

Application Note AN14557

Developing USB Applications

Author: Amit Nanda / Greg Nalder
Associated Project: N/A

Software Version: SuiteUSB.net 2.0
Associated Application Notes: None

Abstract
Developing USB applications has changed dramatically from the early days of USB development. Cypress has developed
tools to help simplify the design of these applications. The latest addition to the family is SuiteUSB.net 2.0, a .NET application
development library. The focus of this article includes a history and walk-through of writing your first USB application.

Introduction
Applications’ communication with USB devices have
evolved dramatically. In the early days, the application
writing process involved making direct calls to drivers,
something that was easier said than done. The process of
writing an application was cumbersome; the application had
to first get a device handle and then call device IO controls
or read/write files. This made access, especially to mass
storage class devices, very difficult.

In that initial development, Cypress released USB
Developers’ μStudio, which provided an easier, high level
programming interface through which there was no need to

get device handles. The API was implemented as a
statically linked library. But it was limited in that it only
accessed devices bound to the cyusb.sys driver.

The new generation of application development tools from
Cypress has an even simpler, more powerful API.
SuiteUSB.net 2.0 supports the cyusb.sys, usbstor.sys, and
usbhid.sys device drivers increasing the spectrum of
devices that can be accessed with this tool. The figure
below illustrates the early days of application development
versus the new Suite USB.net.

May 3, 2007 Document No. 001-14557 Rev. ** - 1 -

AN14557

Cypress’ new SuiteUSB.net enables users to quickly
develop custom USB applications. At the heart of the new
SuiteUSB.net is cyusb.dll. This DLL is a managed Microsoft
.NET 2.0 class library. It provides a high level, powerful
programming interface to USB devices. Rather than
communicate with USB device drivers directly via Win32 API
calls such as SetupDiXxxx and DeviceIoControl,
applications can access USB devices via library methods
such as XferData and properties such as AltIntfc.

Because cyusb.dll is a managed .NET library, its classes
and methods can be accessed from any of the Microsoft
Visual Stuido.NET managed languages such as Visual
Basic.NET, C#, Visual J#, and Managed C++. To use the
library, you need to add a reference to cyusb.dll to your
project's References folder. Then, any source file that
accesses the CyUSB name space has to include a line to
include the name space in the appropriate syntax.

The following walks you through developing your first
application with SuiteUSB. The examples shown below are
written in C# but can be converted to C++ or J#.

Ease of Cyusb.dll
Cyusb.dll is a major leap forward from the previous
development tools offered by Cypress. It manages USB
devices for you, so there are no more ‘open’ and ‘close’ of
devices. You can locate multiple USB devices connected to
the host using various indexers into the USBDeviceList. You
can easily populate a USBDeviceList with devices attached
to more than one driver (including HID and MSC devices).
Cyusb.dll easily handles USB PNP events.

Writing Your First Application
Before you begin writing your first application, ensure you
have installed SuiteUSB.net, then start Visual Studio 2005
and choose Templates > New Project > Windows
Application. Make sure you give your application a unique
name. In this example, the application name is
‘WindowsApplication2’.

Click OK and a blank form displays. This form is a functional
application; click on the green arrow to start the application.
There are several interesting things you can do with
CyUSB.dll. To use this library, you need to add a reference
to CyUSB.dll to your project's References folder. Any source
file that accesses the CyUSB name space must include a
line to include the name space in the appropriate syntax.

1. Right click on Reference and Add Reference, under
the Solution Explorer window. Browse to the installation
directory of SuiteUSB and double-click CyUSB.dll. This
references the library to your project; however, you
cannot use it just yet.

2. If you have the blank form showing, right click outside in
the white space and click View Code. This is your code
view window. Notice that you have some initial code
that Microsoft puts in to start your project.

3. At the top, you can see directives, starting with the word
‘Using’. For C/C++ users, these are the same as
‘#include’. Since you added the reference to
CyUSB.dll, you have to inform the application that it is
going to be used. So, under the last ‘using’ line, add the
words: using CyUSB; this gives you access to the
library’s APIs, classes, and other functionality.

4. Actually, the ‘using’ directive serves as a shortcut in the
code so that you do not have to explicitly reference the
CyUSB name space when you use its functions. You
can leave out the ‘using’ directive if you pre-pended
‘CyUSB’ to all the CyUSB member references.

