Algorithms for hardware image processing – September 02, 2009. V.1.5

[image: image9.jpg]
Algorithms for hardware image processing
D. Contarato, D. Doering, J. Joseph and P. Giubilato
Version 0.1
September 02, 2009.

31.
Introduction

32.
Hardware (FPGA) image processing algorithms

32.1.
Cluster search analysis

42.1.1.
Pre processing

52.1.2.
Real time processing

62.1.3.
Post Processing

72.2.
Algorithm Evaluation structure

1. Introduction
Fast cameras such as TEAM 1k, and TEAM 2k produce one image every 2.5ms. The amount of data cannot be send to a storage device for long periods of time because these resources are limited. One solution for this limitation is to process data in hardware and send to a storage/display system data that is more compact with higher level of information.

Algorithms such as cluster search analysis are one option for tackling this task and its implementation on a system will be described here.

2. Hardware (FPGA) image processing algorithms
2.1. Cluster search analysis
The cluster search analysis that will be performed in hardware will be executed in 3 phases.
1) Pre processing: a set of raw data is send to a host PC that will calculate some initial condition used by the algorithm such as noise average, noise standard deviation, pedestal image, hot pixel map, single electron statistics.

2) Real time processing: the algorithm implemented in hardware uses the set of information extracted on the pre processing phase and raw incoming data to perform the cluster search. The output of this phase is a list of clusters with their core information (position and energy)

3) Post processing: the list of clusters is uploaded to the PC that sums these positions and create an image from them.

There are some assumptions that are being made to create this algorithms

1) The cluster fits in a 5 by 5 matrix, this is typically true for EM done with 300keV electrons using the TEAM 1k sensor.

2) There will be no overlap among clusters so the density is such that the regions with the densest electrons interaction happens with a minimal distance of 5 pixels

3) NO morphology analysis will be made

4) NO center of gravity will be calculated (for sub pixel information)

Figure XXX shows the cluster search block diagram

Figure XXX+1 shows the FPGA block diagram for the real time processing phase

Figure XXX+2 shows the block diagram for creating a matrix of 5 x 5 pixels

2.1.1. Pre processing

2.1.2. Real time processing

2.1.2.1. Pedestal subtracting
2.1.2.2. Seed selection algorithm

The algorithm that classifies a pixel as being a seed of a cluster uses a 5x5 matrix. This matrix is implemented in hardware using a set of FIFOs and latches.

	P(2,-2)
P(2,-1)
P(2,0)
P(2,-1)
P(2,2)
P(1,-2)
P(1,-1)
P(1,0)
P(1,-1)
P(1,2)
P(0,-2)
P(0,-1)
P(0,0)
P(0,-1)
P(0,2)
P(-1,-2)
P(-1,-1)
P(-1,0)
P(-1,-1)
P(-1,2)
P(-2,-2)
P(-2,-1)
P(-2,0)
P(-2,-1)
P(-2,2)
(a)
	
[image: image2]

(b)

	Figure 1 5x5 matrix (a) and its hardware implementation (b).

With this implementation every clock cycle the pixel located at P(0,0) is being evaluated to verify if it and only it is a seed pixel. In order for the pixels to be considered a seed pixel it has to have the following characteristics

1) P(0,0) > THseed where THseed is a parameter obtained on the pre-processing phase.

2) P(0,0) > P(x,y) for x={-2,2} and for y={-2,2}
2.1.3. Post Processing
2.2. Algorithm Evaluation structure
In order to develop algorithms for HIP there is a need to test them using know data. This can be accomplished by a system that is made of a PC, USB port and a V5 evaluation board. The PC has the software for user interface and a database for all images that will be tested. The PC sends configuration and data to the V5 board via USB port. The V5 board gets the data and process it. The results can be compared with algorithms developed in software. Figure 2 shows the module in the V5 that is responsible for this task.

[image: image3]
Figure 2 - Algorithm evaluation structure

The state machine reads and writes registers that configure the system behavior. The communication with the USB controller is done through the FIFO RD and FIFO WR.

