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The First Multicharged ECR Ion Source : SUPERMAFIOS 1975 
•  Invented at CEA Grenoble by R. Geller team (France) 
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Bernard  
Jacquot 

Supermafios 

•  A 3 MW modified fusion 
machine (CIRCE)  to 
produce ion beams 

•  The legend says that, 
at first power switching, 
an electrical  black out 
occured on half of 
Grenoble city! 

R. Geller 
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The First Multicharged ECRIS:  SUPERMAFIOS 
(1975) 

•  SUPERMAFIOS, a Two Stage ECR Ion Source 
•  The first ECRIS were very long (≥ 1m) and featured a 

complicated two stage ECR plasma 
•  Stage 1:  high frequency, high pressure plasma in an 

axi-symetric magnetic field to pre-ionize the atoms 
•  Plasma diffusion between stage 1 and stage 2 in a 

magnetic gradient 
•  Stage 2: main plasma heated at a lower frequency but 

in a large volume chamber equipped with a min-B 
structure (Iofee bar hexapole + axial coils mirror) 
providing good confinement time for ions.  

•  The ion extraction was done very far away from the 
last magnetic mirro peak (never do that!) 
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The 70 & 80’s Pioneers – First Generation Ion Sources 
• MINIMAFIOS – ECREVIS– LBL ECR … 
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MINIMAFIOS 
LBL ECR 

ECREVIS 
Louvain la Neuve 

The First ECR beam in  
A cyclotron was  

achieved at Louvain 
La Neuve (B) 

CEA Grenoble 

Source LBNL 
1st Superconducting ECRIS 

 at L-L-N 

 Evolution of Multicharged ECR Heavy Ion Source – The pioneers 



T. Thuillier, CAS, Senec, 29/5-8/6 2012 

First Generation ECRIS performances 
•  International competition for results was already there! 
•  First International Workshop on Ion sources in  
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Typical beam performance of G1: 
~100 µA Ar8+ 

~100 µA O6+ 
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Second Generation ECRIS 
•  Generalization of ECRIS used as cyclotron injectors or low energy atomic 

physics facility in the 80’s and the 90’s 
•  Dramatic increase of plasma performance by improving the know-how in RF injection, 

magnetic confinement and ion beam extraction 
•  The first plasma stage is abandonned => simplification of the design 
•  It is the time for more compact an economical ion source using permanent magnets for 

hexapole 
•  Numerous nuclear physics results obtained thanks to ECR Ion Sources  
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Example of ECR4, GANIL (1989) 
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•  f=14.5 GHz-1.5 kW (BECR=0.64 T) 

•  Coaxial RF coupling from a cube located 
outside the source, equipped with a movable 
rod (not shown) able to adapt RF impedance 
to the ECR cavity, inherited from CAPRICE 
source design. 

•  Axial Mirror: 1.04 T – 0.35 T – 0.8 T 

•  Hexapole: 1 T FeNdB HallBach type 

•  Typical Ion Beam: ~650 µA Ar8+ 

•  Chamber volume  (Ø64 mm×L200 mm) V~0.5 liter 400 mm 

1.04 T 
0.8 T 

0.35 T 

BECR~0.5 T 

Axial Magnetic field lines (ECR4M) FeNdB hexapole 
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AECR-U LBNL(1996) (upgrade of A-ECR 1990) 
•  Introduction of double frequency 

heating (+10-20% beam) 
•  f=10+14 GHZ / 2 kW 

•  Volume (Ø =76 mm, L=30 cm) V~1.36 liter 
•  Hexapole with radial slots access 

between poles for pumping. 
•  Iron Plug at injection to boost injection 

field to 1.7 T 
•  Bias disk to boost charge states (see 

picture next slide) 
•  Aluminum plasma chamber (higher 

charge state) 
•  Axial field 1.7-0.5-1.1 T 
•  Radial Field 0.85 T 
•  Movable extraction system 
•  Typical beam 840 µA O6+, 120 µA Ar13+ 
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A 18 GHz Modern ECRIS: PHOENIX V2, LPSC/SPIRAL2 (2004) 
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Bias disk 

