution for a counter-clockwise Electric Field $\vec{E}_{+}(t) = \vec{E}_{x}(t) + \vec{E}_{y}(t)$ can be calculated to be :

•
$$\vec{v} = \frac{(-e)Et}{m} (\cos \omega t \, \vec{x} + \sin \omega t \, \vec{y}) + \frac{eE}{m\omega} \sin \omega t \, \vec{x} + v_0 (\cos(\omega t + \varphi) \, \vec{x} + \sin(\omega t + \varphi) \, \vec{y})$$

- Expression of the Kinetic Energy of the electron as a function of time t and phase φ :

•
$$T_{kin}(t,\varphi) = \frac{e^2 E^2}{2m\omega^2} ((\omega t)^2 - \omega t \sin 2\omega t + \sin^2 \omega t)$$
 Increases with time (~ t^2)
+ $\frac{eEv_0}{\omega} (\sin \omega t \cos(\omega t + \varphi) - \omega t \cos \varphi)$ Phase term,
may be <0 (~ t)
+ $\frac{1}{2}mv_0^2$ Constant term

ECR Stochastic Heating (4/5)

• electron Kinetic energy plot as a function of time t and phase φ :

ECR Stochastic Heating (5/5)

• If we assume that a population of N_e electron with velocity v_0 is **randomly distributed** in its velocity phase space (random phase with the wave), the mean kinetic energy $\frac{dN_e}{d\varphi}$ evolution of the population is:

•
$$\langle T_{kin} \rangle_{\varphi}(t) = \frac{1}{2\pi} \int T_{kin}(t,\varphi) \, d\varphi$$

• And we find...
$$\frac{d}{dt} \langle T_{kin} \rangle_{\varphi}(t) > 0$$

That's the ECR stochastic Heating!

ECR Heating in a Magnetic Gradient

- In ECR Ion Sources, the ECR zone is usually reduced to a surface, inside a volume, where B is such that $\omega_{HF} = \omega = \frac{eB}{m}$
 - When electrons pass through the ECR surface they are slightly accelerated (in mean) and may gain few eV of kinetic energy
 - The parallel velocity v_{\parallel} is unchanged, while v_{\perp} increases
 - The ECR zone thickness is correlated to the local magnetic field slope

Properties of particle motion in a magnetic field (1/2)

•
$$\vec{v} = \vec{v}_{\parallel} + \vec{v}_{\perp}$$
 with $\vec{v}_{\perp} \cdot \vec{B} = 0$

•
$$v_{\parallel} = const$$

• $v_{\perp} = \rho\omega = const$ $\} \rightarrow T_{kin} = W_{\parallel} + W_{\perp} = \frac{1}{2}mv_{\parallel}^2 + \frac{1}{2}mv_{\perp}^2 = const$

- The kinetic energy of a charged particle is constant in a pure magnetic field
- The particle roughly follows the local magnetic field line, even if the field line is bended
 - Provided the magnetic field change per cyclotronic turn to be small $(\nabla B/B \ll 1)$

Particle Trajectory With a drift due to A too large $\nabla B/B$

http://www-fusion-magnetique.cea.fr

Properties of particle motion in a magnetic field (2/2)

The Magnetic Moment of a charged particle in a slowly varying magnetic field is an adiabatic constant of the movement

$$\mu = \frac{m v_{\perp}^2}{2B} = \frac{W_{\perp}}{B} \sim cst$$

- Demonstration:
 - We assume a local axi-symetric magnetic field which converges toward the z axis with $B_z(z,r) \sim B_z(z)$

• From
$$div(\vec{B}) = 0 \rightarrow \frac{1}{r} \frac{\partial(rB_r)}{\partial r} + \frac{\partial B_z(z)}{\partial z} = 0$$
 (cylindrical coordinate)

•
$$\rightarrow d(rB_r) = -\frac{\partial B_Z(z)}{\partial z} r dr \rightarrow B_r = -\frac{r}{2} \frac{\partial B_Z(z)}{\partial z}$$

• The force acting on a particle rotating around z axis with a Larmor radius $r = \frac{v_{\perp}}{v_{\perp}}$ is:

