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Ingredients of Electron Cyclotron Resonance Ion Source 
•  An ECR ion source requires: 

•  A secondary vacuum level to allow multicharged ion production 
•  A RF injection in a metallic cavity (usually multimode) 
•  A sophisticated magnetic Field structure that enables to: 

•  Transfer RF power to electrons through the ECR mechanism  
•  Confine long enough the (hot) electrons to ionize atoms 
•  Confine long enough ions to allow multi-ionization ions 
•  Generate a stable CW plasma 

•  An atom injection system (gas or condensables) to sustain the plasma density 
•  An extraction system to accelerate ions from the plasma 

•  In the following, we will try to detail these points to provide an overview of ECR 
ion sources 
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Ion creation through Electron Impact Ionization (in gas or plasma) 
•    
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Ion creation through Electron Impact Ionization (in gas or plasma) 

•    
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In= nth Ionization Potential 

Z In (eV) 

1+ 7.2 ~2.4×10-16 

22+ 159 ~4.9×10-19 

54+ 939 ~1.4×10-20 

72+ 3999 ~7.8×10-22 

82+ 90526 ~1.5×10-24 

Example for Bismuth 

Bi 
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Ion loss  through Charge-Exchange (in gas or plasma) 
•    
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Z 1+ 22+ 54+ 72+ 82+ 

1.5×10-15 5.6×10-14 1.6×10-13 2.2×10-13 2.6×10-13 

Example :  
Bismuth with O2 
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Zero Dimension Modelization 
•    
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Elastic Collision in an ECRIS plasma 
•    
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Motion of a charged particle in a constant magnetic field 
•    
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The Electron Cyclotron Resonance  (1/3) 
•    
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The Electron Cyclotron Resonance  (2/3) 
•    
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The Electron Cyclotron Resonance  (3/3) 
•    
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ECR Stochastic Heating (1/5) 
•    
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ECR Stochastic Heating (2/5) 
•    
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ECR Stochastic Heating (3/5) 
•    
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ECR Stochastic Heating (4/5) 
•    
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ECR Stochastic Heating (5/5) 
•    
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ECR Heating in a Magnetic Gradient 
•    
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Properties of particle motion in a magnetic field (1/2) 
•    
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Properties of particle motion in a magnetic field (2/2) 
•    
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The Magnetic Mirror Effect 
•    
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Corrolary of Magnetic Mirroring: The Loss Cone 
•    
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ECR Magnetic confinement: Minimum |B| structure 
• ECR ion sources features a sophisticated magnetic field 

structure to optimize charged particle trapping 
•  Superimposition of axial coils and  hexapole coils 
•  The ECR surface (|B|=BECR) is closed 
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Axial Magnetic Confinement 
• The axial magnetic confinement in a 

multicharged ECRIS is usually done 
with a set of 2 or 3 axial coils. 
•  Either room temperature coils + iron to 

boost the magnetic field 
•  Or superconducting coils 

•  In the case of 3 coils, the current 
intensity in the middle one is opposed to 
the others so that it helps digging Bmed  

• Usually Binj, Bext respectively stand for 
the magnetic field at injection (of RF, 
atoms…) and (beam) extraction  

• Bext should be the smaller magnetic 
field in the ECR to favor Ion extraction 
there! 
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Radial Magnetic Confinement 
• The radial magnetic confinement 

is usually built with a hexapole 
field 

• Either with permanent magnets 
•  Br Up to 1.6 T maximum possibly 2T 

with some tricks 
•  Advantage : economical 
•  Inconvenient: not tunable 

• Either with a set of 
superconducting coils 
•  Br>1.6 T-2 T 
•  Advantage: tunable online to 

optimize a population of ion in the 
source.  

•  Inconvenient: expensive, 
complicated design and building  
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ECR Plasma build up 

•    
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The Famous plasma shape in an ECR Ion Source 
• To understand why the ECR plasma ends with 3 lines only, one 

needs to follow the heated electron through the ECR zone 
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Plasma Oscillations – ECR cut off density 
•    
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 Geller Scaling Law and ECRIS Standard Model 
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The ECR Scaling law (R. Geller, 1987) 
•    
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λECR 
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ne  

[cm-3] 
Λ0->1+ 

[cm] 
τ0->1+ 

[µs] 
B

ECR 
[T] 

2.45 ~12  7.4 ×1010 ~7  ~10 0.09 

14 ~2  2.5×1012 0.2 3 0.5 

28 ~1  ~1013 0.05 0.7 1 

60  ~ 0.5 4.4×1013 0.01 0.17 2 
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The ECR standard model 
• Optimum high charge state ion production and extraction have been 

experimentally  studied as a function of ECR frequency. 
• General Scaling laws for the magnetic field have been established 
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