18 GHz  
Waveguide 
 (WR62) 

Off axis oven/gas 
injection 

60 kV  
HV Core 

2 T 

0.5 T 

BECR~0.64 T 

1.25 T 

1.3 mA O6+ 

•  f=18 GHz- 2 kW (BECR=0.64 T) 
•  Direct Wave guide coupling 
•  3 room temperature coils to tune more 

efficiently the plasma (central in opposition) 
•  Optimised Hexapole:1.35 T FeNdB, 2 layers 
•  Axial Mirror: 2-0.5-1.25 T 
•  Chamber Volume~0.6 liter 
•  Typical beam 1.3 mA O6+ ; 20 µA Ni19+ 

540 mm 
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Third Generation ECR Ion Sources 
•  The new high performance ECR ion sources are optimized for ECR frequency 18 <f< 28 GHz 
•  The high magnetic field intensity required to confine the plasma (~2-4×BECR~2-4) makes the 

use of copper coil technology unreasonable in term of electrical power consumption (2T 
hexapole in Cu technology=> 3-4 MW electrical power).  

•  New ECRIS are preferably fully superconducting, with a large plasma volume to produce very 
high charge states for Cyclotrons or High intensity LINAC 

•  The beam current dramatically increases when the source is operated at higher frequency, 
and new technical challenges have arisen…. 
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the first 28 GHz ECRIS VENUS, LBNL (2002) 
•  f=18+28 GHz - (2+6) kW  
•  BECR=1 T 
•  Fully superconducting ECRIS 

•  NbTi:Cu wire technology 
•  4K LHe + thermal 40 K shield 
•  4×1.4 W cryocooling 

•  Axial profile 3.5-0.35-2.2 T 
•  Radial hexapole at wall Br=2.2 T 
•  Dedicated to very high intensity, very 

high charge state applied to cyclotron 
acceleration 

•  Plasma Chamber volume V~8.5 liter 
•  Ø~15 cm , L~50 cm 

•  V~25 kV 
•  Typical beams: 3 mA O6+,  

0.86 mA Ar12+ 
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BECR 28 GHz 

BECR 18 GHz 

Note the focusing 
Solenoid right at the  
Extraction to manage 
High beam current 
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VENUS Performances – example of ion spectrums 
• High intensity, high charge state ion spectrums 
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Uranium Argon 

Source:  D.Leitner, LBNL, 2007 
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SECRAL 24 GHz (IMP CAS, Lanzhou) 
•  Fully Superconducting ECRIS (2004) 
•  Original design hexapole outside the 

axial coils 
•  Magnetic intensity boosted by large iron 

yoke around the large hexapole 
•  f=18+24 GHz / ((1.7+1.8)+7) kW 
•  Brad=1.8 T 
•  Axial Field 3.7-0.82-2.2 T 
•  Ø120 mm, L 42 cm ; V~4.7 liter 
•  Typ. beam: 2.3 mA O6+ ; 510 µA 

Ar12+ 
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SECRAL Mechanics 
•  Uses of all the up to date techniques 

•  Note the large pumping to work at low 
pressure, improve charge state and 
reduce background 
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Removable UHV Injection system Removable UHV Injection system with 18+24 GHz 

Bias Disk 
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SECRAL – typical Beam performance 
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Argon 

Example of Today High Charge state production 
• Today ECRIS Argon beam performance 
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ECRIS prospects – Accelerators demands 
• Many new accelerator projects are requiring high intensity, high charge 

state ion beams → Condition to start 4th Generation ECRIS R&D are met 

FRIB, MSU,USA SPIRAL2, GANIL,France 

RIKEN, Japan 

HIRFL, IMP,  
 China   270 µA U33+ 

+270 µA U34+ 

1 mA 40Ar13+ 

525 µA U35+ 

750 µA Bi35+ 

FAIR, GSI, Germany 

1 mA U28+ 
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LBNL preliminary 56 GHz magnetic design study 
•  Magnet design study (Nb3Tn) presented at ICIS’11, Italy. 

