

Friction Stir Welding of Stainless Steel and Nickel Base Alloys

R.J. Steel, T.W. Nelson, C.D. Sorensen, Y.S. Sato, C.J. Sterling, and S.M. Packer

Acknowledgements

Material provided by:

- Haynes International
- Ulbrich
- Sandvik

<u>Outline</u>

- Friction Stir Welding
- Polycrystalline Cubic Boron Nitride (PCBN)
- Experimental Approach
- Results
 - Stainless Steel
 - Super Duplex Stainless Steel
 - Nickel Base
- Tool Life
- Summary

Friction Stir Welding

- Solid state process
- Important tool features
 - Shoulder and Pin

Tool Layout

- Locking collar to support PCBN
- Thermal barrier to slow heat transfer to shank

Tool Holder and Telemetry

Polycrystalline Cubic Boron Nitride (PCBN)

- PCBN is a Synthetic Super Abrasive Material
 - Created in HT-UHP presses (1450 C, 870 KSI)

Experimental Approach

Basic parameter study

- Parameters found which produced fully consolidated welds
- Parameters are not optimized

Post weld analysis

- Tensile testing in accordance with ASTM E8
- Transverse metallographic samples removed from each weld
- 2507 Super Duplex microstructure examined using Orientation Imaging Microscopy (OIM)[™]

Materials

Alloy	<u>Thickness</u>
304 Stainless	0.250 in.
2507 Super Duplex	0.150 in.
Alloy 201	0.125 in.
Alloy 600	0.187 in.
Alloy 718	0.089 in.

• 40 CFH of Argon used in all welds

Welding Parameters:

Rotation: 400 rpm

Travel: 3 IPM

Load control: 9000 lbf

Excellent weld appearance

•Also observed at grain boundaries between bands

304 FSW			
Transverse Tensile Properties			
<u>Sample</u>	Yield Strength 0.2 % offset KSI (MPa)	Ultimate Tensile Strength KSI (MPa)	Elongation %
400 RPM, 3 IPM	51 (352)	95 (655)	54
Base Metal	55 (379)	98 (675)	56

•Tensile failures occurred in HAZ

• Reduction in area required for tensile specimens

Welding Parameters:

Rotation: 450 rpm Travel: 3.5 IPM

Load control: 7400 lbf

Excellent weld appearance

FSW produces fine microstructure in the stir zone.

Ferrite : Red Austenite : Green

- Austenite phase exhibits smaller grain size than ferrite phase
- •No evidence of sigma phase

30

2507 FSW Transverse Tensile Properties			
<u>Sample</u>	Yield Strength 0.2 % offset KSI (MPa)	Ultimate Tensile Strength KSI (MPa)	Elongation %
450 RPM, 3.5 IPM	110 (762)	123 (845)	19

128 (886)

102 (705)

Tensile failures occurred in DXZ

Base Metal

<u>Alloy 201</u>

Travel: 4 IPM

•Tool previously used in alloy 718

Fine microstructure exhibited in DXZ

Ni 201 FSW			
Transverse Tensile Properties			
<u>Sample</u>	Yield Strength 0.2 % offset KSI (MPa)	Ultimate Tensile Strength KSI (MPa)	Elongation %
1000 RPM, 4 IPM	28 (193)	65 (448)	34
Base Metal*	15 (103)	59 (406)	50

^{*} Nominal properties reported in literature

Tensile failures occurred in DXZ

Welding Parameters:

Rotation: 450 rpm Travel: 2.25 IPM

Grain refinement exhibited in weld region

<u>Alloy 600</u>

Alloy 600 FSW

Transverse Tensile Properties

<u>Sample</u>	Yield Strength 0.2 % offset KSI (MPa)	<u>Ultimate Tensile</u> <u>Strength KSI</u> <u>(MPa)</u>	Elongation %
450RPM 2 1/4 IPM	54 (374)	104 (719)	27
Base Metal (annealed condition)	38 (263)	92 (631)	50

•Tensile failures occurred in the DXZ

<u>Alloy 718</u>

Welding Parameters:

Rotation: 500 rpm Travel: 2 IPM

Excellent weld appearance

Grain refinement exhibited in weld region

<u>Alloy 718</u>

Alloy 718 FSW

Transverse Tensile Properties

<u>Sample</u>	Yield Strength 0.2 % offset KSI (MPa)	Ultimate Tensile Strength KSI (MPa)	Elongation %
500RPM , 2 IPM	97 (668)	143 (986)	16
Base Metal * (Annealed)	67 (462)	130 (896)	41
Base Metal * (precipitation hardened)	170 (1172)	202 (1392)	22

[•]Tensile failure in DXZ

^{*} Nominal properties reported in literature

Review

• FSW exhibited feasibility in various different stainless steel and nickel base alloys

Excellent mechanical properties

- Grain refinement exhibited in DXZ
 - Wrought microstructure

Tool Life

- Tool Life is always the big question
 - Life test under taken on 304 stainless steel and 1018 mild steel
 - 0.600 in. diameter shoulder with 0.085 in. length on pin
 - FSW machine capable of 40 in. of travel

Tool Life

100 feet of weld produced in 304 Stainless Steel

• 30 tool plunges

Bead on plate performed for life study

Before

- •Solved design issue in driving PCBN
- •78 tool plunges
- No visible wear
- Pin fractured at 262 feet

Tool Life

- PCBN grade development ongoing
 - Current grade being used is commercial machining grade
 - Ongoing program to develop FSW grades
 - Potential to tailor grades for different alloys

Summary

- PCBN proved to be viable FSW tool material for higher temperature materials
- Stainless steel and nickel base alloys can be successfully friction stir welded
 - Excellent weld quality and mechanical properties
 - Fine grain size in weld
- Tool life constantly improving