5. Insert the code below into your application; it is
explained later in this application note.

May 3, 2007 Document No. 001-14557 Rev. ** - 2 -

AN14557

1 USBDeviceList usbDevices;
2 CyUSBDevice myDev;
3 public Form1()
4 {
5 InitializeComponent();
6
7 App_PnP_Callback evHandler = new App_PnP_Callback(PnP_Event_Handler);
8
9 usbDevices = new USBDeviceList(CyConst.DEVICES_CYUSB, evHandler);
10
11 // Get the first device having VendorID == 0x04B4 and ProductID == 0x8613
12
13 myDev = usbDevices[0x04B4, 0x8613] as CyUSBDevice;
14
15 }
16
17 public void PnP_Event_Handler(IntPtr pnpEvent, IntPtr hRemovedDevice)
18 {
19 if (pnpEvent.Equals(CyConst.DBT_DEVICEREMOVECOMPLETE))
20 {
21 usbDevices.Remove(hRemovedDevice);
22 // Other removal event handling
23 }
24
25 if (pnpEvent.Equals(CyConst.DBT_DEVICEARRIVAL))
26 {
27 usbDevices.Add();
28 // Other arrival event handling
29
30 }
31 }

Application Code Analysis
The USBDeviceList class is at the heart of the CyUSB class
library. In order to successfully utilize the library, a good
working knowledge of the USBDeviceList class is essential.
The USBDeviceList represents a dynamic list of USB
devices that are accessible via the class library. When an
instance of USBDeviceList is created, it populates itself with
USBDevice objects representing all the USB devices served
by the indicated device selector mask, such as (line 9):

usbDevices = new USBDeviceList
(CyConst.DEVICES_CYUSB, evHandler);

Selector masks are defined as follows:

1. CyConst.DEVICES_CYUSB – mask to select devices
that are bound to the CyUSB driver.

2. CyConst.DEVICES_HID – mask to select devices that
are in the HID class.

3. CyConst.DEVICES_MSC – mask to select devices that
are in the MSC class.

These USBDevice objects have all been properly initialized
and are ready for use. Once an instance of the
USBDeviceList class is constructed, the USBDeviceList
index operators make it easy to locate a particular device
and begin using it, such as (line 13) :

CyUSBDevice myDev = usbDevices[0x04B4,
0x8613] as CyUSBDevice;.

If you want to search for other methods of indexing through
the device list, type: CyUSBDevice myDev = usbDevices[.
Once you type in the open bracket, Visual Studio displays
different methods of using the USBDeviceList index.
Because USBDeviceList implements the IEnumerable
interface, you iterate through a USBDeviceList object's
items using the ‘foreach’ keyword.

The App_PnP_Callback class is used to setup Windows
PnP event handling for the devices in a USBDeviceList. To
enable handling of PnP events, an instance of
App_PnP_Callback is passed to the USBDeviceList
constructor; usbDevices = new
USBDeviceList(CyConst.DEVICES_CYUSB,
evHandler);. The ‘evHandler’ is the instantiation of the
class App_PnP_Callback. To create an instance of
App_PnP_Callback, the name of an event handler method
must be passed to the constructor; in this case,
‘PnP_Event_Handler’. The event handler method
receives two parameters when the PnP event occurs. The
first pnpEvent indicates what event caused the invocation of
the handler. The second hRemovedDevice is a handle to
the device that is being removed in the case of device
removal events.

The PnP_Event_Handler funciton takes two arguments, as
mentioned above. The function, as written, checks to see if
the event was cause by a device being plugged in,
‘pnpEvent.Equals(CyConst.DBT_DEVICEARRIV
AL)’ or a device being removed, ‘(pnpEvent.Equals

May 3, 2007 Document No. 001-14557 Rev. ** - 3 -

AN14557

(CyConst.DBT_DEVICEREMOVECOMPLETE).‘ You
can add other functionality to this function if other work
needs to be done when a device is plugged in or removed.

You can write something in the PnP_Event_Handler and
then test the code.

1. Inside the IF statement that handles device removal,
type the following: Text = “Device Yanked”.

2. Inside the IF statement that handles device arrival, type
the following: Text = “Device Arrived”.

The ‘Text’ property controls the text seen in the top left
hand corner when you run your application. For
example, if you run the application without the above
mentioned code, the word ‘Form1’ is displayed – not
very informative information. By adding this code every
time a device is plugged in or removed, the software
displays the text provided.

3. Press the green Play button and attach and detach a
USB device.

Make sure it is a Cypress USB device, because the
event handler you just wrote only handles devices tied
to the CyUSB driver, for now.