•
$$\vec{F} = q(-v_{\perp}\vec{e_{\theta}} + v_{\parallel}\vec{e_{z}}) \times (B_{r}\vec{e_{r}} + B_{z}\vec{e_{z}}) \rightarrow F_{z} = qv_{\perp}B_{r} \rightarrow F_{z} = -qv_{\perp}\frac{r}{2}\frac{\partial B_{z}(z)}{\partial z}$$

•
$$F_z = -qv_\perp \frac{v_\perp}{2\omega} \frac{\partial B_z(z)}{\partial z} = -\frac{qm}{2qB} v_\perp^2 \frac{\partial B_z(z)}{\partial z} = -\frac{mv_\perp^2}{2B} \frac{\partial B_z(z)}{\partial z} = -\mu \frac{dB_z(z)}{dz}$$

• The elementary work associated with F_z is $dW_z = dW_{\parallel} = F_z dz = -\mu dB_z = -\frac{W_{\perp}}{B_z} dB_z$

• The kinetic energy constancy implies: $T_{kin} = W_{\perp} + W_{\parallel} = const \rightarrow dW_{\perp} = -dW_{\parallel}$ • $\frac{dW_{\perp}}{W_{\perp}} = \frac{dB_z}{B_z} \rightarrow \mu = \frac{W_{\perp}}{B_z} = Const$

The Magnetic Mirror Effect

 When a charged particle propagates along z toward a higher magnetic field region, it may be reflected back

•
$$T_{kin} = W_{\parallel} + W_{\perp} = \frac{1}{2}mv_{\parallel}^2 + \frac{1}{2}mv_{\perp}^2 = const$$

•
$$\mu = \frac{mv_{\perp}^2}{2B} = \frac{W_{\perp}}{B} \sim const$$

•
$$T_{kin}(z) = \frac{1}{2}mv_{\parallel}^{2}(z) + \mu B(z) = const$$

- When B increases, then the velocity is adiabatically transferred from v_{\parallel} to v_{\perp}
- The particle is stopped at $z = z_1$ where($v_{\parallel} = 0$) and $B(z_1) = \frac{T_{kin}}{\mu}$
 - $T_{kin}(z_1) = \frac{1}{2}mv_{\perp}^2$
- Any perturbation induced by the surrounding particles on the stopped particle will make it go back to where it came from => Mirror Effect

Axial mirror done with a set of 2 coils

 \vec{v}

Corrolary of Magnetic Mirroring: The Loss Cone

- The pitch angle θ
 - $\vec{v} = \vec{v}_{\parallel} + \vec{v}_{\perp}$
 - $v_{\parallel} = v \cos \theta$
 - $v_{\perp} = v \sin \theta$
- $T_{kin} = \frac{1}{2}mv_{\parallel}^2 + \mu B$

• The condition to trap a particle in a magnetic mirror from $B = B_{min}$ with a maximum peak at $B = B_{max}$ can be expressed as a function of the mirror ratio *R*:

Magnetic confinement is not perfect, and it is used to EXTRACT ION BEAMS!

ECR Magnetic confinement: Minimum |B| structure

- ECR ion sources features a sophisticated magnetic field structure to optimize charged particle trapping
 - Superimposition of axial coils and hexapole coils
 - The <u>ECR surface</u> (|B|=B_{ECR}) is closed

T. Thuillier, CERN Accelerator School 2012, Senec, 29/5-8/6 2012

Axial Magnetic Confinement

- The axial magnetic confinement in a multicharged ECRIS is usually done with a set of 2 or 3 axial coils.
 - Either room temperature coils + iron to boost the magnetic field
 - Or superconducting coils
- In the case of 3 coils, the current intensity in the middle one is opposed to the others so that it helps digging B_{med}
- Usually Binj, Bext respectively stand for the magnetic field at injection (of RF, atoms...) and (beam) extraction
- Bext should be the smaller magnetic field in the ECR to favor lon extraction there!