The Line FIFO is used to store at least one full line. Once the line is present then it is transferred to the HIP core. This allows for system with very different data through puts to be used together. This is the case when we are downloading data through the USB (max 48 MB/s) and processing it through the HIP core (>100MB/s). In order to download data the SM is set to save data. The number of data that will be transferred in define in a register (register 5). Once the SM is in this mode then all data send to this module through FIFO RD will be considered image data and will be sent to the Line FIFO. Once the data is transferred then a new command to put the state machine in save data mode needs to be send in order to save more data in this line FIFO.
The algorithm implemented in the HIP was described already in this document. The results of it, which is the list of clusters for a cluster search algorithm is saved at the list FIFO.
I

Registers
	Description
	Address
	Access
	Width

	Core version
	0x00
	R
	32

	Read only register that informs the core version being used.
	Bit Value

	
	1
	0

	 Bits[31: 0]: Core version
	Value

	Description
	Address
	Access
	Width

	Commands
	 0x01
	WR
	32

	This is a self clear register that is used to send commands. Each bit is a different command.
	Bit Value

	
	1
	0

	 Bits 0: Start USB save data flag
	Start
	Do nothing

	 Bits 1:
	
	

	 Bits 2:
	
	

	 Bits 3:
	
	

	 Bits 4:
	
	

	 Bits 5:
	
	

	 Bits 6:
	
	

	 Bits 7:
	
	

	 Bits 8:
	
	

	 Bits 9:
	
	

	 Bits 10:
	
	

	 Bits 11:
	
	

	 Bits 12:
	
	

	 Bits 13:
	
	

	 Bits 14:
	
	

	 Bits 15:
	
	

	
	

	Description
	Address
	Access
	Width

	General status
	0x02
	R
	32

	Read only register that informs the status of the core.
	Bit Value

	
	1
	0

	 Bits[31: 0]:
	Value

	Description
	Address
	Access
	Width

	Data readout status
	0x03
	R
	32

	Status of the system
	Bit Value

	
	1
	0

	 Bits[31: 0]: number of words in the list FIFO (tells the software to know how much data it needs to read.
	Value

	Description
	Address
	Access
	Width

	General configuration
	0x04
	RW
	32

	Sets the HIP core configuration modes.
	Bit Value

	
	1
	0

	 Bit [0]: cluster list FIFO data select
	Cluster list
	Input data

	 Bits[31: 0]:
	Value

	Description
	Address
	Access
	Width

	General configuration
	0x05
	RW
	32

	General configuration Default: x200.
	Bit Value

	
	1
	0

	 Bits[31: 0]: USB number of data that will be saved through the USB.
	Value

	Description
	Address
	Access
	Width

	General configuration
	0x06
	RW
	32

	Sets the image number of lines. Default 0x10
	Bit Value

	
	1
	0

	 Bits[31: 0]: Image number of lines.
	Value

	Description
	Address
	Access
	Width

	General configuration
	0x07
	RW
	32

	Sets the image number of columns. Default 0x10
	Bit Value

	
	1
	0

	 Bits[31: 0]: Image number of columns
	Value

	Description
	Address
	Access
	Width

	General configuration
	0x08
	RW
	32

	Sets the HIP core thresholds used in the cluster search algorithm. Default x4.
	Bit Value

	
	1
	0

	 Bits[31: 16]: Neighbors pixels threshold.
	Value

	 Bits[15: 0]: Seed pixel threshold.
	Value

	Description
	Address
	Access
	Width

	General configuration
	0x09
	RW
	32

	Sets the channel configuration modes.
	Bit Value

	
	1
	0

	 Bits[31: 0]:
	Value

FPGA system description

The FPGA system will accomplish several tasks. Among them are the setting of the bias DACs for the sensor; providing clock for the sensor; read control/status signals from the sensor; read data from the ADC; execute all the DSP algorithms for real time image processing; write data to memory (through the controller); communicate with host PC (through controller).
 Figure 2 shows the block diagram for the FPGA system. This system is presently based off of the Altera Stratix IV GX evaluation kit.

[image: image4]
Figure 3 - FPGA block diagram.

The communication between the PC and the FPGA system will happen through data packages. An example is shown in Figure 3.

[image: image5]
Figure 4 - Data package description

Lawrence Berkeley National Laboratory – D. Contarto, D. Doering, J. Joseph and P. Giubilato
- 6 -

[image: image1.png][image: image6.jpg][image: image7.jpg][image: image8.jpg]