4. Unplug and plug the device repeatedly and watch the
text change. That is your first application.

So far, only the basics of writing your first application have
been covered. The next few sections discuss some advance
features that are used to make the application more
productive.

Advanced Topics
Before proceeding to advanced topics, a more detailed
discussion about CyUSB.dll is required. One of the most
important classes in the library is CyUSBDevice. The
CyUSBDevice class represents a USB device attached to
the CyUSB.sys device driver. A list of CyUSBDevice objects
are generated by passing DEVICES_CYUSB mask to the
USBDeviceList constructor. Once you obtain a
CyUSBDevice object, you can communicate with the device
via the objects’ various endpoint (ControlEndPt,
BulkInEndPt, BulkOutEndPt, and others) members.
Because CyUSBDevice is a descendant of USBDevice, it
inherits all the members of USBDevice.

CyUSBDevice provides three main components (an in depth
list is located in the SuiteUSB Programmers Reference
Guide).

1. Functions (in C# parlance, these are called methods)

2. Properties

3. Objects

These three components give you access to most of the
USB controls you need in your application, including
functions such as GetDeviceDescriptor() and Reset();
properties such as AltIntfc and ConfigCount; and objects
such as BulkIn/Out Endpt and IsocEndpt.

The first application you wrote allowed you to detect plug
and play events and change the text of the application. You
can add some buttons to your form and experiment with

some alternate interfaces. The next example uses the EZ-
USB FX2LP™. Download the CyStream.iic file onto the
EEPROM of the EZ-USB FX2LP.

When you finish downloading the file, reset the device and
make sure the Windows Device Manager detects it as a
CyStream device.

Add Buttons and Toggle a 7-Segment Display
1. Click on the tab in Visual Studio that reads

Form1.cs[Design].

2. Click on View > Toolbox.

3. Once the Toolbox opens, click and drag Button
anywhere on your application.

4. A button labeled Button1 appears on your form. Double-
click the Button.

5. Windows just created an event handler for you. Anytime
a user clicks the button, your program does what is
inside this function call.

private void button1_Click(object sender,
EventArgs e)

object sender – where the event came
from. If you have multiple functions
calling this function you can determine
where it came from.

EventArgs e – any arguments that are
passed in when the event happens.

6. Add code to control the 7-segment display. In your

function, type the following:

myDevice.AltIntfc++;
Text = myDevice.AltIntfc.ToString();

What does the above code do? As was discussed
before, AltIntfc is a property that is used to get or set
the alternate interface setting for the device. Since the
7-segment display is an alternate interface, this code
increments the numbers on the display. At the same
time, the text in your application outputs what is
currently displayed. You can use this code in an
application, such as a thermometer to display the
temperature of a device on screen if the device is
hidden inside a box.

7. Run your application. Then implement a button to
decrement the count.

Detecting Devices
The following code generates an application that detects all
devices connected to the bus.

1. Move the buttons to one side of your form.

2. Drag and drop TreeView onto the form and expand it to
take up most of the room on the form.

3. Right click in the white area outside of your form and
click View Code.

May 3, 2007 Document No. 001-14557 Rev. ** - 4 -

AN14557

4. Add code to the function: Form1()

 foreach (USBDevice dev in usbDevices)
 treeView1.Nodes.Add(dev.Tree);

After adding just two lines of code, the program gets all
devices connected to the host and fills in the tree. Every
USB device has a Tree property associated with it.
When you call dev.Tree, the configuration of all the
devices is returned and displayed.

5. Add the following code to the PnP function handler. But
before doing so, you have to add one more line to

ensure you do not get repeat devices showing up in the
tree. Add the following code under each of the two If
statements in the PnP handler:

treeView1.Nodes.Clear();

foreach (USBDevice dev in usbDevices)
treeView1.Nodes.Add(dev.Tree);

This clears the tree every time a device is plugged or
unplugged and then it re-initializes the tree.

Your view should look similar to the one below.

Once you perform the previous exercises, try writing and
testing your own applications. Experiment with different
properties and tools and see if you can write an

application that meets your requirements. Reference the
online Programmers Guide included in the SuiteUSB
installation.

May 3, 2007 Document No. 001-14557 Rev. ** - 5 -

AN14557

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com

© Cypress Semiconductor Corporation, 2007. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

May 3, 2007 Document No. 001-14557 Rev. ** - 6 -

http://www.cypress.com/