Radial Magnetic Confinement |B_r|

- The radial magnetic confinement is usually built with a hexapole field
- Either with permanent magnets
 - Br Up to 1.6 T maximum possibly 2T with some tricks
 - Advantage : economical
 - Inconvenient: not tunable
- Either with a set of superconducting coils
 - Br>1.6 T-2 T
 - Advantage: tunable online to optimize a population of ion in the source.
 - Inconvenient: expensive, complicated design and building

Superconducting hexapolar coil

(HallBach Hexapole With 36 permanent magnets 30° rotation/magnet)

ECR Plasma build up

- Pumping & Gas Injection to reach P~10⁻⁶ to 10⁻⁷ mbar in the source
 RF
- Microwave injection from a waveguide
- Plasma breakdown
 - 1 single electron is heated by a passage through the ECR zone
 - The electron bounces thousands of time in the trap and $\ensuremath{\mbox{kT}}\xspace_{\rm e}$ increases
 - When kTe>l₁⁺, a first ion is created and a new electron is available
 - Fast Amplification of electron and ion population (~100 µs)
 - =>plasma breakdown
- Multicharged ion build up
 - When Te is established (kT_e~1-5 keV), multicharged ions are continuously produced and trapped in the magnetic bottle

Atoms

- Ions remains cold in an ECR: $kT_i{\sim}1/40$ eV, $(m_e{<<}m_i)$
- Population of the loss cone through particle diffusion (coulombian interaction)=> constant change in the particle trajectory=> random redistribution of $\vec{v} = \vec{v}_{\parallel} + \vec{v}_{\perp}$
- => ion extraction through the magnetic loss cone on the side of the source presenting the minimum magnetic field intensity

vacuum

The Famous plasma shape in an ECR Ion Source

• To understand why the ECR plasma ends with 3 lines only, one needs to follow the heated electron through the ECR zone

Elevation view from an ECRIS chamber along 2 hexapole poles

Plasma shape at injection (L) and Extraction (R)

Plasma Oscillations – ECR cut off density

• The plasma Frequency ω_p is the natural oscillation frequency of a plasma, as a response to a perturbation

_ ρ_i(x)

 $\rho_{e}(x)$

 $_{A}\rho_{i}(x)$

 $\rho_{e}(x)$

At equilibrium, $\rho_i(x) + \rho_e(x) = 0$

► X

★ X

★ X

► X

electrons

lons

Electrons

If $\rho_i(x) + \rho_o(x) \neq 0$

lons

A force is acting on electrons

• Oscillations driven by electrons

$$\omega_p = \sqrt{\frac{n_e e^2}{m_e \epsilon_0}}$$

• The simplest dispersion relation of an EM wave in a plasma is:

•
$$\omega^2 = \omega_p^2 + k^2 c^2$$

- EM wave propagates if $\omega > \omega_p$
- ECR Cut-off density:

•
$$\omega > \omega_p \Rightarrow n_e < \frac{m_e \varepsilon_0 \omega^2}{e^2}$$

• At a given ECR frequency, the plasma density is limited • $n_e \propto \omega^2_{_{FCP}}$

T. Thuillier, CERN Accelerator School 2012, Senec, 29/5-8/6 2012

The ECR Scaling law (R. Geller, 1987)

- The higher the frequency, the higher the beam current
- Plasma density $n \sim f_{ECR}^2$
- Beam current $I \sim n \sim f^2_{ECR}$
- But the higher the ECR magnetic field required...
- ECR Magnetic Field $B_{ECR} = \frac{f_{ECR[GHz]}}{28}$ Tesla

f ECR [GHz]	λ _{ECR} [cm]	n_e [cm⁻³]	Λ _{0->1+} [cm]	Τ_{0->1+ [µs]}	B ECR [T]
2.45	~12	7.4 ×10 ¹⁰	~7	~10	0.09
14	~2	2.5×10 ¹²	0.2	3	0.5
28	~1	~10 ¹³	0.05	0.7	1
60	~ 0.5	4.4×10 ¹³	0.01	0.17	2

The ECR standard model

- Optimum high charge state ion production and extraction have been experimentally studied as a function of ECR frequency.
- General Scaling laws for the magnetic field have been established

$$B_{ECR} = \frac{f_{ECR}[GHz]}{28} Tesla$$

f _{ECR} [GHz]	14	28	56	
B _{ECR} [T]	0.5	1	2	
B _{rad} ∼2×B _{ECR}	1	2	4	
B _{inj} ∼3-4×B _{ECR}	2	3.5	7	
B _{med} ~0.5-0.8× <i>B_{ECR}</i>	0.25	0.5	1	
B _{ext} ≤B _{rad}	1	2	4	
	~ <i>1990 2003 ?</i> VENUS			

T. Thuillier, CERN Accelerator School 2012, Senec, 29/5-8/6 2012