•  Complicated engineering with Nb3Tn 
•  Feasibility is demonstrated 
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IMP Lanzhou 50 GHz design 
•  NbTi is used, relaxing coil stress thanks to « fusion like » coils use (D. Xie at 

ICIS’11) 

•  Use of a sophisticated hexapole  
directly generating a min-B field 

•  NbTi Wire used 
•  forces on coil reduced, but complicated 

engineering for winding and plasma chamber 
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ECR (exotic) Prospects  at higher frequency 
•  High frequency ECR R&D with MegaWatt 

Magnets (LPSC & GHMLF, Grenoble) 
•  Design and build of several copper coils prototypes to 

study innovative magnetic structures 
•  Test at the Grenoble High Magnetic Field Laboratory  on 

a dedicated test bench equipped with a 60 GHz Gyrotron 
•  Coil building is simple 
•  Allow fast R&D: build, test & improve 

•  First prototype is axysymetric (SEISM) 
« CUSP » presented earlier 

•  Next prototypes should feature a classical 
minimum-B structure 

•  Ioffe bar style hexapole (Xie) is part of the plan 
for a long time (CERN EURISOL meeting slides 
2006). 

•  Once studied and validated, the goal is to 
switch the source to a superconducting version 

copper coil with turns  
Machined by electro erosion  

SEISM applied to Beta Beams R&D 

Min-|B| hexapole foreseen,  
as presented in 2006 at CERN 
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The challenges of 4th generation ECRIS (50-60 GHz) 
•  4th generation ECRIS Magnetic Field at SC coil 

surface is above NbTi superconducting wire 
performance 
•  This likely Requires the use of another SC wire…Nb3Sn? A 

strong R&D is necessary 
•  3rd generation ECRIS shows an intense parasitic X-

ray flux, generated by the Bremstrahlung of hot 
electrons impinging the plasma chamber wall,  
inducing a dramatic extra heat load of the SC cold 
mass of ~1 W/ kW RF at 24 or 28 GHz… What about 
a 60 GHz plasma??? 

•  Today total current extracted (I~5-15 mA ) from 3G 
ECRIS is highly space charge dominated … How to 
manage a 60 GHz beam with I×4 (I~20-50 mA)??? 

•  In high performance ECRIS, an experimental limitation 
on RF power injected is observed with P~1 kW/
chamber liter. How to go further to improve 
performances? 
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VENUS X-ray spectrum 

60 GHz? 
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2.45 GHz High Intensity Light Ion Source 
• The TAYLOR Source (1991) 

•  Still a reference in the field 
•  f=2.45 GHz / 2 kW ECR frequency 

•  BECR=0.087 T (easy to do) 
•  Monomode cavity 

•  2 open ECR surface 
•  Purely axial field  
•  NO MAGNETIC CONFINEMENT 

•  One single electron pass through ECR 
•  Te~1-20 eV 
•  Λ

0->1+
  ~ 7 cm 

•  1+ Ion Source 
•  Very high intensity: ~25 mA of H+ 

•  Ø4 mm hole only 
•  « High » pressure P~10-5 mbar 

•  Proton Fraction: H+~90% 
•   H2

+ & H3
+ ~ 10% 

•  Low emittance ~0.07 π.mm.mrad 1σ RMS norm. 
(low B, Triode: see extraction slides later)  
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SILHI with permanent magnets (CEA/IRFU) 
•  A single ECR resonance in the chamber 

•  located at the maximum of RF electric field, 
near to RF input. 

•   The second resonance is out of the chamber 
in the extraction system 

•  WR340->WR284->double ridge RF 
transition 

•  Complicated 5 electrodes extraction 
 to manage very high ionic currents 

•  I H+~100 mA, 80% Fraction 
•  High current is obtained by  

increasing extraction hole Ø 
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RF 
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Very Compact 2.45 GHz (Peking University) 
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•  A half length cavity with respect to 
Taylor 
•  L= 50 mm 

•  A quarter wave diameter chamber 
•  Ø ~40 mm 

•  Permanent magnets 

•  50 mA H+ with a triode extraction 

•  Direct Waveguide coupling (no 
transition) 

•  By the way: RF Tuners are mandatory 
in 2.45 GHz ECRIS to optimize the 
power coupled to the  ECR plasma! 

 Ligh ECR Ion Sources Operated at 2.45 GHz 
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Gas Mixing 
• Discovered at KVI (Holland) 
• Add He or O2 gas helps improving high 

charge state production in an ECR Ion 
Source 
•  Usually He is used for mixing with atomic 

masses A<16 (O) 
•  Usually O is used to mixing with heavy masses 

A>16 
• The extra O or He injected is used as the 

main buffer gas that sustains the plasma 
• The other compound to be highly ionized is 

injected in low quantity with respect to the 
buffer gas 

•   the charge state distribution of the atom of 
interest shifts to very high charge state (eg 
fully stripped Ar18+ beam) 
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Ici image 
de gaz 
mixing: 

Bismuth 

Very high charge states obtained in VENUSwith the gas mixing technique 

Oxygen as 
 buffer gas 

 Technique to Improve Performance: Gas Mixing 
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Condensable Ion Beam production in ECR Ion Sources 
•    
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Oven technique 

1+ ion 

atoms 

Sputtering technique 

1+ ion 

Hot Wall liner 

MIVOC 

Lanzhou, IMP, china 
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Metallic ovens for ECRIS 
•  Resistive Filament Oven 

•  Helicoidal W filament inserted bewteen an 
inner and outer insulator (alumina) 

•  Can be very compact (Ø~10-20 mm) 
•  T~1400-2000°C max 

•  Depending on design 
•  The Alumina crucible melts at 2050˚C 

•  Possibly radiation reflector foil on the 
outside to improve heating 

•  Resistive Foil Oven 
•  The filament is replaced by a Ta Foil 
•  The alumina crucible is replaced by a Mo 

one 
•  TMAX~2000-2600°C (Mo melting) 
•  Ø~20 mm 
•  Requires a careful thermal design study 
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JYFL resisitive oven 

MSU miniature oven 

MSU Resistive Filament Oven 

JYFL Resistive Foil Oven 
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Metallic ovens for ECRIS 
•  Massive resistive oven 

•  The crucible is directly the heated resistor  
(Tungsten) 

•  Large oven (~4 cm), large metal capacity 
•  Requires large DC current 350 A/3V 
•  TMAX~2000-2300°C  
•  Large current through leads may generate 

electromagnetic force in the magnetic field of 
the ECRIS: 
•  F~IB 
•  Thermo-mechanical calculation required 

•  Inductive oven 
•  The metallic crucible is inductively heated by 

a water-cooled 
excitation coil  

•  TMAX~2000-2600°C (Mo melting) 
•  The tricky part is the external pulsed current 

generator to excite the coil (f~100-200 kHz 
P~1 kW) 

•  Ø~25 mm 
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Rev. Sci. Instrum. 83, 02A311 (2012) LBNL Massive Resistive Oven 

JYFL inductive oven 
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Typical metallic beam intensities 
• Metal consumption~0.1-10 mg/h depending on the tuning and 

the source 
•  Consumption is a concern when expensive elements like 48Ca is 

requested 

• Global ionization efficiency of oven is ~10% 
• Hot liner Recycling helps to reach ~     % 
• Run duration ~days to ~weeks depending on the crucible 

volume and the metal consumption 
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Pulse Mode operation for Synchrotrons: The Afterglow 
•    
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Pb28+ pulses (ECR4 GANIL)  

RF 

 Pulse Mode Operation 
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The Afterglow mechanism 
•    
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Lead Afterglow Spectrum  
•  650 µA Pb25+ - 28 GHz- PHOENIX V1 SOURCE (LPSC) - 10 ms/10 Hz 

33 

a.u. 

10 ms 

0 ms 

RF pulse 

Pb 25+,24+,23+,22+ 

O+ O2+ O3+ O4+ C+ 

N+ 

Pb 16+ Pb 14+ 

AFTERGLOW 

Very stable tuning at 500 µA 

Bending magnet intensity 

time 

 Pulse Mode Operation 



T. Thuillier, CAS, Senec, 29/5-8/6 2012 

The Preglow mode (under R&D) 
•  Discovered by chance at LPSC during afterglow 

studies 
•  Intense transient peak occuring at plasma breakdown 
•  Studied at 18 and 28 GHz ECR frequency 

•  The Preglow is reproduced with a 0D model 
developped at IAP (Russia) 
•  Main assumption: build up of a superadiabatic high 

energy electron distribution function (EEDF) at early 
plasma breakdown, when ne is low 
•  The confined electrons absorb all the RF power and 

reach high energy 
•  When ne increases, plasma leaks and collisions with 

ions become dominant and the superadiabatic EEDF 
damps brutally to a lower energy one (maxwellian). 

•  during the EEDF damping, high Transfer of energy from 
electrons to ions occur (through electron impact ionisation) 
⇒ transient Preglow peak 
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1+N+ Method in ECRIS 
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Experiment 

•  Invented by R. Geller at Grenoble  
•  Method under development in many laboratories GANIL(SPIRAL1→2), 

ANL(CARIBU), TRIUMF (ISAC2), KEK(TRIAC), LNL(SPES)… 

•  Dedicated to Radioactive  
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In 

LPSC Example of In N+ beams 
Source: ANL, R. Vondrasek 
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ECR Charge breeding  as a plasma probe 
• Evidence of step by step ionization process in the ECR plasma 
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In+(t) 

1+ beam  
injection Charge Breeding time= 

time for 1+→ N+ ionization + 
Time for plasma escape 
(confinement time) 
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t 

Experiments done with the PHOENIX Charge Breeder (LPSC) 
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Beam Extraction from ECR Ion Sources 
•    
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Ion Extraction from the plasma  
•    
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Hot Electrons contribution to the emittance 

•    
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Source: I.G. Brown 
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Ion Beam Emittance from an ECRIS 
•    

41 

Beam Extraction  
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Experimental beam emittance measurements 
•  Systematic experimental emittance measurements performed on 

Heavy Ion ECRIS confirms that Magnetic Emittance is dominant 
•  VENUS Plot below 
•  PHOENIX Plot right 
•  Light Ions emittances is consequently very large 

•  High intensity beams extracted (Itot~3-15 mA) induce space 
charge effects that inflate final beam emittance  

•  PHOENIX Orange plot: 1 mA O6+ - Green: 0.5 mA O6+ 

•  The Emittances of High Charge states are smaller than expected 
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Source: D. Winklehner, LBNL,ECRIS2010 
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•  High charge state ions are extracted from 
a radius lower than the plasma electrode 
one => Magnetic emittance reduction 

•  Effect due to the potential dip (generated by 
hot confined electrons) that confine 
electrostatically the ions near the ECRIS axis 

•  Experimental evidences exist of small 
triangular beams for high charge state  

1: VENUS plasma electrode 
2: VENUS injection bias disk 
3: zoom of ion sputtering 
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High intensity ECRIS Extractor 
•  ECR ion sources used to extract I~1-2 mA of Ion beams,with a low 

divergence and negligible space charge effects 
•  Classical extraction feature diode system with a plasma electrode and a grounded 

puller (as shown earlier) 
•  New generation high performance ECRIS produce high intensity beams of 

multicharged ions: the total current extracted increases typically to the 
range I~2-20 mA where the space charge is highly dominant 

•  ECRIS extractor was modified to a Triode system used fo decades in high 
current 1+ sources 
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Source: D. Winklehner, LBNL,ECRIS2010 
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ECRIS requirements for Beam separation and transport 

•    
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Lens 

Several mixed M/Q 

U 

Example of an ion  
spectrum from  
VENUS, LBNL 
NIMB 235 (2005) 486–493 

Requirements for beam separation 
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Appendix 
• Bush Theorem 
• Motion of charged particule in E & B static field 
• Plasma Sheath and Plasma Potential 
• Plasma Wall Interactions 
•  Is there a limitation to ECR electron energy? 
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The Bush Theorem (emittance magnetization) 
•    
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Motion of a particle in a static Magnetic and Electric Field 
•    
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The Plasma Sheath and The Plasma Potential 

Wall  Sheath  Presheath 

Neutral plasma Non neutral plasma 

x 

V=Vp 

V=0 

•    

Appendix 
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Plasma-Wall interactions 

Secondary Electron Emission 
•  Impinging electrons to the wall 

generate secondary electrons flux that 
are accelerated toward the plasma 
•  Excellent feedback effect on plasma 

density 
•  The Yield Strongly depends on material 

Ion Sputtering 
•  Ions escaping the plasma are 

accelerated in the sheat to E=ZVp eV 
•  Atoms are sputtered and contaminate the 

plasma 
•  A high concern in Tokamak… 

+ 

Secondary electron Yield δ  
vs primary electron energy 

Element δmax Ep (eV) 

Cu 1.3 600 

Fe 1.3 600 

Pt 1.8 700 

Ta 1.3 600 

W 1.4 650 

Compound δmax Ep (eV) 

NaI (crystal) 19 1300 

Al2O3 (layer) 2 - 9 

MgO (crystal) 20 –
25 

1500 Source J. Arianer, IPNO 

Source J. Arianer, IPNO 
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Is there a limitation to electron energy in ECR? 
•    
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